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Linear Beam Optics Outline

• Particle Motion in the Linear Approximation

• Some Geometry of Ellipses

• Ellipse Dimensions in the β-function Description

• Area Theorem for Linear Transformations

• Phase Advance for a Unimodular Matrix

– Formula for Phase Advance

– Matrix Twiss Representation

– Invariant Ellipses Generated by a Unimodular Linear 
Transformation

• Detailed Solution of Hill’s Equation

– General Formula for Phase Advance

– Transfer Matrix in Terms of β-function

– Periodic Solutions

• Non-periodic Solutions

– Formulas for β-function and Phase Advance

• Beam Matching
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Linear Particle Motion

Fundamental Notion: The Design Orbit is a path in an Earth-

fixed reference frame, i.e., a differentiable mapping from 

[0,1] to points within the frame. As we shall see as we go on, 

it generally consists of arcs of circles and straight lines.
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The Design Trajectory is the path specified in terms of the 

path length in the Earth-fixed reference frame. For a 

relativistic accelerator where the particles move at the 

velocity of light, Ltot=cttot.

        

3               :[0, ] R
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tots L

s X s X s Y s Z s



 

The first step in designing any accelerator, is to specify 

bending magnet locations that are consistent with the arc 

portions of the Design Trajectory.
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Comment on Design Trajectory

The notion of specifying curves in terms of their path length 

is standard in courses on the vector analysis of curves. A 

good discussion in a Calculus book is Thomas, Calculus and 

Analytic Geometry, 4th Edition, Articles 14.3-14.5. Most 

vector analysis books have a similar, and more advanced 

discussion under the subject of “Frenet-Serret Equations”. 

Because all of our design trajectories involve only arcs of 

circles and straight lines (dipole magnets and the drift 

regions between them define the orbit), we can concentrate 

on a simplified set of equations that “only” involve the 

radius of curvature of the design orbit. It may be worthwhile 

giving a simple example.
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4-Fold Symmetric Synchrotron
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Its Design Trajectory
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Betatron Design Trajectory
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Use path length s as independent variable instead of t in the 

dynamical equations.
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Betatron Motion in s
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Bend Magnet Geometry
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Bend Magnet Trajectory

For a uniform magnetic field
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Magnetic Rigidity

The magnetic rigidity is:

It depends only on the particle momentum and charge, and is a convenient way to 

characterize the magnetic field. Given magnetic rigidity and the required bend radius, 

the required bend field is a simple ratio. Note particles of momentum 100 MeV/c

have a rigidity of 0.334 T m.

y

p
B B

q
  

  2sin / 2BL B   sinBL B 

Long Dipole Magnet
Normal Incidence (or exit)

Dipole Magnet
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Natural Focusing in Bend Plane

Perturbed Trajectory

Design Trajectory

Can show that for either a displacement perturbation or angular perturbation 

from the design trajectory
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Quadrupole Focusing
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Hill’s Equation

Note that this is like the harmonic oscillator, or exponential for constant K, but more 

general in that the focusing strength, and hence oscillation frequency depends on s

Define focusing strengths (with units of m-2)
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Energy Effects

This solution is not a solution to Hill’s equation directly, but is a solution to the 

inhomogeneous Hill’s Equations
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Inhomogeneous Hill’s Equations

Fundamental transverse equations of motion in particle 

accelerators for small deviations from design trajectory
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ρ radius of curvature for bends, B'  transverse field gradient 

for magnets that focus (positive corresponds to horizontal 

focusing), Δp/p momentum deviation from design 

momentum. Homogeneous equation is 2nd order linear 

ordinary differential equation.
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Dispersion

From theory of linear ordinary differential equations, the general solution to the 

inhomogeneous equation is the sum of any solution to the inhomogeneous 

equation, called the particular integral, plus two linearly independent solutions 

to the homogeneous equation, whose amplitudes may be adjusted to account for 

boundary conditions on the problem.

               1 2 1 2=        =p x x p y yx s x s A x s B x s y s y s A y s B y s   

Because the inhomogeneous terms are proportional to Δp/p, the particular 

solution can generally be written as

       =        =p x p y

p p
x s D s y s D s

p p

 

where the dispersion functions satisfy

 

 

   

 

 

22

2 2 2 2

1 1 1 1
      

yx
x y

x x y y

d DB s B sd D
D D

ds s B s ds s B s     

   
       
      



USPAS Accelerator Physics January 2020

M56

In addition to the transverse effects of the dispersion, there are important effects of the 

dispersion along the direction of motion. The primary effect is to change the time-of-

arrival of the off-momentum particle compared to the on-momentum particle which 

traverses the design trajectory.
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Solutions Homogeneous Eqn.

Dipole
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Quadrupole in the focusing direction
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Transfer Matrices

Dipole with bend Θ (put coordinate of final position in solution)
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Thin Lenses

Thin Focusing Lens (limiting case when argument goes to 

zero!)
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Composition Rule: Matrix Multiplication!

Remember: First element farthest RIGHT

Element 1 Element 2

0s 1s 2s
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Some Geometry of Ellipses
y

x

b

a

Equation for an upright ellipse

1

22
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a

x

In beam optics, the equations for ellipses are normalized (by 

multiplication of the ellipse equation by ab) so that the area of 

the ellipse divided by π appears on the RHS of the defining 

equation. For a general ellipse

DCyBxyAx  22 2
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The area is easily computed to be

2

Area

BAC

D


 



  22 2 yxyx

So the equation is equivalently

222
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Eqn. (1)
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Example: the defining equation for the upright ellipse may be 

rewritten in following suggestive way

 aby
b

a
x

a

b 22

β = a/b and γ = b/a,   note ,max  ax  bymax

When normalized in this manner, the equation coefficients 

clearly satisfy

12 
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General Tilted Ellipse

x

y

b

a

Needs 3 parameters for a complete

description. One way

where s is a slope parameter, a is the maximum

extent in the x-direction, and the y-intercept occurs at ±b, and again 

ε is the area of the ellipse divided by π
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Identify

b

a
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b
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2

Note that βγ – α2 = 1 automatically, and that the equation for 

ellipse becomes

   
22 xyx

by eliminating the (redundant!) parameter γ
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Ellipse in the β-function Description

As for the upright ellipse maxy,max x

x

y=sx=– α x / β

a

 /b
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Area Theorem for Linear Optics

Under a general linear transformation

an ellipse is transformed into another ellipse. Furthermore, if 

det (M) = 1, the area of the ellipse after the transformation is 

the same as that before the transformation.
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Pf: Let the initial ellipse, normalized as above, be
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Effect of Transformation
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Let the final ellipse be
2 22x xy y     

The transformed coordinates must solve this equation.

1M 

The transformed coordinates must also 

solve the initial equation transformed.
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Because
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Because (verify!)
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the area of the transformed ellipse (divided by π) is, by Eqn. (1) 
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Tilted ellipse from the upright ellipse

In the tilted ellipse the y-coordinate is raised by the slope with 

respect to the un-tilted ellipse
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Because det (M)=1, the tilted ellipse has the same area as the 

upright ellipse, i.e., ε = ε0.
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Phase Advance of a Unimodular Matrix

Any two-by-two unimodular (Det (M) = 1) matrix with 

|Tr M| < 2 can be written in the form

   



 sincos

10

01



















M

Pf: The equation for the eigenvalues of M is

The phase advance of the matrix, μ, gives the eigenvalues of the 

matrix λ = e±iμ, and cos μ = (Tr M)/2. Furthermore βγ–α2=1

  012211

2   MM
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Because M is real, both λ and λ* are solutions of the 

quadratic. Because

For |Tr M| < 2, λ λ* =1 and so λ1,2 = e±iμ. Consequently cos μ 

= (Tr M)/2. Now the following matrix is trace-free.

 
  22/Tr1

2

Tr
Mi

M
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Simply choose










sin
     ,

sin
     ,

sin2

21122211 MMMM





and the sign of μ to properly match the individual matrix 

elements with β > 0. It is easily verified that βγ – α2 = 1. Now
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and more generally
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Therefore, because sin and cos are both bounded functions, 

the matrix elements of any power of M remain bounded as 

long as |Tr (M)| < 2.

NB, in some beam dynamics literature it is (incorrectly!) 

stated that the less stringent |Tr (M)|    2 ensures boundedness 

and/or stability. That equality cannot be allowed can be 

immediately demonstrated by counterexample. The upper 

triangular or lower triangular subgroups of the two-by-two 

unimodular matrices, i.e., matrices of the form

clearly have unbounded powers if |x| is not equal to 0.


















1

01
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10

1

x

x
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Significance of matrix parameters

Another way to interpret the parameters α, β, and γ, which 

represent the unimodular matrix M (these parameters are 

sometimes called the Twiss parameters or Twiss representation 

for the matrix) is as the “coordinates” of that specific set of 

ellipses that are mapped onto each other, or are invariant, under 

the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation

   



 sincos

10

01



















M

with |Tr (M)| < 2, the ellipses
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cyxyx  22 2 

are invariant under the linear action of M, where c is any 

constant. Furthermore, these are the only invariant ellipses. Note 

that the theorem does not apply to ±I, because |Tr (±I)| =  2.

Pf: The inverse to M is clearly
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10

01
1




















M

By the ellipse transformation formulas, for example
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Similar calculations demonstrate that α' = α and γ' = γ. As det (M) = 

1, c' = c, and therefore the ellipse is invariant. Conversely, suppose 

that an ellipse is invariant. By the ellipse transformation formula, 

the specific ellipse 

is invariant under the transformation by M only if

      

     

      

,       

sincossinsincos2sin
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i.e., if the vector     is ANY eigenvector of TM with eigenvalue 1.

All possible solutions may be obtained by investigating the 

eigenvalues and eigenvectors of TM. Now

  0Det hen solution w a has     ITvvT MM  



  2 22 4cos 1 1 0         

i.e.,

Therefore, M generates a transformation matrix TM with at least 

one eigenvalue equal to 1. For there to be more than one solution 

with λ = 1,

2 21 2 4cos 1 0,    cos 1,    or  M I         

v
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cvv i /,11




and we note that all ellipses are invariant when M = ±I. But, these 

two cases are excluded by hypothesis. Therefore, M generates a 

transformation matrix TM which always possesses a single 

nondegenerate eigenvalue 1; the set of eigenvectors corresponding 

to the eigenvalue 1, all proportional to each other, are the only 

vectors whose components (γi, αi, βi) yield equations for the 

invariant ellipses. For concreteness, compute that eigenvector with 

eigenvalue 1 normalized so βiγi – αi
2 = 1

All other eigenvectors with eigenvalue 1 have                     , for 

some value c.
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Because we have enumerated all possible eigenvectors with 

eigenvalue 1, all ellipses invariant under the action of M, are of the 

form

Because Det (M) =1, the eigenvector clearly yields the 

invariant ellipse

.2 22   yxyx

Likewise, the proportional eigenvector      generates the similar 

ellipse

  


 22 2 yxyx
c

1v


iv ,1



cyxyx  22 2 
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To summarize, this theorem gives a way to tie the mathematical 

representation of a unimodular matrix in terms of its α, β, and γ, 

and its phase advance, to the equations of the ellipses invariant 

under the matrix transformation. The equations of the invariant 

ellipses when properly normalized have precisely the same α, β, 

and γ as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation c acts merely as a 

scale parameter for the ellipse. All ellipses similar to the starting 

ellipse, i.e., ellipses whose equations have the same α, β, and γ, 

but with different c, are also invariant under the action of M. 

Later, it will be shown that more generally

is an invariant of the equations of transverse motion.

    /'''2
2222 xxxxxxx 
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Applications to transverse beam optics

When the motion of particles in transverse phase space is considered, 

linear optics provides a good first approximation of the transverse 

particle motion. Beams of particles are represented by ellipses in 

phase space (i.e. in the (x, x') space). To the extent that the transverse 

forces are linear in the deviation of the particles from some pre-

defined central orbit, the motion may analyzed by applying ellipse 

transformation techniques.

Transverse Optics Conventions: positions are measured in terms of 

length and angles are measured by radian measure. The area in phase 

space divided by π, ε, measured in m-rad, is called the emittance. In 

such applications, α has no units, β has units m/radian. Codes that 

calculate β, by widely accepted convention, drop the per radian when 

reporting results, it is implicit that the units for x' are radians. 
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Linear Transport Matrix

Within a linear optics description of transverse particle motion, 

the particle transverse coordinates at a location s along the beam 

line are described by a vector 

 

 













s
ds

dx
sx

If the differential equation giving the evolution of x is linear, one 

may define a linear transport matrix Ms',s relating the coordinates 

at s' to those at s by
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From the definitions, the concatenation rule Ms'',s = Ms'',s' Ms',s must 

apply for all s' such that s < s'< s'' where the multiplication is the 

usual matrix multiplication.

Pf: The equations of motion, linear in x and dx/ds, generate a 

motion with

 

 

 

 

 

 

 

 


























































s
ds

dx
sx

MM
s

ds

dx
sx

M
s

ds

dx
sx

s
ds

dx
sx

M ssssssss ,'',''','','' '

'

''

''

for all initial conditions (x(s), dx/ds(s)), thus Ms'',s = Ms'',s' Ms',s.

Clearly Ms,s = I. As is shown next, the matrix Ms',s is in general a 

member of the unimodular subgroup of the general linear group.
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Ellipse Transformations From

Hill’s Equation
The equation governing the linear transverse dynamics in a 

particle accelerator, without acceleration, is Hill’s equation*

  0
2

2

 xsK
ds

xd

* Strictly speaking, Hill studied Eqn. (2) with periodic K. It was first applied to circular accelerators which had a 

periodicity given by the circumference of the machine. It is a now standard in the field of beam optics, to still 

refer to Eqn. 2 as Hill’s equation, even in cases, as in linear accelerators, where there is no periodicity.

Eqn. (2)

 

   

 

 

 

 































































 s
ds

dx
sx

M
s

ds

dx
sx

dssK

ds

dss
ds

dx
dssx

sdss ,

1rad 
rad

1

The transformation matrix taking a solution through an 

infinitesimal distance ds is
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Suppose we are given the phase space ellipse

at location s, and we wish to calculate the ellipse parameters, after 

the motion generated by Hill’s equation, at the location s + ds

        22 ''2 xsxxsxs

      '''2 22   xdssxxdssxdss

Because, to order linear in ds, Det Ms+ds,s = 1, at all locations s, ε' = 

ε, and thus the phase space area of the ellipse after an infinitesimal 

displacement must equal the phase space area before the 

displacement. Because the transformation through a finite interval 

in s can be written as a series of infinitesimal displacement 

transformations, all of which preserve the phase space area of the 

transformed ellipse, we come to two important conclusions:
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1. The phase space area is preserved after a finite integration of 

Hill’s equation to obtain Ms',s, the transport matrix which can 

be used to take an ellipse at s to an ellipse at s'. This 

conclusion holds generally for all s' and s.

2. Therefore Det Ms',s = 1 for all s' and s, independent of the 

details of the functional form K(s). (If desired, these two 

conclusions may be verified more analytically by showing 

that 

        ssss
ds

d
    ,1       0 22 

may be derived directly from Hill’s equation.)
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Evolution equations for α, β functions

The ellipse transformation formulas give, to order linear in ds

   s
ds

dss  
rad

2

        rad 
rad

Kdsss
ds

sdss  

So

 
 

rad

2 s
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ds
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rad
rad 
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Note that these two formulas are independent of the scale of the 

starting ellipse ε, and in theory may be integrated directly for 

β(s) and α(s) given the focusing function K(s). A somewhat 

easier approach to obtain β(s) is to recall that the maximum 

extent of an ellipse, xmax, is (εβ)1/2(s), and to solve the differential 

equation describing its evolution. The above equations may be 

combined to give the following non-linear equation for xmax(s) = 

w(s) = (εβ)1/2(s)

 
 

22

2 3

/ rad
.

d w
K s w

ds w


 

Such a differential equation describing the evolution of the 

maximum extent of an ellipse being transformed is known as an 

envelope equation.
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The envelope equation may be solved with the correct 

boundary conditions, to obtain the β-function. α may then be 

obtained from the derivative of β, and γ by the usual 

normalization formula. Types of boundary conditions: Class I—

periodic boundary conditions suitable for circular machines or 

periodic focusing lattices, Class II—initial condition boundary 

conditions suitable for linacs or recirculating machines.

It should be noted, for consistency, that the same β(s) = w2(s)/ε

is obtained if one starts integrating the ellipse evolution 

equation from a different, but similar, starting ellipse. That this 

is so is an exercise.
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Solution to Hill’s Equation in

Amplitude-Phase form
To get a more general expression for the phase advance, consider 

in more detail the single particle solutions to Hill’s equation

  0
2

2

 xsK
ds

xd

From the theory of linear ODEs, the general solution of Hill’s 

equation can be written as the sum of the two linearly independent 

pseudo-harmonic functions

     sieswsx 

 

     sBxsAxsx  

where
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are two particular solutions to Hill’s equation, provided that

   
 

,        and         
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and where A, B, and c are constants (in s)

That specific solution with boundary conditions x(s1) = x1 and 

dx/ds (s1) = x'1 has
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Eqns. (3)
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Therefore, the unimodular transfer matrix taking the solution at 

s = s1 to its coordinates at s = s2 is
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Case I: K(s) periodic in s

Such boundary conditions, which may be used to describe 

circular or ring-like accelerators, or periodic focusing lattices, 

have K(s + L) = K(s). L is either the machine circumference or 

period length of the focusing lattice.

It is natural to assume that there exists a unique periodic 

solution w(s) to Eqn. (3a) when K(s) is periodic. Here, we will 

assume this to be the case. Later, it will be shown how to 

construct the function explicitly. Clearly for w periodic

   
 

ds
sw

c
sss

Ls

s

LL 



2

            with 

is also periodic by Eqn. (3b), and μL is independent of s.
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The transfer matrix for a single period reduces to
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where the (now periodic!) matrix functions are
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By Thm. (2), these are the ellipse parameters of the periodically 

repeating, i.e., matched ellipses.
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General formula for phase advance

 
L

L
s

ds

0




In terms of the β-function, the phase advance for the period is

and more generally the phase advance between any two 

longitudinal locations s and s' is

 

'

,'

s

s

ss
s

ds






USPAS Accelerator Physics January 2020

Transfer Matrix in terms of α and β
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Also, the unimodular transfer matrix taking the solution from s 

to s' is

Note that this final transfer matrix and the final expression for 

the phase advance do not depend on the constant c. This 

conclusion might have been anticipated because different 

particular solutions to Hill’s equation exist for all values of c, but 

from the theory of linear ordinary differential equations, the final 

motion is unique once x and dx/ds are specified somewhere.
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Method to compute the β-function

Our previous work has indicated a method to compute the β-

function (and thus w) directly, i.e., without solving the differential 

equation Eqn. (3). At a given location s, determine the one-period 

transfer map Ms+L,s (s).  From this find μL (which is independent 

of the location chosen!) from cos μL = (M11+M22) / 2, and by 

choosing the sign of μL so that β(s) = M12(s) / sin μL is positive. 

Likewise, α(s) = (M11-M22) / 2 sin μL. Repeat this exercise at 

every location the β-function is desired.

By construction, the beta-function and the alpha-function, and 

hence w, are periodic because the single-period transfer map is 

periodic. It is straightforward to show w=(cβ(s))1/2 satisfies the 

envelope equation.



USPAS Accelerator Physics January 2020

Courant-Snyder Invariant

    /'''2
2222 xxxxxxx 

Consider now a single particular solution of the equations of 

motion generated by Hill’s equation. We’ve seen that once a 

particle is on an invariant ellipse for a period, it must stay on that 

ellipse throughout its motion. Because the phase space area of the 

single period invariant ellipse is preserved by the motion, the 

quantity that gives the phase space area of the invariant ellipse in 

terms of the single particle orbit must also be an invariant. This 

phase space area/π,

is called the Courant-Snyder invariant. It may be verified to be 

a constant by showing its derivative with respect to s is zero by 

Hill’s equation, or by explicit substitution of the transfer matrix 

solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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Using the x(s) equation above and the definition of ε, the 

solution may be written in the standard “pseudoharmonic” form
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The the origin of the terminology “phase advance” is now obvious.
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Floquet Transformation

Can define Floquet (sometimes called normalized) variables 

so that motion around the ellipse becomes motion along a unit 

circle
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Effect of Transformation
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α and β for AG Focusing
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Neck Tie Region of Stability
Now assume that the focal lengths are different, and possibly 

not alternating.
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Case II: K(s) not periodic

In a linac or a recirculating linac there is no closed orbit or natural 

machine periodicity. Designing the transverse optics consists of 

arranging a focusing lattice that assures the beam particles coming 

into the front end of the accelerator are accelerated (and sometimes 

decelerated!) with as small beam loss as is possible. Therefore, it is 

imperative to know the initial beam phase space injected into the 

accelerator, in addition to the transfer matrices of all the elements 

making up the focusing lattice of the machine. An initial ellipse, or 

a set of initial conditions that somehow bound the phase space of 

the injected beam, are tracked through the acceleration system 

element by element to determine the transmission of the beam 

through the accelerator. The designs are usually made up of well-

understood “modules” that yield known and understood transverse 

beam optical properties.
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Definition of β function
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Now the pseudoharmonic solution applies even when K(s) is 

not periodic. Suppose there is an ellipse, the design injected 

ellipse, which tightly includes the phase space of the beam at 

injection to the accelerator. Let the ellipse parameters for this 

ellipse be α0, β0, and γ0. A function β(s) is simply defined by the 

ellipse transformation rule
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One might think to evaluate the phase advance by integrating 

the beta-function. Generally, it is far easier to evaluate the phase 

advance using the general formula,
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where β(s) and α(s) are the ellipse functions at the entrance of 

the region described by transport matrix Ms',s. Applied to the 

situation at hand yields
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Beam Matching

Fundamentally, in circular accelerators beam matching is 

applied in order to guarantee that the beam envelope of the real 

accelerator beam does not depend on time. This requirement is 

one part of the definition of having a stable beam. With periodic 

boundary conditions, this means making beam density contours 

in phase space align with the invariant ellipses (in particular at 

the injection location!) given by the ellipse functions. Once the 

particles are on the invariant ellipses they stay there (in the 

linear approximation!), and the density is preserved because the 

single particle motion is around the invariant ellipses. In linacs 

and recirculating linacs, usually different purposes are to be 

achieved. If there are regions with periodic focusing lattices 

within the linacs, matching as above ensures that the beam
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envelope does not grow going down the lattice. Sometimes it is 

advantageous to have specific values of the ellipse functions at 

specific longitudinal locations. Other times, re/matching is done to 

preserve the beam envelopes of a good beam solution as changes 

in the lattice are made to achieve other purposes, e.g. changing the 

dispersion function or changing the chromaticity of regions where 

there are bends (see the next chapter for definitions). At a 

minimum, there is usually a matching done in the first parts of the 

injector, to take the phase space that is generated by the particle 

source, and change this phase space in a way towards agreement 

with the nominal transverse focusing design of the rest of the 

accelerator. The ellipse transformation formulas, solved by 

computer, are essential for performing this process.



USPAS Accelerator Physics January 2020

Dispersion Calculation

Begin with the inhomogeneous Hill’s equation for the 

dispersion.

Write the general solution to the inhomogeneous equation for 

the dispersion as before.

Here Dp can be any particular solution, and we suppose that the 

dispersion and it’s derivative are known at the location s1, and 

we wish to determine their values at s. x1 and x2 are linearly 

independent solutions to the homogeneous differential equation 

because they are transported by the transfer matrix solution 

Ms,s1 already found.
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To build up the general solution, choose that particular solution 

of the inhomogeneous equation with homogeneous boundary 

conditions    ,0 1 ,0 1 0p pD s D s 

1, 1

1 0
1

0 1
s sM A B

 
    
 

Evaluate A and B by the requirement that the dispersion and it’s 

derivative have the proper value at s1 (x1 and x2 need to be 

linearly independent!)
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3 by 3 Matrices for Dispersion Tracking
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Solenoid Focussing

Can also have continuous focusing in both transverse directions by applying solenoid 

magnets:

 B z

z
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Busch’s Theorem

For cylindrical symmetry magnetic field described by a vector potential:

Conservation of Canonical Momentum gives Busch’s Theorem:
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Beam rotates at the Larmor frequency which implies coupling between horizontal and 

vertical dimensions
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Radial Equation
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If go to full ¼ oscillation inside the magnetic field in the “thick” lens case, all particles 

end up at r = 0! Non-zero emittance spreads out perfect focusing!
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Larmor’s Theorem

This result is a special case of a more general result. If go to frame that rotates with the 

local value of Larmor’s frequency, then the transverse dynamics including the 

magnetic field are simply those of a harmonic oscillator with frequency equal to the 

Larmor frequency. Any force from the magnetic field linear in the field strength is 

“transformed away” in the Larmor frame. And the motion in the two transverse 

degrees of freedom is now decoupled. Pf: The equations of motion are
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