Design Status of Medium-energy Electron-Ion Collider at JLab

Vasiliy Morozov
for
Jefferson Lab EIC Study Group
Outline

• Introduction
• MEIC conceptual design
 • High luminosity concept
 • Polarized beam design
• Detector integration and performance
• Electron cooler
• Outlook
EIC as JLab’s Future

- JLab’s fixed target program after 12 GeV CEBAF upgrade will be world-leading for at least a decade.
- A Medium-energy Electron-Ion Collider (MEIC) at JLab will open new frontiers in nuclear science.
- The timing of MEIC construction can be tailored to match available DOE-NP funding while the 12 GeV physics program continues.
- MEIC parameters are chosen to optimize science, technology development, and project cost. We maintain a well defined path for future upgrade to higher energies and luminosity.
- A conceptual machine design has been completed, providing a base for performance evaluation, cost estimation, and technical risk assessment.
MEIC Design Parameters

- **Energy** *(bridging the gap of 12 GeV CEBAF & HERA/LHeC)*
 - Full coverage of s from a few 100 to a few 1000 GeV2
 - Electrons 3-11 GeV, protons 20-100 GeV, ions 12-40 GeV/u

- **Ion species**
 - Polarized light ions: p, d, 3He, and possibly Li
 - Un-polarized light to heavy ions up to A above 200 (Au, Pb)

- **Up to 3 detectors**
 - One optimized for full acceptance, another for high luminosity

- **Luminosity**
 - Greater than 10^{34} cm$^{-2}$s$^{-1}$ per interaction point
 - Maximum luminosity should optimally be around $\sqrt{s}=45$ GeV

- **Polarization**
 - At IP: longitudinal for both beams, transverse for ions only
 - All polarizations >70% desirable

- **Upgradeable to higher energies and luminosity**
 - 20 GeV electron, 250 GeV proton, and 100 GeV/u ion
MEIC Layout

- Warm large booster (up to 20 GeV)
- Cold ion collider ring (up to 100 GeV)
- Transfer beam line
- Medium energy IPs
- 12 GeV CEBAF
- Electron collider ring (3 to 11 GeV)

Three compact figure-8 rings stacked vertically
Stacked Figure-8 Rings

Interaction point locations:
• Downstream ends of the electron straight sections to reduce synchrotron radiation background
• Upstream ends of the ion straight sections to reduce residual gas scattering background

• Vertical stacking for identical ring circumferences
• Horizontal crab crossing at IPs due to flat colliding beams
• Ion beams execute vertical excursion to the plane of the electron orbit for enabling a horizontal crossing

• Ring circumference: 1340 m
• Maximum ring separation: 4 m
• Figure-8 crossing angle: 60 deg.
Design Features: High Luminosity

- Based on the following concepts
 - Very short bunch length
 - Small transverse emittance
 - Very high bunch repetition rate
 - Very small bunch charge
 - Very small β^*
 - Crab crossing

- A proved concept: KEK-B @ 2×10^{34} /cm2/s

- JLab will replicate the same success in colliders w/ hadron beams
 - The electron beam from CEBAF possesses a high bunch repetition rate
 - Ion beams from a new ion complex can match the electron beam

<table>
<thead>
<tr>
<th></th>
<th>KEK-B</th>
<th>MEIC</th>
<th>eRHIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition rate</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>748.5</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>Particles per bunch (e^-/e^+) or (p/e^-)</td>
<td>10^{10}</td>
<td>3.3 / 1.4</td>
<td>0.42 / 2.5</td>
</tr>
<tr>
<td>Beam current</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 / 1.8</td>
<td>0.5 / 3</td>
<td>0.42 / 0.05</td>
<td></td>
</tr>
<tr>
<td>Bunch length</td>
<td>cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1 / 0.75</td>
<td>8.3 / 0.2</td>
<td></td>
</tr>
<tr>
<td>Horizontal & vertical β^*</td>
<td>cm</td>
<td>56 / 0.56</td>
<td>10/2 to 4/0.8</td>
</tr>
<tr>
<td>Beam energy (e^-/e^+) or (p/e^-)</td>
<td>GeV</td>
<td>8 / 3.5</td>
<td>60 / 5</td>
</tr>
<tr>
<td>Luminosity per IP, 10^{34}</td>
<td>cm$^{-2}$s$^{-1}$</td>
<td>2</td>
<td>0.56 ~ 1.4</td>
</tr>
</tbody>
</table>
Parameters for **Full Acceptance** Interaction Point

<table>
<thead>
<tr>
<th></th>
<th>Proton</th>
<th>Electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>GeV</td>
<td>60</td>
</tr>
<tr>
<td>Collision frequency</td>
<td>MHz</td>
<td>750</td>
</tr>
<tr>
<td>Particles per bunch</td>
<td>10^{10}</td>
<td>0.416</td>
</tr>
<tr>
<td>Beam Current</td>
<td>A</td>
<td>0.5</td>
</tr>
<tr>
<td>Polarization</td>
<td>%</td>
<td>> 70</td>
</tr>
<tr>
<td>Energy spread</td>
<td>10^{-4}</td>
<td>~ 3</td>
</tr>
<tr>
<td>RMS bunch length</td>
<td>mm</td>
<td>10</td>
</tr>
<tr>
<td>Horizontal emittance, normalized</td>
<td>µm rad</td>
<td>0.35</td>
</tr>
<tr>
<td>Vertical emittance, normalized</td>
<td>µm rad</td>
<td>0.07</td>
</tr>
<tr>
<td>Horizontal β</td>
<td>cm</td>
<td>10</td>
</tr>
<tr>
<td>Vertical β</td>
<td>cm</td>
<td>2</td>
</tr>
<tr>
<td>Vertical beam-beam tune shift</td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Laslett tune shift</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Distance from IP to 1st FF quad</td>
<td>m</td>
<td>7</td>
</tr>
<tr>
<td>Luminosity per IP, 10^{33}</td>
<td>cm$^{-2}$s$^{-1}$</td>
<td>5.6</td>
</tr>
</tbody>
</table>
Parameters for High Luminosity Interaction Point

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Proton</th>
<th>Electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>GeV</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>Collision frequency</td>
<td>MHz</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>Particles per bunch</td>
<td>10^{10}</td>
<td>0.416</td>
<td>2.5</td>
</tr>
<tr>
<td>Beam Current</td>
<td>A</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Polarization</td>
<td>%</td>
<td>> 70</td>
<td>~ 80</td>
</tr>
<tr>
<td>Energy spread</td>
<td>10^{-4}</td>
<td>~ 3</td>
<td>7.1</td>
</tr>
<tr>
<td>RMS bunch length</td>
<td>mm</td>
<td>10</td>
<td>7.5</td>
</tr>
<tr>
<td>Horizontal emittance, normalized</td>
<td>µm rad</td>
<td>0.35</td>
<td>54</td>
</tr>
<tr>
<td>Vertical emittance, normalized</td>
<td>µm rad</td>
<td>0.07</td>
<td>11</td>
</tr>
<tr>
<td>Horizontal β^*</td>
<td>cm</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Vertical β^*</td>
<td>cm</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Vertical beam-beam tune shift</td>
<td></td>
<td>0.014</td>
<td>0.03</td>
</tr>
<tr>
<td>Laslett tune shift</td>
<td></td>
<td>0.06</td>
<td>Very small</td>
</tr>
<tr>
<td>Distance from IP to 1$^{\text{st}}$ FF quad</td>
<td>m</td>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Luminosity per IP, 10^{33}</td>
<td>cm$^{-2}$s$^{-1}$</td>
<td>14.2</td>
<td></td>
</tr>
</tbody>
</table>
Design Features: High Polarization

- All ion rings (two booster, collider) have a figure-8 shape
 - Spin precessions in the left & right parts of the ring are exactly cancelled
 - Net spin precession (spin tune) is zero, thus energy independent

- Ensures spin preservation and ease of spin manipulation
- Avoids energy-dependent spin sensitivity for ion all species
- The only practical way to accommodate polarized deuterons

This design feature promises a high polarization for all light ion beams

(The electron ring has a similar shape since it shares a tunnel with the ion collider ring)

- Use Siberian Snakes/solenoids to arrange polarization at IPs

Proton or Helium-3: longitudinal polarization at both IPs
Proton or Helium-3: transverse polarization at both IPs
Deuteron: Longitudinal polarization at one IP
Deuteron: transverse polarization at both IPs
MEIC Primary Full-Acceptance Detector

- Large 50 mrad crossing angle: no parasitic collisions, improved detection, fast beam separation
- Forward small-angle hadrons pass through large-aperture FFB quads before detection
- FFB / spectrometer dipole combo optimized for acceptance and detector resolution

Central detector, more detection space in ion direction as particles have higher momenta

Detect particles with angles down to 0.5° before ion FFQs. Need up to 2 Tm dipole in addition to central solenoid.

Detect particles with angles below 0.5° beyond ion FFQs and in arcs.

Make use of the (50 mr) crossing angle for ions!
Interaction region: Ions

- **Final Focusing Block (FFB)**
- **Chromaticity Compensation Block (CCB)**
- **Beam Extension Section**

β_x^* = 10 cm
β_y^* = 2 cm

- Distance from the IP to the first FF quad = 7 m
- Maximum quad pole tip field at 100 GeV/c = 6 T
 - Allows ±0.5° forward detection
 - Evaluating detailed detector integration and positions of collimators
- Symmetric CCB design for efficient chromatic correction

Whole Interaction Region: 158 m
Chromaticity and Dynamic Aperture

• Compensation of chromaticity with 2 sextupole families only using symmetry

![Graph showing chromaticity compensation](image1)

- **Ions**: $\Delta p/p = 0.3 \times 10^{-3}$ at 60 GeV/c

- **Electrons**: $\Delta p/p = 0.7 \times 10^{-3}$ at 5 GeV/c

• Non-linear dynamic aperture optimization under way

![Graph showing normalized dynamic aperture](image2)
3D Detector Model
Acceptance of Downstream Ion FFB

- 60 GeV/c protons, uniform spreads: ± 0.7 in $\Delta p/p$ and $\pm 1^\circ$ in horizontal/vertical angle
- Apertures: Quads = 9, 9, 7 T / ($\partial B_y / \partial x$ @ 100 GeV/c)
Momentum & Angle Resolution

- Protons with $\Delta p/p$ spread launched at different angles to nominal 60 GeV/c trajectory
- Red hashed band indicates $\pm 10\sigma$ beam stay-clear

$|\Delta p/p| > 0.005 @ \theta_{x,y} = 0$

16 m downstream of the big dipole
Electron Cooling

- Essential to achieve high luminosity for MEIC
- Traditional electron cooling, not Coherent Electron Cooling
- MEIC cooling scheme
 - Pre-booster: *Cooling* for assisting accumulation of positive ion beams
 (Using a low energy DC electron beam, existing technology)
 - Collider ring: *Initial cooling* after injection
 Final cooling after boost & re-bunching, for reaching design values
 Continuous cooling during collision for suppressing IBS
 (Using new technologies)
- Challenges in cooling at MEIC collider ring
 - High ion energy
 (State-of-the-art: Fermilab recycler, 8 GeV anti-proton, DC e-beam)
 - High current, high bunch repetition rate CW cooling electron beam
ERL Circulator Electron Cooler

Design challenges
- Large RF power (up to 81 MW)
- Long gun lifetime (average current 1.5 A)

Proposed solution
- Energy Recovery Linac (ERL)
- Compact circulator ring

Required technologies
- High bunch charge magnetized gun
- High current ERL (55 MeV, 15 to 150 mA)
- Ultra fast kicker

Optimization
- reduce return path to improve cooling rate and beam dynamics

Proposal: A technology demonstration using JLab FEL facility
Immediate Outlook and R&D

• **Electron cooling**
 - Electron cooling of medium energy ion beam (by simulations)
 - ERL circulator cooler design optimization, technology development
 - ERL-circulator cooler demo (using JLab FEL facility)

• **Interaction region**
 - Detector integration
 - Sufficient dynamic aperture with low beta insertions

• **Polarization**
 - Demonstrate superior ion polarization with figure-8 ring
 - Electron spin matching

• **Collective beam effects**
 - Beam-beam with crab crossing
 - Space charge effects in pre-booster
 - Electron cloud in the ion rings and mitigation

• **Ion Injector complex optimization and beam studies**
JLab EIC Study Group

J. Delayen, S. DeSilva, H. Sayed -- Old Dominion University

M. Sullivan -- Stanford Linear Accelerator Laboratory

S. Manikonda, P. Ostroumov -- Argonne National Laboratory

S. Abeyratne, B. Erdelyi -- Northern Illinois University

V. Dudnikov, R. Johnson -- Muons, Inc

A. Kondratenko -- STL “Zaryad”, Novosibirsk, Russian Federation

Y. Kim -- Idaho State University
Crab Crossing

- Restore effective head-on bunch collisions with 50 mrad crossing angle ⇒ Preserve luminosity
- Dispersive crabbing (regular accelerating / bunching cavities in dispersive region) vs. Deflection crabbing (novel TEM-type SRF cavity at ODU/JLab, very promising!)

Incoming

At IP

Outgoing