COMPACT SUPERCONDUCTING CRABBING AND DEFLECTING CAVITIES

Subashini De Silva

Center for Accelerator Science
Department of Physics, Old Dominion University
and
Thomas Jefferson National Accelerator Facility
Introduction

• New geometries for compact superconducting crabbing and deflecting cavities have been developed

• They have significantly improved properties over those of the standard TM_{110}–type cavities
 – They are smaller
 – Have low surface fields
 – High shunt impedance
 – Some of the designs have no lower-order-mode with a well-separated fundamental mode
Crabbing/Deflecting Cavity Applications

• Luminosity management in linear or circular colliders
• Separation or merge of multiple beams
• Emittance exchange in beams
• X-ray pulse compression
• Beam diagnostics
The 1st Superconducting RF Deflecting Cavity

2.865 GHz Karlsruhe/CERN RF Separator*

- 104 cells
- At IHEP since 1998
- Operating mode: bi-periodic TM$_{110}$ mode

* A. Citron et al., NIM 164, 31-55, (1979)
The 1st Superconducting Crabbing Cavity

Operating mode: TM\textsubscript{110} mode
Required transverse deflection: 1.44 MV
Operation: 2007-2010

KEK Crabbing Cavity

<table>
<thead>
<tr>
<th>Frequency</th>
<th>LOM</th>
<th>Nearest HOMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>508.9 MHz</td>
<td>410.0 MHz</td>
<td>630.0, 650.0, 680.0 MHz</td>
</tr>
</tbody>
</table>

E_p^*	4.24 MV/m
B_p^*	12.23 mT
B_p^*/E_p^*	2.88 mT/(MV/m)
$[R/Q]_T$	48.9 Ω
Geometrical Factor (G)	227.0 Ω
$R_T R_S$	1.11×10^4 Ω^2

At $E_T^* = 1$ MV/m

- Operating mode: TM\textsubscript{110} mode
- Required transverse deflection: 1.44 MV
- Operation: 2007-2010

Potential Applications of Compact Superconducting Deflecting/ Crabbing Cavities

499 MHz Deflecting Cavity for Jefferson Lab 12 GeV Upgrade

400 MHz Crabbing Cavity for LHC High Luminosity Upgrade

- Requires a crabbing system at two interaction points (IP1 and IP5)
 - Vertical crossing at IP1
 - Horizontal crossing at IP5

Deflecting Cavity for Project–X*

- Bunch frequency \(f_0 = 162.5 \text{ MHz} \)
- Deflecting cavity frequency = \(f_0 \times (m \pm 1/4) \)
- Frequency options:
 - \(m=2 \rightarrow f_0 \times (m+1/4) = 365.625 \text{ MHz} \)
 - \(m=3 \rightarrow f_0 \times (m-1/4) = 446.875 \text{ MHz} \)

How To Achieve Compact Designs

• Karlsruhe/CERN deflector and KEK crabbing cavity used magnetic field
 – Operating in TM_{110} mode which is not the lowest mode

• Current compact designs use electric field or both electric and magnetic fields
 – TEM-like designs
 – TE-like designs

• Compact superconducting crabbing/deflecting cavity designs
 – University of Lancaster / Jefferson Lab – 4-Rod Cavity
 – BNL – Quarter Wave Cavity
 – ODU/SLAC – Parallel-Bar Cavity and RF-Dipole Cavity
4-Rod Cavity

- 499 MHz normal conducting rf separator* at Jefferson Lab
- High shunt impedance

- Operates in a TEM-like mode
 - Uses both electric field and magnetic field
 - Deflecting mode is not the lowest mode

Accelerating lower order mode

Fundamental deflecting mode

4-Rod Cavity (U. Lancaster/Jefferson Lab)

- 400 MHz superconducting 4-rod cavity*
- Rod shaping
 - To reduce surface electric and magnetic fields
 - To reduce offset field non-uniformities

*B. Hall, “LHC-4R Crab Cavity”, EUCARD SRF Annual Review, March 2012
Lower and Higher Order Modes of the 4-Rod Cavity

Lower Order Monopole Mode – 374.9 MHz

3\pi/4 Higher Order Monopole Mode

3\pi/4 Higher Order Dipole Mode
4-Rod Cavity Properties

<table>
<thead>
<tr>
<th>Frequency</th>
<th>400.0</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOM</td>
<td>375.2</td>
<td>MHz</td>
</tr>
<tr>
<td>Nearest HOMs</td>
<td>436.6, 452.1</td>
<td>MHz</td>
</tr>
<tr>
<td>E_p^*</td>
<td>4.0</td>
<td>MV/m</td>
</tr>
<tr>
<td>B_p^*</td>
<td>7.56</td>
<td>mT</td>
</tr>
<tr>
<td>$B_{p^}/E_{p^}$</td>
<td>1.89</td>
<td>mT/(MV/m)</td>
</tr>
<tr>
<td>$[R/Q]_T$</td>
<td>915.0</td>
<td>Ω</td>
</tr>
<tr>
<td>Geometrical Factor (G)</td>
<td>70.35</td>
<td>Ω</td>
</tr>
<tr>
<td>R_TR_S</td>
<td>6.4×10^4</td>
<td>Ω²</td>
</tr>
</tbody>
</table>

At $E_T^* = 1$ MV/m

Surface Electric Field

Surface Magnetic Field
Quarter-Wave Cavity (BNL)

100 MHz ¼-Wave Cavity

- Attractive at low frequencies
- Strong reentrant form makes the field pattern at the outer radius predominately TEM

400 MHz superconducting asymmetric ¼-wave cavity

*E. Haebel, “Superconducting Cavities and Minimum RF Power Schemes for LHC”, CERN/EF/RF 84-4

181 MHz ¼-wave cavity for eRHIC#

Quarter-Wave Cavity

- Two design options at 400 MHz
- Asymmetric cavity*
 - $V_{acc} = 0.12$ MV at $V_t = 3.0$ MV
 - Higher mode separation between fundamental mode and nearest HOM
- Symmetric cavity (similar to rf-dipole cavity)
 - $V_{acc} = 0$ V
 - Better field non-uniformity

<table>
<thead>
<tr>
<th></th>
<th>Asymmetric Cavity</th>
<th>Symmetric Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOM</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Nearest HOM</td>
<td>657 MHz</td>
<td>582 MHz</td>
</tr>
<tr>
<td>E_p^*</td>
<td>5.38 MV/m</td>
<td>4.04 MV/m</td>
</tr>
<tr>
<td>B_p^*</td>
<td>7.6 mT</td>
<td>7.2 mT</td>
</tr>
<tr>
<td>$B_p^/E_p^$</td>
<td>1.42 mT/(MV/m)</td>
<td>1.77 mT/(MV/m)</td>
</tr>
<tr>
<td>$[R/Q]_T$</td>
<td>344.0 Ω</td>
<td>401.1 Ω</td>
</tr>
<tr>
<td>Geometrical Factor (G)</td>
<td>131.0 Ω</td>
<td>82.4 Ω</td>
</tr>
<tr>
<td>$R_T R_S$</td>
<td>4.5×10^4</td>
<td>3.3×10^4</td>
</tr>
</tbody>
</table>

At $E_T^* = 1$ MV/m

Higher Order Modes of the ¼-Wave Cavity

- No Lower Order Modes
- Hybrid modes with both deflection and acceleration

Parallel-Bar Cavity to RF-Dipole Cavity (ODU)

499 MHz Deflecting Cavity

TEM-type mode

TE-like mode

E Field

H Field

Surface E Field

Surface H Field

Design Evolution of the 499 MHz Deflecting Cavity

- To increase mode separation between fundamental modes
 - ~ 18 MHz \rightarrow ~ 130 MHz
 - To improve design rigidity \rightarrow Less susceptible to mechanical vibrations and deformations

- To lower peak magnetic field
 - Reduced peak magnetic field by $\sim 20\%$
Design Evolution of the 499 MHz Deflecting Cavity

- To remove higher order modes with field distributions between the cavity outer surface and bar outer surface
- Eliminate multipacting conditions

- To lower peak magnetic field
- Reduced peak magnetic field by ~25%
- To achieve balanced peak surface fields
 - $B_p/E_p \approx 1.5 \text{ mT}/(\text{MV/m})$

Balanced Peak Fields

$$\frac{B_p}{E_p} \leq 2.0 \text{ mT}/(\text{MV/m})$$
Ridged Waveguide Cavity (SLAC)

- 400 MHz Crabbing Cavity*
- Operating at a TE$_{11}$-like mode

<table>
<thead>
<tr>
<th>Frequency</th>
<th>400.0</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOM</td>
<td>None</td>
<td>MHz</td>
</tr>
<tr>
<td>Nearest HOM</td>
<td>617.0</td>
<td>MHz</td>
</tr>
<tr>
<td>E_p^*</td>
<td>3.38</td>
<td>MV/m</td>
</tr>
<tr>
<td>B_p^*</td>
<td>7.05</td>
<td>mT</td>
</tr>
<tr>
<td>$B_p^/E_p^$</td>
<td>2.09</td>
<td>mT/(MV/m)</td>
</tr>
<tr>
<td>$[R/Q]_T$</td>
<td>330.0</td>
<td>Ω</td>
</tr>
</tbody>
</table>

At $E_T^* = 1$ MV/m

Characteristics of the RF-Dipole Cavity

• Properties depend on a few parameters
 – Frequency determined by diameter of the cavity design
 – Bar Length $\sim \lambda/2$
 – Bar height and aperture determine E_P and B_P
 – Angle determines B_P/E_P

• RF-Dipole design has
 – Low surface fields and high shunt impedance
 – Good balance between peak surface electric and magnetic field
 – No LOMs
 – Nearest HOM is widely separated (~ 1.5 fundamental mode)
 – Good uniformity of deflecting field due to high degree symmetry
Optimization of Bar Shape of the RF-Dipole Cavity

Bar Height
- 50 mm
- 60 mm
- 70 mm
- 80 mm
- 90 mm
- 100 mm
- 110 mm
- 120 mm

499 MHz Deflecting Cavity

$B_p / E_p = 2.0 \text{ mT/(MV/m)}$
$B_p / E_p = 1.75 \text{ mT/(MV/m)}$
$B_p / E_p = 1.5 \text{ mT/(MV/m)}$

E_p / E_t vs. B_p / E_t

Bar Height =
- 4.0
- 4.5
- 5.0
- 5.5
- 6.0
- 6.5
- 7.0
- 7.5

B_p / E_p (mT/(MV/m))

E_p / E_t
RF-Dipole Cavity Designs

<table>
<thead>
<tr>
<th>Frequency</th>
<th>499.0</th>
<th>400.0</th>
<th>750.0</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture Diameter (d)</td>
<td>40.0</td>
<td>84.0</td>
<td>60.0</td>
<td>mm</td>
</tr>
<tr>
<td>d/(λ/2)</td>
<td>0.133</td>
<td>0.224</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LOM</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>MHz</td>
</tr>
<tr>
<td>Nearest HOM</td>
<td>777.0</td>
<td>589.5</td>
<td>1062.5</td>
<td>MHz</td>
</tr>
<tr>
<td>E_p^*</td>
<td>2.86</td>
<td>3.9</td>
<td>4.29</td>
<td>MV/m</td>
</tr>
<tr>
<td>B_p^*</td>
<td>4.38</td>
<td>7.13</td>
<td>9.3</td>
<td>mT</td>
</tr>
<tr>
<td>$B_p^/E_p^$</td>
<td>1.53</td>
<td>1.83</td>
<td>2.16</td>
<td>mT/(MV/m)</td>
</tr>
<tr>
<td>$[R/Q]_T$</td>
<td>982.5</td>
<td>287.2</td>
<td>125.0</td>
<td>Ω</td>
</tr>
<tr>
<td>Geometrical Factor (G)</td>
<td>105.9</td>
<td>138.7</td>
<td>136.0</td>
<td>Ω</td>
</tr>
<tr>
<td>R_TR_S</td>
<td>1.0×10^5</td>
<td>4.0×10^4</td>
<td>1.7×10^4</td>
<td>Ω²</td>
</tr>
</tbody>
</table>

At $E_T^* = 1$ MV/m

- **499 MHz Deflecting Cavity for Jefferson Lab 12 GeV Upgrade**
 - Aperture Diameter: 44 cm
- **400 MHz Crabbing Cavity for LHC High Luminosity Upgrade**
 - Aperture Diameter: 34 cm
- **750 MHz Crabbing Cavity for MEIC at Jefferson Lab**
 - Aperture Diameter: 19 cm

RF-Dipole Square Cavity Options

- Square-type rf-dipole cavity to further reduce the transverse dimensions
- Frequency is adjusted by curving radius of the edges
- RF-dipole cavity with modified curved loading elements across the beam aperture to reduce field non-uniformity

Height and Width < 145 mm
HOM Properties of the RF-Dipole Cavity

• Widely separated Higher Order Modes
• No Lower Order Modes

499 MHz Deflecting Cavity

E field
H field
LOM and HOM Damping

4-Rod Cavity*

¼-Wave Cavity*

RF-Dipole Cavity*

Magnetic loop-type HOM couplers

Coaxial two-stage high-pass filter coupler

*Presented at LARP CM 18 / HiLumi LHC Meeting, Fermilab, May 2012
Multipacting Analysis

4-Rod Cavity*

- Soft multipactor barriers were found in the cavity above 0.5 MV
- No Hard barriers were found
- Multipacting on the beam pipe was found on the beam pipe at ~1.6MV

¼-Wave Cavity*

RF-Dipole Cavity*

Resonant Particles Distribution at 0.6MV

*Presented at LARP CM 18 / HiLumi LHC Meeting, Fermilab, May 2012
Field Non-Uniformity

- **Shaped rods**
 - To reduce filed non-uniformity across the beam aperture
 - Suppress higher order multipole components

4-Rod Cavity

- **Voltage deviation at 20 mm**
 - Horizontal: 6.2% → 1.5%
 - Vertical: 25.3% → 0.6%

RF-Dipole Cavity

- **Voltage deviation at 20 mm**
 - Horizontal: 5.0% → 0.2%
 - Vertical: 5.5% → 2.4%
400 MHz 4-Rod Cavity Fabrication
499 MHz RF-Dipole Cavity Fabrication
400 MHz RF-Dipole Cavity Fabrication

[Images of various components of a 400 MHz RF-Dipole Cavity Fabrication process]
Summary

<table>
<thead>
<tr>
<th></th>
<th>KEK Crabbing Cavity</th>
<th>RF-Dipole Cavity</th>
<th>RF-Dipole Cavity</th>
<th>4-Rod Cavity</th>
<th>Asymmetric ¼-Wave Cavity</th>
<th>Symmetric ¼-Wave Cavity</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>508.9 MHz</td>
<td>499.0 MHz</td>
<td>400.0 MHz</td>
<td>400.0 MHz</td>
<td>400.0 MHz</td>
<td>400.0 MHz</td>
<td>MHz</td>
</tr>
<tr>
<td>Aperture Diameter (d)</td>
<td>100.0 mm</td>
<td>40.0 mm</td>
<td>84.0 mm</td>
<td>84.0 mm</td>
<td>84.0 mm</td>
<td>84.0 mm</td>
<td>mm</td>
</tr>
<tr>
<td>d/(λ/2)</td>
<td>0.34</td>
<td>0.13</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>LOM</td>
<td>410.0 MHz</td>
<td>None</td>
<td>None</td>
<td>375.2 MHz</td>
<td>None</td>
<td>None</td>
<td>MHz</td>
</tr>
<tr>
<td>Nearest HOM</td>
<td>630.0 MHz</td>
<td>777.0 MHz</td>
<td>589.5 MHz</td>
<td>436.6 MHz</td>
<td>657.0 MHz</td>
<td>577.8 MHz</td>
<td>MHz</td>
</tr>
<tr>
<td>E_p^*</td>
<td>4.24</td>
<td>2.86</td>
<td>3.9</td>
<td>4.0</td>
<td>5.38</td>
<td>4.04</td>
<td>MV/m</td>
</tr>
<tr>
<td>B_p^*</td>
<td>12.23</td>
<td>4.38</td>
<td>7.13</td>
<td>7.56</td>
<td>7.6</td>
<td>7.2</td>
<td>mT</td>
</tr>
<tr>
<td>$B_p^/E_p^$</td>
<td>2.88</td>
<td>1.53</td>
<td>1.83</td>
<td>1.89</td>
<td>1.42</td>
<td>1.77</td>
<td>mT/(MV/m)</td>
</tr>
<tr>
<td>$[R/Q]_T$</td>
<td>48.9</td>
<td>982.5</td>
<td>287.2</td>
<td>915.0</td>
<td>344.0</td>
<td>401.1</td>
<td>Ω</td>
</tr>
<tr>
<td>Geometrical Factor (G)</td>
<td>227.0</td>
<td>105.9</td>
<td>138.7</td>
<td>70.35</td>
<td>131.0</td>
<td>82.4</td>
<td>Ω</td>
</tr>
<tr>
<td>R_TR_S</td>
<td>1.1×10^4</td>
<td>1.0×10^5</td>
<td>4.0×10^4</td>
<td>6.4×10^4</td>
<td>4.5×10^4</td>
<td>3.3×10^4</td>
<td>Ω²</td>
</tr>
</tbody>
</table>

At $E_T^* = 1$ MV/m
Summary

• The development of compact deflecting/crabbing cavities was in response to the strict dimensional requirements in some current applications

• All these compact designs have attractive properties in meeting the requirements
 – Low and balanced surface fields
 – High shunt impedance
 – Some of the designs have no lower-order-mode with a well-separated fundamental mode

• HOM damping, multipacting and mechanical analysis have been addressed

• Most of the compact designs are currently being fabricated and prototype testing is underway
ACKNOWLEDGEMENTS

• Jefferson Lab
 – HyeKyoung Park
• ODU
 – Alejandro Castilla
• SLAC
 – Zenghai Li, Lixin Ge
• Niowave
 – Dmitry Gorelov, Terry Grimm
• The work done at ODU is towards my PhD carried out under the supervision of Dr. Jean Delayen

• CERN
 – Rama Calaga
• University of Lancaster
 – Graeme Burt, Ben Hall
• BNL
 – Ilan Ben-Zvi, Qiong Wu

THANK YOU
Mechanical Analysis

4-Rod Cavity* ~ 1mm displacement for 4mm thickness
~ 0.1mm displacement for 4mm thickness

¼-Wave Cavity* Vibration of flat surfaces and/or change in ellipticity ~ MHz/mm (constrain with stiffeners)

Pressure sensitivity - 212 Hz/torr

Baseline Cavity (No stiffeners)

Frequency (Hz)
498.04E+06
498.02E+06
498.00E+06
497.98E+06
497.96E+06
497.94E+06
497.92E+06
497.90E+06
497.88E+06
497.86E+06
497.84E+06

External Pressure (Pa)

RF-Dipole Cavity*
Beam Aperture Dependence

At 499 MHz
Beam Aperture Dependence

At 499 MHz

\[R_T R_S = \left[\frac{R}{Q} \right] Q R_S \]

\[= \left[\frac{R}{Q} \right] G \]
Transverse Voltage

- Lorentz Force
 \[\vec{F} = \frac{d\vec{p}}{dt} = q[\vec{E} + \vec{v} \times \vec{B}] \]

- Transverse Voltage experienced by a particle
 \[V_T = \left| \int_{-\infty}^{\infty} \left[\vec{E}_T(z) + i \left(\vec{v} \times \vec{B}(z) \right)_T \right] e^{i\omega z} dz \right| \]

- Panofsky Wenzel Theorem
 \[V_T = \frac{-i}{\omega / c} \nabla_T V_Z = \frac{-i}{\omega / c} \frac{1}{r_0} \left| \int_{-\infty}^{\infty} \vec{E}_Z(r_0, z) e^{i\omega z} dz \right| \]
- **Longitudinal \([R/Q]\)**

 \[
 \left[\frac{R}{Q} \right] = \left| \frac{V_z}{\omega U} \right|^2 = \left[\int_{-\infty}^{\infty} E_z(z, x = 0) e^{j\omega z} dz \right]^2
 \]

- **Transverse \([R/Q]\)**
 - **Direct Integral Method**

 \[
 \left[\frac{R}{Q} \right]_T = \left| \frac{V_z}{\omega U} \right|^2 = \left[\int_{-\infty}^{\infty} \left[\mathcal{E}_x(z, x = 0) + j \left(\mathbf{v} \times \mathbf{B}_y(z, x = 0) \right) \right] e^{j\omega z} dz \right]^2
 \]

 - **Using Panofsky Wenzel Theorem \((x_0=5 \text{ mm})\)**

 \[
 \left[\frac{R}{Q} \right]_T = \left| \frac{V_z(x = x_0)}{\omega U} \right|^2 = \left[\int_{-\infty}^{\infty} E_z(z, x = x_0) e^{j\omega z} dz \right]^2 = \left[\int_{-\infty}^{\infty} \frac{1}{(kx_0)^2} e^{j\omega z} dz \right]^2 = \left(\frac{\omega}{c} \right)^2
 \]

 \[
 k = \frac{\omega}{c}
 \]