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Three Dimensions
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Define 3-D delta function by multiplication

By repeated integrations

Main properties
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Helmholtz Theorem

Any vector field with appropriate boundary conditions 

(vanishing fast enough at infinity works) can be uniquely 

decomposed into a part with no curl (irrotational) and a part 

with no divergence (solenoidal). Conversely, if the divergence 

and curl of a vector field are given, along with boundary 

conditions, the vector field can be uniquely found.

In a single simply connected region of space, the irrotational 

part can be described by a scalar potential function ϕ and the 

solenoidal part by a vector potential function A

a deep result known as Poincare’s lemma.

, v = A
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Finding the Potentials

The scalar potential is found simply by performing line 

integrals, as in mechanics potential energy functions for 

conservative fields

(a is a reference location where the potential vanishes).

Here is a method that allows you to find a vector potential for 

simple solenoidal vector fields (from a proof of Poincare’s 

lemma)
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