

PHYS 854 Old Dominion University Chapter 14.5+: Beam Breakup

Todd Satogata (Jefferson Lab and ODU) / <u>satogata@jlab.org</u> Geoff Krafft (Jefferson Lab and ODU) / <u>krafft@jlab.org</u> <u>https://casa.jlab.org/publications/ODU_F2019.shtml</u>

Happy Birthday to Peter Drucker, Jodie Foster, Adam Driver, and Jean-Antoine Nollet! Happy National Carbonated Beverage with Caffeine Day, World Toilet Day, and "Have A Bad Day" Day!

1

T. Satogata / Fall 2019 ODU PHYS 854

erson Lab

Overview

- Chapter 14.5+: Beam Breakup
 - Introduction: Impedances and instabilities
 - Review: RF higher order modes
 - Linear accelerator beam breakup
 - Amelioration: BNS damping
 - Regenerative (or ERL) beam breakup

2

lefferson Lab

Overview

- Chapter 14.5+: Beam Breakup
 - Introduction: Impedances and instabilities
 - Review: RF higher order modes
 - Linear accelerator beam breakup
 - Amelioration: BNS damping
 - Recirculating (or ERL) beam breakup

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 6, 084402 (2003)

Cumulative beam breakup in linear accelerators with arbitrary beam current profile

J. R. Delayen*

Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA (Received 17 June 2003; published 27 August 2003)

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 495, Issue 2, 11 December 2002, Pages 85-94

Cumulative beam break-up study of the spallation neutron source superconducting linac *

D Jeon ^a A ⊠, L Merminga^b, G Krafft^b, B Yunn ^b, R Sundelin <mark>P, J Delayen ¹,</mark> S Kim ^a, M Doleans ^a **⊞ Show more**

https://doi.org/10.1016/S0168-9002(02)01576-0

Get rights and content

T. Satogata / Fall 2019

son Lab

ODU PHYS 854

Overview

- Chapter 14.5+: Beam Breakup
 - Introduction: Impedances and instabilities
 - Review: RF higher order modes
 - Linear accelerator beam breakup
 - Amelioration: BNS damping
 - Recirculating (or ERL) beam breakup

STUDIES OF ENERGY RECOVERY LINACS AT JEFFERSON	University of Connecticut DigitalCommons@UConn
LABORATORY	Doctoral Dissertations University of Connecticut Graduate School
GeV Demonstration of Energy Recovery at CEBAF and Studies of	
the Multibunch, Multipass Beam Breakup Instability in the 10 $\rm kW$	⁵⁻¹⁰⁻²⁰¹³ Multipass Beam Breakup Study at Jefferson Lab for
FEL Upgrade Driver	the 12 GeV CEBAF Upgrade
Christopher D. Tennant	ILKYOUNG SHIN University of Connecticut - Storrs, shin@phys.uconn.edu
2006	

https://casa.jlab.org/publications/CASA_PhDs.shtml

T. Satogata / Fall 2019

efferson Lab

ODU PHYS 854

Δ

Introduction: Impedances and Instabilities

- Until now we have mostly only considered beam dynamics as affected by externally-generated EM fields
 - Single-particle dynamics

ferson Lab

- Beam fields dominated by external fields
- But by definition the beam has its own EM fields
 - Beam acts like a (time-dependent) current
 - These fields interact with their environment
 - In particular, they interact with resonators in the environment
 - These resonators look very much like impedances in circuits
 - Fields created by the beam can act back upon the beam
 - These fields created in the beam's wake are called "wakefields"
 - These interactions create feedback loops
 - Like any feedback, this can create unstable feedback loops

Entire Textbooks on Impedances/Instabilities

- My canonical book on this subject is Alex Chao's textbook
- Free on the web at
 - https://www.slac.stanford.edu/~ach ao/wileybook.html

Frontmatter <u>pdf</u>

- Chapter 1 Introduction pdf
- Chapter 2 Wake Fields and Impedances <u>pdf</u>
- Chapter 3 Instabilities in Linear Accelerators pdf
- Chapter 4 Macroparticle Models pdf
- Chapter 5 Landau Damping pdf
- Chapter 6 Perturbation Formalism pdf

Index pdf

Jefferson Lab

Errata <u>pdf pdf2</u>

6

T. Satogata / Fall 2019

ODU PHYS 854

Entire Textbooks on Impedances/Instabilities

- My canonical book on this subject is Alex Chao's textbook
- Free on the web at
 - <u>https://www.slac.stanford.edu/~ach</u> <u>ao/wileybook.html</u>

Frontmatter	<u>pdf</u>
-------------	------------

- Chapter 1 Introduction pdf
- Chapter 2 Wake Fields and Impedances pdf
- Chapter 3 Instabilities in Linear Accelerators pdf
- Chapter 4 Macroparticle Models pdf
- Chapter 5 Landau Damping pdf
- Chapter 6 Perturbation Formalism pdf

Index pdf

Jefferson Lab

7

T. Satogata / Fall 2019

ODU PHYS 854

Beam

breakup

Impedances

- Any structure that interacts with the beam fields can be treated as an impedance
 - Fortunately many of them are bad (low Q) resonators
 - Wakefields do not persist a long time compared to time between bunches, or even bunch length
 - Damp quickly in residual resistance of conductors
- Examples of impedances that can contain wakefields
 - Beam pipe

Bellows

Jefferson Lab

T. Satogata / Fall 2019

Diagnostics

Electrody

Side View

ODU PHYS 854

RF cavities

Figure 2.3. Wake electric field lines in a resistive wall pipe generated by a point charge q. The field pattern shows oscillatory behavior in the region $|z| \leq 5(2\chi)^{1/3}b$ (or $|z| \leq 0.35$ mm for an aluminum pipe with b = 5 cm). The field line density to the left of the dashed line has been magnified by a factor of 40. (Courtesy Karl Bane, 1991.)

From Chao textbook: https://www.slac.stanford.edu/~achao/wileybook.html

Jefferson Lab

Review: RF Cavity Modes

- Currents couple to RF cavity modes through electric field
 - We therefore restrict our discussion to TM_{nil} modes
 - These are the RF modes that have longitudinal electric field

$$E_z(r,\theta,z) \sim J_n(k_c r)(C_1 \cos n\theta + C_2 \sin n\theta) \cos\left(\frac{m\pi z}{l}\right)$$

 $H_z = 0$ everywhere

 $\otimes \otimes \otimes \otimes$ \otimes \otimes 2b ----- z 2a \odot \odot \odot $\odot \odot \odot \odot$

T. Satogata / Fall 2019

Jefferson Lab

 $J_n(k_c a) = 0$ X_{nj} is the jth root of J_n

TM_{0i} are only modes with E field on axis. Radial magnetic

Beam breakup RF cavity HOM

Jefferson Lab

- TM110 mode shown here: illustrates mechanism
- High Q HOM modes are most dangerous
 - Deposited power rings for longer time
 - More chance for unstable feedback loop with later beam

11

Passing electron bunches can have transverse displacement

- Interact with HOMs and deposit energy in cavity
- Later beam at right phases can add energy constructively

Eventually field gets large enough to trip beam or trip RF control

12

Jefferson Lab

Wakefield Formalism

 From Chao, the impulses (integrated forces) from a general order m wakefield are given by

$$\int_{-L/2}^{L/2} ds \vec{F}_{\perp} = -eI_m W_m(z) m r^{m-1} (\hat{r} \cos m\theta - \hat{\theta} \sin m\theta),$$

$$\int_{-L/2}^{L/2} ds \vec{F}_{\parallel} = -eI_m W_m'(z) r^m \cos m\theta,$$
(2.50)

 Here we only consider the first nontrivial transverse force wakefield with *m*=1:

$$\int_{-L/2}^{L/2} ds \ \vec{F}_{\perp} = -e \ I \ W_1(z) \ \hat{x} = -N \ e^2 \ W_1(z) \ \hat{x}$$

Averaging the integral over one cavity RF period gives

$$\vec{F}_{\perp,\text{ave}} = -\frac{Ne^2}{2L} W_1(z) \hat{x} \qquad F = \frac{dp_x}{dt} = \frac{dp_x}{ds} \frac{ds}{dt} = \frac{dp_x}{ds} \beta c \Rightarrow \frac{dp_x}{ds} = \frac{F}{\beta c}$$

$$x'' = \frac{dx'}{ds} = \frac{d}{ds} \frac{p_x}{p_0} = \frac{dp_x}{ds} \frac{1}{p_0} = \frac{1}{p_0} \frac{F}{\beta c} = \frac{F}{\beta^2 \gamma mc^2} \approx \frac{F}{E}$$
fferson Lab
T. Satogata / Fall 2019
ODU PHYS 854
13

14.5: BBU Formalism

$$x_{\text{head}}(s) = \hat{x}\cos(k_{\beta}s)$$

Regular betatron motion

Tail betatron motion is a driven harmonic oscillator:

$$x_{\text{tail}}''(s) + k_{\beta}^2 x_{\text{tail}}(s) = -\left(\frac{Ne^2 W_1(z)}{2EL}\right) \hat{x} \cos(k_{\beta}s)$$
(14.23)

Solution of driven harmonic oscillator:

efferson Lab

$$x_{\text{tail}}(s) = \hat{x}\cos(k_{\beta}s) - \left(\frac{Ne^2W_1(z)}{4k_{\beta}EL}\right)s\hat{x}\sin(k_{\beta}s) \qquad (14.24)$$

- The tail sees an additional force from the RF wakefields driven by particles in the front ("head") of the bunch
 - Solution grows linearly with s coordinate = distance along linac
 - A big problem for long linacs like the SLC
 - Establishes tight tolerance on beam alignment in RF cavities

Tail amplitude grows over traversal of many cavities

From Chao textbook: <u>https://www.slac.stanford.edu/~achao/wileybook.html</u>

15

T. Satogata / Fall 2019 ODU F

Jefferson Lab

ODU PHYS 854

14.5: BBU Amelioration via BNS

- Plugging in realistic numbers (e.g. for SLAC linac)
 - Beam centering tolerance in RF cavities smaller than beam size! A tough sell!
- Instead, accelerate beam a little off crest

iferson Lab

Tail has less energy than head, gets more betatron focusing

$$x''_{\text{tail}}(s) + (k_{\beta} + \delta k_{\beta})^2 x_{\text{tail}}(s) = -\left(\frac{Ne^2 W_1(z)}{2EL}\right) \hat{x} \cos(k_{\beta}s) \qquad (14.25)$$

 This can be safely kept stable if the additional betatron focusing is enough to satisfy the condition

$$\delta k_{\beta} = -\frac{Ne^2 W_1(z)}{4 k_{\beta} EL}$$

This is called BNS damping, and it "rescued" the SLC <u>http://accelconf.web.cern.ch/AccelConf/p85/PDF/PAC1985_2389.PDF</u>

Regenerative Beam Breakup (BBU)

- Regenerative beam breakup
 - Positive feedback loop between beam power and higher order mode RF power
 - Couples through beam transport
 - Many RF higher order modes communicate with beam, each other in near-exponential complexity
 - Limits total beam current

Regenerative BBU

• The threshold current for horizontal regenerative beam breakup is

$$I_{\rm th} = -\frac{2Ec}{e\omega \left(R/Q\right)Q M_{12} \sin(\omega T)}$$
(14.28)

where E is the total beam energy, ω is the HOM frequency, Q and (R/Q) are properties of the HOM, M_{12} is the recirculation beam transport matrix element, and T is the recirculation time [45]. Instability is only possible if

$$M_{12}\sin(\omega T) < 0 \tag{14.29}$$

Otherwise the feedback loop damps the HOM, and the beam is predicted to remain stable at all currents. Regenerative BBU can be avoided for some HOMs by careful control of M_{12} . However, $\omega T \gg 1$ in realistic systems so stability cannot be assured for all HOMs.

18

efferson Lab

ODU PHYS 854

BBU Measurements: C100 Warm HOM Loads

efferson Lab

- C100 HOM, BBU experiment: Ilkyoung Shin's PhD thesis
- Surveyed HOMs using warm coupler ports in CMTF, tunnel
 - With and without beam loading, varying recirculation optics
- Based on techniques described in Chris Tennant's thesis
- HOM power and BBU measurements are accessible
- Can we drive BBU instability in ER@CEBAF with existing beam?

ODU PHYS 854

19