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Linear Beam Optics Outline
• Particle Motion in the Linear Approximation
• Some Geometry of Ellipses
• Ellipse Dimensions in the β-function Description
• Area Theorem for Linear Transformations
• Phase Advance for a Unimodular Matrix

– Formula for Phase Advance
– Matrix Twiss Representation
– Invariant Ellipses Generated by a Unimodular Linear 

Transformation
• Detailed Solution of Hill’s Equation

– General Formula for Phase Advance
– Transfer Matrix in Terms of β-function
– Periodic Solutions

• Non-periodic Solutions
– Formulas for β-function and Phase Advance

• Beam Matching
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Linear Particle Motion

Fundamental Notion: The Design Orbit is a path in an Earth-
fixed reference frame, i.e., a differentiable mapping from 
[0,1] to points within the frame. As we shall see as we go on, 
it generally consists of arcs of circles and straight lines.
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The Design Trajectory is the path specified in terms of the 
path length in the Earth-fixed reference frame. For a 
relativistic accelerator where the particles move at the 
velocity of light, Ltot=cttot.
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The first step in designing any accelerator, is to specify 
bending magnet locations that are consistent with the arc 
portions of the Design Trajectory.
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Comment on Design Trajectory

The notion of specifying curves in terms of their path length 
is standard in courses on the vector analysis of curves. A 
good discussion in a Calculus book is Thomas, Calculus and 
Analytic Geometry, 4th Edition, Articles 14.3-14.5. Most 
vector analysis books have a similar, and more advanced 
discussion under the subject of “Frenet-Serret Equations”. 
Because all of our design trajectories involve only arcs of 
circles and straight lines (dipole magnets and the drift 
regions between them define the orbit), we can concentrate 
on a simplified set of equations that “only” involve the 
radius of curvature of the design orbit. It may be worthwhile 
giving a simple example.
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4-Fold Symmetric Synchrotron
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ẑ



USPAS Accelerator Physics  June 2013

Its Design Trajectory
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Betatron Design Trajectory
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Use path length s as independent variable instead of t in the 
dynamical equations.
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Betatron Motion in s
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Bend Magnet Geometry
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ẑ



USPAS Accelerator Physics  June 2013

Bend Magnet Trajectory
For a uniform magnetic field
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Magnetic Rigidity

The magnetic rigidity is:

It depends only on the particle momentum and charge, and is a convenient way to 
characterize the magnetic field. Given magnetic rigidity and the required bend radius, 
the required bend field is a simple ratio. Note particles of momentum 100 MeV/c
have a rigidity of 0.334 T m.

y
pB B
q

ρ ρ= =

( )( )2sin / 2BL Bρ θ= ( )sinBL Bρ θ=

Long Dipole Magnet
Normal Incidence (or exit)

Dipole Magnet
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Natural Focusing in Bend Plane

Perturbed Trajectory

Design Trajectory

Can show that for either a displacement perturbation or angular perturbation 
from the design trajectory
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Quadrupole Focusing

( ) ( )( )ˆ ˆ,B x y B s xy yx′= +
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Hill’s Equation

Note that this is like the harmonic oscillator, or exponential for constant K, but more 
general in that the focusing strength, and hence oscillation frequency depends on s

Define focusing strengths (with units of m-2)
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Energy Effects

This solution is not a solution to Hill’s equation directly, but is a solution to the 
inhomogeneous Hill’s Equations
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Inhomogeneous Hill’s Equations

Fundamental transverse equations of motion in particle 
accelerators for small deviations from design trajectory
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ρ radius of curvature for bends, B'  transverse field gradient 
for magnets that focus (positive corresponds to horizontal 
focusing), Δp/p momentum deviation from design 
momentum. Homogeneous equation is 2nd order linear 
ordinary differential equation.
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Dispersion
From theory of linear ordinary differential equations, the general solution to the 
inhomogeneous equation is the sum of any solution to the inhomogeneous 
equation, called the particular integral, plus two linearly independent solutions 
to the homogeneous equation, whose amplitudes may be adjusted to account for 
boundary conditions on the problem.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2=        =p x x p y yx s x s A x s B x s y s y s A y s B y s+ + + +

Because the inhomogeneous terms are proportional to Δp/p, the particular 
solution can generally be written as
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Δ Δ

where the dispersion functions satisfy
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M56
In addition to the transverse effects of the dispersion, there are important effects of the 
dispersion along the direction of motion. The primary effect is to change the time-of-
arrival of the off-momentum particle compared to the on-momentum particle which 
traverses the design trajectory.
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Solutions Homogeneous Eqn.
Dipole
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Quadrupole in the focusing direction

( )
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Thin Focusing Lens (limiting case when argument goes to 
zero!)
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Thin Defocusing Lens: change sign of  f
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Solutions Homogeneous Eqn.
Dipole
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Quadrupole in the focusing direction
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Quadrupole in the defocusing direction
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Transfer Matrices
Dipole with bend Θ (put coordinate of final position in solution)
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( ) ( )
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cos sin
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Quadrupole in the defocusing direction length L

( )
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( ) ( )
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Quadrupole in the focusing direction length L
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Wille: pg. 71
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Thin Lenses

Thin Focusing Lens (limiting case when argument goes to 
zero!)

( )

( )

( )

( )
1 0

1/ 1

lens lens

lens lens

x s x s
dx dxfs s
ds ds

ε ε

ε ε

⎛ ⎞ ⎛ ⎞+ −
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⎝ ⎠ ⎝ ⎠

Thin Defocusing Lens: change sign of  f

f –f
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Composition Rule: Matrix Multiplication!

Remember: First element farthest RIGHT

Element 1 Element 2

0s 1s 2s

( )
( )

( )
( )

1 0
1

1 0

x s x s
M

x s x s
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

( )
( )

( )
( )

2 1
2

2 1

x s x s
M

x s x s
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

( )
( )

( )
( )

2 0
2 1

2 0

x s x s
M M

x s x s
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠

1 2 1...tot N NM M M M M−=

More generally
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Some Geometry of Ellipses
y

x

b
a

Equation for an upright ellipse

1
22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
y

a
x

In beam optics, the equations for ellipses are normalized (by 
multiplication of the ellipse equation by ab) so that the area of 
the ellipse divided by π appears on the RHS of the defining 
equation. For a general ellipse

DCyBxyAx =++ 22 2
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The area is easily computed to be

2

Area
BAC

D
−

=≡ ε
π

εβαγ =++ 22 2 yxyx

So the equation is equivalently

222
  and    ,    ,

BAC
C

BAC
B

BAC
A

−
=

−
=

−
= βαγ

Eqn. (1)
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Example: the defining equation for the upright ellipse may be 
rewritten in following suggestive way

ε==+ aby
b
ax

a
b 22

β = a/b and γ = b/a,   note ,max βε== ax γε== bymax

When normalized in this manner, the equation coefficients 
clearly satisfy

12 =−αβγ
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General Tilted Ellipse

x

y

b

a

Needs 3 parameters for a complete
description. One way

where s is a slope parameter, a is the maximum
extent in the x-direction, and the y-intercept occurs at b, and again 
ε is the area of the ellipse divided by π

( ) ε==−+ absxy
b
ax

a
b 22

y=sx

ε==+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ aby

b
axy

b
asx

b
as

a
b 22

2

2
2 21
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Identify

b
as

b
a

b
as

a
b

=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= βαγ       ,     ,1 2

2
2

Note that βγ – α2 = 1 automatically, and that the equation for 
ellipse becomes

( ) βεαβ =++ 22 xyx

by eliminating the (redundant!) parameter γ
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Ellipse Dimensions in the β-function 
Description

As for the upright ellipse γε=maxy,max βε=x

x

y=sx=– α x / β

βε=a

βε /=b
γε

γ
ε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β
εαβε ,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− γε

γ
εα ,

y

Wille: page 81
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Area Theorem for Linear Optics
Under a general linear transformation

an ellipse is transformed into another ellipse. Furthermore, if 
det (M) = 1, the area of the ellipse after the transformation is 
the same as that before the transformation.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
y
x

MM
MM

y
x

2221

1211

'
'

Pf: Let the initial ellipse, normalized as above, be

0
2

00
2

0 2 εβαγ =++ yxyx
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Because

( ) ( )
( ) ( )

1 1

11 12

1 1

21 22

'
'

M Mx x
y yM M

− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

0
22 2 εβαγ =++ yxyx

The transformed ellipse is

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 21 1 1 1
0 0 011 11 21 21

1 1 1 1 1 1 1 1
0 0 011 12 11 22 12 21 21 22

2 21 1 1 1
0 0 012 12 22 22

                       2

                       2

M M M M

M M M M M M M M

M M M M

γ γ α β

α γ α β

β γ α β

− − − −

− − − − − − − −

− − − −

= + +

= + + +

= + +



USPAS Accelerator Physics  June 2013

Because (verify!)

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )( )

2 2
0 0 0

2 2 2 21 1 1 1 1 1 1 1

21 12 11 22 11 22 12 21

22 1
0 0 0

                    

2

                                 det 

M M M M M M M M

M

βγ α β γ α

β γ α

− − − − − − − −

−

− = −

× + −

= −

the area of the transformed ellipse (divided by π) is, by Eqn. (1) 

|det |
det 

Area
012

000

0 M
M

ε
αγβ
εε

π
=

−
==

−
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Tilted ellipse from the upright ellipse
In the tilted ellipse the y-coordinate is raised by the slope with 
respect to the un-tilted ellipse
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( )1
0 0 0 21

,      0,       ,       b a M s
a b

γ α β −= = = = −

Because det (M)=1, the tilted ellipse has the same area as the 
upright ellipse, i.e., ε = ε0.
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Phase Advance of a Unimodular Matrix
Any two-by-two unimodular (Det (M) = 1) matrix with 
|Tr M| < 2 can be written in the form

( ) ( )μ
αγ
βα

μ sincos
10
01

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=M

Pf: The equation for the eigenvalues of M is

The phase advance of the matrix, μ, gives the eigenvalues of the 
matrix λ = e iμ, and cos μ = (Tr M)/2. Furthermore βγ–α2=1

( ) 012211
2 =++− λλ MM
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Because M is real, both λ and λ* are solutions of the 
quadratic. Because

For |Tr M| < 2, λ λ* =1 and so λ1,2 = e iμ. Consequently cos μ 
= (Tr M)/2. Now the following matrix is trace-free.

( ) ( )( )22/Tr1
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Simply choose

μ
γ

μ
β

μ
α

sin
     ,

sin
     ,

sin2
21122211 MMMM

−==
−

=

and the sign of μ to properly match the individual matrix 
elements with β > 0. It is easily verified that βγ – α2 = 1. Now
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μ 2sin2cos
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and more generally
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Therefore, because sin and cos are both bounded functions, 
the matrix elements of any power of M remain bounded as 
long as |Tr (M)| < 2.

NB, in some beam dynamics literature it is (incorrectly!) 
stated that the less stringent |Tr (M)|    2 ensures boundedness 
and/or stability. That equality cannot be allowed can be 
immediately demonstrated by counterexample. The upper 
triangular or lower triangular subgroups of the two-by-two 
unimodular matrices, i.e., matrices of the form

clearly have unbounded powers if |x| is not equal to 0.
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x
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Significance of matrix parameters
Another way to interpret the parameters α, β, and γ, which 
represent the unimodular matrix M (these parameters are 
sometimes called the Twiss parameters or Twiss representation 
for the matrix) is as the “coordinates” of that specific set of 
ellipses that are mapped onto each other, or are invariant, under 
the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation

( ) ( )μ
αγ
βα

μ sincos
10
01
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⎞
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⎝

⎛
=M

with |Tr (M)| < 2, the ellipses
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cyxyx =++ 22 2 βαγ
are invariant under the linear action of M, where c is any 
constant. Furthermore, these are the only invariant ellipses. Note 
that the theorem does not apply to I, because |Tr ( I)| =  2.

Pf: The inverse to M is clearly
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By the ellipse transformation formulas, for example
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Similar calculations demonstrate that α' = α and γ' = γ. As det (M) = 
1, c' = c, and therefore the ellipse is invariant. Conversely, suppose 
that an ellipse is invariant. By the ellipse transformation formula, 
the specific ellipse 

is invariant under the transformation by M only if
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i.e., if the vector     is ANY eigenvector of TM with eigenvalue 1.
All possible solutions may be obtained by investigating the 
eigenvalues and eigenvectors of TM. Now

( ) 0Det hen solution w a has    =−= ITvvT MM λλ λλ
rr

( )( )2 22 4cos 1 1 0λ μ λ λ⎡ ⎤+ − + − =⎣ ⎦

i.e.,

Therefore, M generates a transformation matrix TM with at least 
one eigenvalue equal to 1. For there to be more than one solution 
with λ = 1,

2 21 2 4cos 1 0,    cos 1,    or  M Iμ μ⎡ ⎤+ − + = = = ±⎣ ⎦

vr
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cvv i /,11
rr ε=

and we note that all ellipses are invariant when M = I. But, these 
two cases are excluded by hypothesis. Therefore, M generates a 
transformation matrix TM which always possesses a single 
nondegenerate eigenvalue 1; the set of eigenvectors corresponding 
to the eigenvalue 1, all proportional to each other, are the only 
vectors whose components (γi, αi, βi) yield equations for the 
invariant ellipses. For concreteness, compute that eigenvector with 
eigenvalue 1 normalized so βiγi – αi

2 = 1

All other eigenvectors with eigenvalue 1 have                     , for 
some value c.
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Because we have enumerated all possible eigenvectors with 
eigenvalue 1, all ellipses invariant under the action of M, are of the 
form

Because Det (M) =1, the eigenvector clearly yields the 
invariant ellipse

.2 22 εβαγ =++ yxyx
Likewise, the proportional eigenvector      generates the similar 
ellipse

( ) εβαγε
=++ 22 2 yxyx

c

1vr

iv ,1
r

cyxyx =++ 22 2 βαγ
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To summarize, this theorem gives a way to tie the mathematical 
representation of a unimodular matrix in terms of its α, β, and γ, 
and its phase advance, to the equations of the ellipses invariant 
under the matrix transformation. The equations of the invariant 
ellipses when properly normalized have precisely the same α, β, 
and γ as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation c acts merely as a 
scale parameter for the ellipse. All ellipses similar to the starting 
ellipse, i.e., ellipses whose equations have the same α, β, and γ, 
but with different c, are also invariant under the action of M. 
Later, it will be shown that more generally

is an invariant of the equations of transverse motion.

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=
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Applications to transverse beam optics
When the motion of particles in transverse phase space is considered, 
linear optics provides a good first approximation of the transverse 
particle motion. Beams of particles are represented by ellipses in 
phase space (i.e. in the (x, x') space). To the extent that the transverse 
forces are linear in the deviation of the particles from some pre-
defined central orbit, the motion may analyzed by applying ellipse 
transformation techniques.

Transverse Optics Conventions: positions are measured in terms of 
length and angles are measured by radian measure. The area in phase 
space divided by π, ε, measured in m-rad, is called the emittance. In 
such applications, α has no units, β has units m/radian. Codes that 
calculate β, by widely accepted convention, drop the per radian when 
reporting results, it is implicit that the units for x' are radians. 
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Linear Transport Matrix
Within a linear optics description of transverse particle motion, 
the particle transverse coordinates at a location s along the beam 
line are described by a vector 

( )
( )⎟

⎟

⎠
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⎜
⎜

⎝

⎛

s
ds
dx

sx

If the differential equation giving the evolution of x is linear, one 
may define a linear transport matrix Ms',s relating the coordinates 
at s' to those at s by
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From the definitions, the concatenation rule Ms'',s = Ms'',s' Ms',s must 
apply for all s' such that s < s'< s'' where the multiplication is the 
usual matrix multiplication.

Pf: The equations of motion, linear in x and dx/ds, generate a 
motion with
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for all initial conditions (x(s), dx/ds(s)), thus Ms'',s = Ms'',s' Ms',s.

Clearly Ms,s = I. As is shown next, the matrix Ms',s is in general a 
member of the unimodular subgroup of the general linear group.
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Ellipse Transformations Generated by 
Hill’s Equation

The equation governing the linear transverse dynamics in a 
particle accelerator, without acceleration, is Hill’s equation*

( ) 02

2

=+ xsK
ds

xd

* Strictly speaking, Hill studied Eqn. (2) with periodic K. It was first applied to circular accelerators which had a 
periodicity given by the circumference of the machine. It is a now standard in the field of beam optics, to still 
refer to Eqn. 2 as Hill’s equation, even in cases, as in linear accelerators, where there is no periodicity.

Eqn. (2)
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The transformation matrix taking a solution through an 
infinitesimal distance ds is
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Suppose we are given the phase space ellipse

at location s, and we wish to calculate the ellipse parameters, after 
the motion generated by Hill’s equation, at the location s + ds

( ) ( ) ( ) εβαγ =++ 22 ''2 xsxxsxs

( ) ( ) ( ) '''2 22 εβαγ =+++++ xdssxxdssxdss
Because, to order linear in ds, Det Ms+ds,s = 1, at all locations s, ε' = 
ε, and thus the phase space area of the ellipse after an infinitesimal 
displacement must equal the phase space area before the 
displacement. Because the transformation through a finite interval 
in s can be written as a series of infinitesimal displacement 
transformations, all of which preserve the phase space area of the 
transformed ellipse, we come to two important conclusions:



USPAS Accelerator Physics  June 2013

1. The phase space area is preserved after a finite integration of 
Hill’s equation to obtain Ms',s, the transport matrix which can 
be used to take an ellipse at s to an ellipse at s'. This 
conclusion holds generally for all s' and s.

2. Therefore Det Ms',s = 1 for all s' and s, independent of the 
details of the functional form K(s). (If desired, these two 
conclusions may be verified more analytically by showing 
that 

( ) ( ) ( ) ( ) ssss
ds
d

∀=−→=−    ,1       0 22 αγβαβγ

may be derived directly from Hill’s equation.)
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Evolution equations for the α, 
β functions

The ellipse transformation formulas give, to order linear in ds

( ) ( )sdsdss βαβ +−=+
rad

2

( ) ( ) ( ) ( ) rad 
rad

Kdsssdssdss βαγα ++−=+

So
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rad
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−=
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Note that these two formulas are independent of the scale of the 
starting ellipse ε, and in theory may be integrated directly for 
β(s) and α(s) given the focusing function K(s). A somewhat 
easier approach to obtain β(s) is to recall that the maximum 
extent of an ellipse, xmax, is (εβ)1/2(s), and to solve the differential 
equation describing its evolution. The above equations may be 
combined to give the following non-linear equation for xmax(s) = 
w(s) = (εβ)1/2(s)

( ) ( )22

2 3

/ rad
.d w K s w

ds w
ε

+ =

Such a differential equation describing the evolution of the 
maximum extent of an ellipse being transformed is known as an 
envelope equation.
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The envelope equation may be solved with the correct 
boundary conditions, to obtain the β-function. α may then be 
obtained from the derivative of β, and γ by the usual 
normalization formula. Types of boundary conditions: Class I—
periodic boundary conditions suitable for circular machines or 
periodic focusing lattices, Class II—initial condition boundary 
conditions suitable for linacs or recirculating machines.

It should be noted, for consistency, that the same β(s) = w2(s)/ε
is obtained if one starts integrating the ellipse evolution 
equation from a different, but similar, starting ellipse. That this 
is so is an exercise.
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Solution to Hill’s Equation in
Amplitude-Phase form

To get a more general expression for the phase advance, consider 
in more detail the single particle solutions to Hill’s equation

( ) 02

2

=+ xsK
ds

xd

From the theory of linear ODEs, the general solution of Hill’s 
equation can be written as the sum of the two linearly independent 
pseudo-harmonic functions

( ) ( ) ( )sieswsx μ±
± =

( ) ( ) ( )sBxsAxsx −+ +=
where
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are two particular solutions to Hill’s equation, provided that
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and where A, B, and c are constants (in s)

That specific solution with boundary conditions x(s1) = x1 and 
dx/ds (s1) = x'1 has
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Therefore, the unimodular transfer matrix taking the solution at 
s = s1 to its coordinates at s = s2 is
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Case I: K(s) periodic in s
Such boundary conditions, which may be used to describe 
circular or ring-like accelerators, or periodic focusing lattices, 
have K(s + L) = K(s). L is either the machine circumference or 
period length of the focusing lattice.

It is natural to assume that there exists a unique periodic 
solution w(s) to Eqn. (3a) when K(s) is periodic. Here, we will 
assume this to be the case. Later, it will be shown how to 
construct the function explicitly. Clearly for w periodic

( ) ( ) ( )ds
sw

csss
Ls

s
LL ∫

+

=−= 2            with μμμφ

is also periodic by Eqn. (3b), and μL is independent of s.
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The transfer matrix for a single period reduces to
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where the (now periodic!) matrix functions are
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By Thm. (2), these are the ellipse parameters of the periodically 
repeating, i.e., matched ellipses.
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General formula for phase advance

( )∫=
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In terms of the β-function, the phase advance for the period is

and more generally the phase advance between any two 
longitudinal locations s and s' is
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Transfer Matrix in terms of α and β
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Also, the unimodular transfer matrix taking the solution from s 
to s' is

Note that this final transfer matrix and the final expression for 
the phase advance do not depend on the constant c. This 
conclusion might have been anticipated because different 
particular solutions to Hill’s equation exist for all values of c, but 
from the theory of linear ordinary differential equations, the final 
motion is unique once x and dx/ds are specified somewhere.
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Method to compute the β-function
Our previous work has indicated a method to compute the β-
function (and thus w) directly, i.e., without solving the differential 
equation Eqn. (3). At a given location s, determine the one-period 
transfer map Ms+L,s (s).  From this find μL (which is independent 
of the location chosen!) from cos μL = (M11+M22) / 2, and by 
choosing the sign of μL so that β(s) = M12(s) / sin μL is positive. 
Likewise, α(s) = (M11-M22) / 2 sin μL. Repeat this exercise at 
every location the β-function is desired.

By construction, the beta-function and the alpha-function, and 
hence w, are periodic because the single-period transfer map is 
periodic. It is straightforward to show w=(cβ(s))1/2 satisfies the 
envelope equation.
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Courant-Snyder Invariant

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=

Consider now a single particular solution of the equations of 
motion generated by Hill’s equation. We’ve seen that once a 
particle is on an invariant ellipse for a period, it must stay on that 
ellipse throughout its motion. Because the phase space area of the 
single period invariant ellipse is preserved by the motion, the 
quantity that gives the phase space area of the invariant ellipse in 
terms of the single particle orbit must also be an invariant. This 
phase space area/π,

is called the Courant-Snyder invariant. It may be verified to be 
a constant by showing its derivative with respect to s is zero by 
Hill’s equation, or by explicit substitution of the transfer matrix 
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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gives

Using the x(s) equation above and the definition of ε, the 
solution may be written in the standard “pseudoharmonic” form

( ) ( ) ( ) ⎟⎟
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=−Δ= −

0

00001
0,

'tan      wherecos
x

xxssx s
αβδδμεβ

The the origin of the terminology “phase advance” is now obvious.
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Case II: K(s) not periodic
In a linac or a recirculating linac there is no closed orbit or natural 
machine periodicity. Designing the transverse optics consists of 
arranging a focusing lattice that assures the beam particles coming 
into the front end of the accelerator are accelerated (and sometimes 
decelerated!) with as small beam loss as is possible. Therefore, it is 
imperative to know the initial beam phase space injected into the 
accelerator, in addition to the transfer matrices of all the elements 
making up the focusing lattice of the machine. An initial ellipse, or 
a set of initial conditions that somehow bound the phase space of 
the injected beam, are tracked through the acceleration system 
element by element to determine the transmission of the beam 
through the accelerator. The designs are usually made up of well-
understood “modules” that yield known and understood transverse 
beam optical properties.
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Definition of β function
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Now the pseudoharmonic solution applies even when K(s) is 
not periodic. Suppose there is an ellipse, the design injected 
ellipse, which tightly includes the phase space of the beam at 
injection to the accelerator. Let the ellipse parameters for this 
ellipse be α0, β0, and γ0. A function β(s) is simply defined by the 
ellipse transformation rule
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One might think to evaluate the phase advance by integrating 
the beta-function. Generally, it is far easier to evaluate the phase 
advance using the general formula,

( )
( )( ) ( )( )
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where β(s) and α(s) are the ellipse functions at the entrance of 
the region described by transport matrix Ms',s. Applied to the 
situation at hand yields
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Beam Matching
Fundamentally, in circular accelerators beam matching is 
applied in order to guarantee that the beam envelope of the real 
accelerator beam does not depend on time. This requirement is 
one part of the definition of having a stable beam. With periodic 
boundary conditions, this means making beam density contours 
in phase space align with the invariant ellipses (in particular at 
the injection location!) given by the ellipse functions. Once the 
particles are on the invariant ellipses they stay there (in the 
linear approximation!), and the density is preserved because the 
single particle motion is around the invariant ellipses. In linacs 
and recirculating linacs, usually different purposes are to be 
achieved. If there are regions with periodic focusing lattices 
within the linacs, matching as above ensures that the beam
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envelope does not grow going down the lattice. Sometimes it is 
advantageous to have specific values of the ellipse functions at 
specific longitudinal locations. Other times, re/matching is done to 
preserve the beam envelopes of a good beam solution as changes 
in the lattice are made to achieve other purposes, e.g. changing the 
dispersion function or changing the chromaticity of regions where 
there are bends (see the next chapter for definitions). At a 
minimum, there is usually a matching done in the first parts of the 
injector, to take the phase space that is generated by the particle 
source, and change this phase space in a way towards agreement 
with the nominal transverse focusing design of the rest of the 
accelerator. The ellipse transformation formulas, solved by 
computer, are essential for performing this process.
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Dispersion Calculation
Begin with the inhomogeneous Hill’s equation for the 
dispersion.

Write the general solution to the inhomogeneous equation for 
the dispersion as before.

Here Dp can be any particular solution. Suppose that the 
dispersion and it’s derivative are known at the location s1, and 
we wish to determine their values at s2. x1 and x2, because they 
are solutions to the homogeneous equations, must be 
transported by the transfer matrix solution Ms2,s1 already found.
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To build up the general solution, choose that particular solution 
of the inhomogeneous equation with boundary conditions

( ) ( ),0 1 ,0 1 0p pD s D s′= =

( ) ( )
( ) ( )

( )
( )

1
1 1 2 1 1

1 1 2 1 1

x s x s D sA
x s x s D sB

−
⎛ ⎞ ⎛ ⎞⎛ ⎞

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ′ ′ ′⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Evaluate A and B by the requirement that the dispersion and it’s 
derivative have the proper value at s1 (x1 and x2 need to be 
linearly independent!)
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3 by 3 Matrices for Dispersion Tracking
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Particular solutions to inhomogeneous equation for constant K
and constant ρ and vanishing dispersion and derivative at s = 0
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M56
In addition to the transverse effects of the dispersion, there are important effects of the 
dispersion along the direction of motion. The primary effect is to change the time-of-
arrival of the off-momentum particle compared to the on-momentum particle which 
traverses the design trajectory.
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Solenoid Focussing
Can also have continuous focusing in both transverse directions by applying solenoid 
magnets:

( )B z

z
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Busch’s Theorem
For cylindrical symmetry magnetic field described by a vector potential:

Conservation of Canonical Momentum gives Busch’s Theorem:
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Radial Equation
( ) 2 2
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Larmor’s Theorem
This result is a special case of a more general result. If go to frame that rotates with the 
local value of Larmor’s frequency, then the transverse dynamics including the 
magnetic field are simply those of a harmonic oscillator with frequency equal to the 
Larmor frequency. Any force from the magnetic field linear in the field strength is 
“transformed away” in the Larmor frame. And the motion in the two transverse 
degrees of freedom are now decoupled. Pf: The equations of motion are
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