
ODU Physics 854: Homework 4

Due date: Tuesday October 1, 2019

1 Peggs-Satogata 8.1

Consider a unit square in the tune plane (Qx, Qy) with corners at (n, n), (n+1, n), (n, n+1),
and (n+ 1, n+ 1).

(a) On graph paper or with a computer program, draw the lines representing all sum
resonances p = q Qx + r Qy through fourth order – for positive integer values of q and
r, with q + r ≤ 4. Solution: See figure below.

(b) Plot all difference resonances p = q Qx − r Qy through fourth order. Solution: See
figure.

(c) Where are the largest areas of tune space that are resonance-free? Solution: The
largest areas free of low order resonances are near the corners, near the diagonal(s), and
near the center of the tune plane at (Qx, Qy) = (0.5, 0.5).
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2 Peggs-Satogata 8.6

The interaction region quadrupole Q2 in RHIC has a focal length of about 3.0 m, at a
location where the β-function is about 1400 m in collision optics with β∗ = 1 m.

(a) How accurately must the strength of this magnet be known and set, if the strength
error must be guaranteed to generate a β-wave amplitude of less than 1%? Solution:
The beta-wave perturbation launched by a quadrupole strength error is

∆β

β
=

−∆qβ0
2 sin(2πQ)

cos(2|ψ − ψ0| − 2πQ) (2.1)

so that the amplitude of the β-wave

aβ =
|∆q|
q

qβ0
|2 sin(2πQ)|

(2.2)

depends on the value of Q through the resonance denominator. Roughly approximating

|2 sin(2πQ)| ≈ 1 (2.3)

then we require ∣∣∣∣∆qq
∣∣∣∣ < 0.01

β|q|
=

0.01× 3.0

1400
≈ 2× 10−5 (2.4)

to avoid launching β-waves at the 1% level.

(b) What tune shift is generated at this level of error? Solution: The tune shift generated
by such an error

∆Q =
β∆q

4π
=

∆q

q

qβ

4π
= 2× 10−5

1400

3× 4π
≈ 8× 10−4 (2.5)

is quite small.

3 Peggs-Satogata 9.4

Consider the equilateral triangle in (x, x′) normalised phase space predicted by Equations 9.27
and 9.28.

(a) What is the radius of the largest circle that can be inscribed inside the triangle? So-
lution: An inscribed circle just touches each side of the equilateral triangle, including
the straight line

x =
2µ

g

The radius

r =

∣∣∣∣2µg
∣∣∣∣ =

∣∣∣∣4π(Q− 1/3)

g

∣∣∣∣
is independent of the sign of µ (and g). For example, when g = −1 and Q = 0.324 then
the radius is predicted to be r = 0.117, consistent with the results shown at the top left
of Figure 9.3.

(b) What is the orientation of the triangle? Solution: When g = −1 and Q = 0.324 then
µ/g is positive and the side of the triangle with x = constant is predicted to be above
the origin, in agreement with the top left of Figure 9.3.
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(c) What happens to the area and the orientation of the triangle as the tune Q is (slowly)
swept through the value of 1/3? Solution: Since the radius r ∼ µ then the area of the
triangle scales like µ2 ∼ (δQ)2. The orientation of the triangle flips when Q crosses 1/3
and µ changes sign.

4 Peggs-Satogata 10.1

(Modified from Peggs/Satogata problem 10.1) You have simulated the RHIC accelerator
with a set of nine particles launched with design momentum (δ = 0), x′ = 0, and initial
x offsets of 1, 2, . . . 9 mm at a location with horizontal beta function βx = 40 m. You
“measure” the fractional tunes of these particles from the plot shown above to be:

x [mm] Qx Qy

1 0.1903 0.1800
2 0.1910 0.1802
3 0.1923 0.1809
4 0.1941 0.1816
5 0.1963 0.1825
6 0.1991 0.1837
7 0.2024 0.1851
8 0.2061 0.1866
9 0.2105 0.1884

(a) plot Qx and Qy vs. Jx from the above table. Solution: The action Jx of a particle
with coordinates (x, x′ = 0) is Jx = x2/βx, so we can tabulate and plot:

(b) What is the simplest fit to the tune vs. action data? Solution: This plot is about as
linear as it gets.

(c) What is the simplest and most likely dominant nonlinearity? Solution: Chapter 10
notes that the change in tune depending on action J is linear for octupoles, e.g. equa-
tion 10.9. The simplest and most likely dominant nonlinearity in this lattice is not
sextupoles, but octupoles. As mentioned in class, octupoles drive this detuning to
first order in octupole strength, while sextupoles drive this detuning to second order in
sextupole strength.
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Jx [mm] Qx Qy

0.025 0.1903 0.1800
0.100 0.1910 0.1802
0.225 0.1923 0.1809
0.400 0.1941 0.1816
0.625 0.1963 0.1825
0.900 0.1991 0.1837
1.225 0.2024 0.1851
1.600 0.2061 0.1866
2.025 0.2105 0.1884

Figure 1: Plot of measured tunes (Qx, Qy) vs action Jx.

5 Peggs-Satogata 10.6

Consider the electrostatic and magnetic septa sketched in Figure 10.6.

• What are typical realistic values of E and B? Solution: Typical largest magnetic
fields created by iron magnets are about 1 Tesla, while typical electric fields that can
be created are on the order of 50–60 kV/cm.

• What is a typical ratio of electromagnetic forces, E/(cB), for fully relativistic particles?
Solution: Here we use v ≈ c for fully relativistic particles. Then the ratio of electric
force in the electrostatic septum to magnetic force in the magnetic septum is about
(50 kV/cm)/(c(1 Tesla)) ≈ 0.017 ≈ 1/60. The magnetic septum is about 60 times more
effective at applying a transverse force than the electrostatic septum.

• How small must the kinetic energy of a proton (or an electron) be, in order for electro-
static optics to be competitive with magnetic optics? Solution: For the electrostatic
and magnetic forces to be comparable, the particle velocity must be≈ c/60, or β ≈ 1/60.
This gives γ ≈ 1.00014. The kinetic energy of the particle therefore is about 1.4× 10−4

of its rest mass! This is why electrostatic fields are typically used at very low energies
in most accelerators, or in areas where the septa (and integrated field strength) can be
quite long.
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