Mid-term Exam

Physics 425/525

Multiple Choice (circle or otherwise indicate the correct answer)

- 1. (5pts) Two 1 C positive charges are place 1 km apart in vacuum. The force on the charges is
 - a. 9 Nt repulsive along the line between the charges
 - b. 9 Nt attractive along the line between the charges
 - c. 9000 Nt repulsive along the line between the charges
 - d. 9000 Nt attractive along the line between the charges
- 2. (5pts) What is $\nabla \cdot \hat{x}$ for $r r' \neq 0$?
 - a. $1/|z|^2$ b. 2/|z|
 - c. 0

d.
$$-1/|\mathbf{x}|^{3}$$

- 3. (5pts) Which is NOT a property of a conductor
 - a. The electric potential function varies inside the conductor
 - b. Excess charge resides on the surface of a conductor
 - c. The electric field vanishes inside the conductor
 - d. Unbound electrons are free to move in a conductor
- 4. (5pts) A conducting sphere of radius *R* is charged with a charge *Q*. The electric potential (referenced to 0 at ∞) is
 - a. $Qr/(4\pi\varepsilon_0 R^2)$ r < R; $QR/(4\pi\varepsilon_0 r^2)$ r > R
 - b. $Q/(4\pi\varepsilon_0 r)$ r < R; $Q/(4\pi\varepsilon_0 R)$ r > R
 - c. $Qr^2/(4\pi\varepsilon_0R^3)$ r < R; $QR^2/(4\pi\varepsilon_0r^3)$ r > R
 - d. $Q/(4\pi\varepsilon_0 R)$ r < R; $Q/(4\pi\varepsilon_0 r)$ r > R
- 5. (5pts) Suppose $E = \left[E_0 \sigma_s \left(1 \exp\left(-s^2 / 2\sigma_s^2 \right) \right) / s \right] \hat{s}$ where *s* is the cylindrical radial coordinate. What is $\rho(s)$?
 - a. $(\varepsilon_0 E_0 / \sigma_s)^2 \exp(-s^2 / 2\sigma_s^2)$ b. $(\varepsilon_0 E_0 / \sigma_s) \exp(-s^2 / 2\sigma_s^2)$ c. $(\varepsilon_0 E_0 / \sigma_s) (1 - \exp(-s^2 / 2\sigma_s^2))$ d. $(\varepsilon_0 E_0 s / \sigma_2^2) \exp(-s^2 / 2\sigma_s^2)$

Problems

- 6. (20 pts) For each vector field, determine whether it can be described by a scalar potential, a vector potential, or whether it needs both for a complete description. Circle or otherwise indicate one answer for each field.
 - a. $v = x\hat{x} + y\hat{y} + z\hat{z}$
 - b. $\mathbf{v} = xy\hat{x} + yz\hat{y} + zx\hat{z}$
 - c. $v = (x\hat{x} + y\hat{y} + z\hat{z})(x^2 + y^2 + z^2)$

(scalar potential, vector potential, both needed) (scalar potential, vector potential, both needed)

(scalar potential, vector potential, both needed)

 $d. \quad \mathbf{v} = yz\hat{x} - zx\hat{y} + xy\hat{z}$

(scalar potential, vector potential, both needed)

Extra credit: (10 pts) Record a scalar potential for those fields that can be so described

- 7. (25 pts) A conducting sphere of radius *R* is charged with a charge *Q*. It is surrounded by an UNCHARGED spherical conducting shell of inner radius *a* and outer radius *b*.
 - a. What is the electric field in each of the regions r < R, R < r < a, a < r < b, and r > b?
 - b. What is the value of the potential of the inner sphere assuming the electric potential function vanishes as $r \rightarrow \infty$?
- 8. (30 pts) Solve the potential for a conducting sphere in a uniform field by the method of images. Follow the steps indicated.
 - a. Place a point charge of magnitude -q at z = a and a point charge of magnitude q at z = -a on the z-axis. Show that near the origin, the electric field is uniform and

$$E_z \approx \frac{1}{4\pi\varepsilon_0} \frac{2q}{a^2}$$

when $a \rightarrow \infty$.

- b. Place a conducting sphere of radius R centered at the origin. By Example 3.2 which was used in a homework problem, what is the magnitude of two image charges and how should they be placed so that the potential from all 4 charges vanishes on the sphere?
- c. Show the dipole moment of the two image charges is

$$\boldsymbol{p} = \frac{2R^3}{a^2} q\hat{z} \to 4\pi\varepsilon_0 E_z R^3 \hat{z},$$

when $a \rightarrow \infty$ holding $2q / a^2$ constant.

- d. In this same limit, what is the dipole potential (in spherical coordinates) for r > R for the two image charges?
- e. By the uniqueness theorem, this same potential must govern the problem of a sphere in a uniform field. Find the total potential and compare to the answer for the potential of a sphere in a uniform field in the book or lectures.