
                          Graduate Accelerator Physics Fall 2015 

 

Accelerator Physics 
Particle Acceleration 

G. A. Krafft 

Old Dominion University 

Jefferson Lab 

Lecture 8 



                          Graduate Accelerator Physics Fall 2015 

Statistical Treatments of Beams 

• Distribution Functions Defined 

– Statistical Averaging 

– Examples 

• Kinetic Equations 

– Liouville Theorem 

– Vlasov Theory 

– Collision Corrections 

• Self-consistent Fields 

• Collective Effects 

– KV Equation 

– Landau Damping 

• Beam-Beam Effect 
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Beam rms Emittance 

Treat the beam as a statistical ensemble as in Statistical 

Mechanics. Define the distribution of particles within the beam 

statistically. Define single particle distribution function 

 , ,x x 

where ψ(x,x')dxdx'  is the number of particles in [x,x+dx] and 

[x',x'+dx'] , and statistical averaging as in Statistical Mechanics, 

e. g. 
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Closest rms Fit Ellipses 
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For zero-centered distributions, i.e., distributions that have zero 

average value for x and x' 
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Case: Uniformly Filled Ellipse 
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Θ here is the Heavyside step function, 1 for positive values of 

its argument and zero for negative values of its argument 
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Gaussian models (HW) are good, especially for lepton machines  



                          Graduate Accelerator Physics Fall 2015 

Dynamics? Start with Liouville Thm. 

Generalization of the Area Theorem of Linear Optics. Simple 

Statement: For a dynamical system that may be described by a 

conserved energy function (Hamiltonian), the relevant phase 

space volume is conserved by the flow, even if the forces are 

non-linear. Start with some simple geometry! 
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Case: Uniformly Filled Ellipse 
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Gaussian models (HW) are good, especially for lepton machines  
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Dynamics? Start with Liouville Thm. 

Generalization of the Area Theorem of Linear Optics. Simple 

Statement: For a dynamical system that may be described by a 

conserved energy function (Hamiltonian), the relevant phase 

space volume is conserved by the flow, even if the forces are 

non-linear. Start with some simple geometry! 
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Liouville Theorem 
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Likewise 

       

       

   

0 0 0 0 0 0 0 0

2

0 0 0 0 0 0 0 0

2 2

0 0
0

, , , ,
1

Area det
2

, , , ,

1
1 ,

2t

H H H H
q q q p q q p p t q q p q q p p t

p p q q

H H H H
q p p q q p p t p q p p q q p p t

p p q q

H H
q p q p p p

q p 

      
                     

      
 

      
                    

      

 
        

  
 

 
0 0,

2

q p
q p p p t

p q

    
       

  

Because the starting point is arbitrary, phase space area is 

conserved at each location in phase space. In three dimensions, 

the full 6-D phase volume is conserved by essentially the same 

argument, as is the sum of the projected areas in each individual 

projected phase spaces (the so-called third Poincare and first 

Poincare invariants, respectively). Defeat it by adding non-

Hamiltonian (dissipative!) terms later.  
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Phase Space 

• Plot of dynamical system “state” with coordinate along 

abscissa and momentum along the ordinate 
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Liouville Theorem 

• Area in phase space is preserved when the dynamics is 

Hamiltonian 
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1D Proof 
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(why is boundary term of integration by parts zero?)

By Green's Thm.
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3D Poincare Invariants 

• In a three dimensional Hamiltonian motion, the 6D phase 

space volume is conserved (also called Liouville’s Thm.) 

 

• Additionally, the sum of the projected volumes (Poincare 

invariants) are conserved 

 

 

 

 

 Emittance (phase space area) exchange based on this idea 

• More complicated to prove, but are true because, as in 1D 
2 2

i i i i

H H

q p p q

 


   

6

6D x y z

V

V dp dp dp dxdydz 

     

     

2 2 2

4 4 4

proj proj proj

proj proj proj

x y z

V V V

y z z x x y

V V V

dp dx dp dy dp dz

dp dp dydz dp dp dzdx dp dp dxdy

 

 

  

  



                          Graduate Accelerator Physics Fall 2015 

      

 

           
 

 
         

 

 

3 3

1 10

3

10

 is a loop in 6D phase space

, , ,

, ,

, , 0

for any surface in

L

i

i i i

i i i it

L

i i

i i i t

t p s t q s t

dx sd d H H
p dx p s x s p s x s p s

dt ds p x ds

dp s dx sH H
x s p s x s p s dH

ds p x ds









 





    
     

     

  
    

  

  

 

 2 2 2

2 2

3 3 3

1 1 1 proj

2
3

1

3
3

1

 6D phase space , with 

i i i i i i

i i iV V V

i i y z z x x y

i

i i x y z

i

V V

p dx dp dx dp dx

dp dx dp dp dydz dp dp dzdx dp dp dxdy

dp dx dp dp dp dxdydz



  





 

 

 
   

 

 
 

 

    







                          Graduate Accelerator Physics Fall 2015 

Vlasov Equation 

0                    as the distibution evolves
d

dt
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where the equation for ANY (this is what makes
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By interpretation of ψ as the single particle distribution 

function, and because the individual particles in the distribution 

are assumed to not cross the boundaries of the phase space 

volumes (collisions neglected!), ψ must evolve so that 
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Conservation of Probability 
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Jean’s Theorem 

The independent variable in the Vlasov equation is often 

changed to the variable s. In this case the Vlasov equation is 

The equilibrium Vlasov problem, ∂ψ /∂t =0, is solved by any 

function of the constants of the motion. This result is called 

Jean’s theorem, and is the starting point for instability analysis 

as the “unperturbed problem”. 

0
dq dp

s ds q ds p
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Examples 

1-D Harmonic oscillator Hamiltonian. Bi-Maxwellian 

distribution is a stationary distribution 
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As is any other function of the Hamiltonian. Contours of 

constant ψ line up with contours of constant H 

 

2 D transverse Gaussians, including focusing structure in ring 
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Contours of constant ψ line up with contours of constant Courant-

Snyder invariant. Stationary as particles move on ellipses! 
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Solution by Characteristics 

More subtle: a solution to the full Vlasov equation may be 

obtained from the distribution function at some the initial 

condition, provided the particle orbits may be found 

unambiguously from the initial conditions throughout phase 

space. Example: 1-D harmonic oscillator Hamiltonian.  
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Breathing Mode 

The particle envelope “breaths” at twice the revolution 

frequency! 
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Sacherer Theory 

Assume beam is acted on by a linear focusing force plus 

additional linear or non-linear forces  

 

     

2

2

2

2 2 3 2 2

2 2

2 2

2 2 2 2 2

0

0

For space charge example we'll see

1

Now

0

0

Assume distributions zero-centered and let

  =             

x x

y y

x y x y

x y

x x

y y

x k x F

y k x F

qE qE
F

mc mc

xx k x F x

yy k y F y

x x x x y y



   

   

   


 

   

   

   2 2 2  =y y 



                          Graduate Accelerator Physics Fall 2015 

   

2 2

2 2 2

2 2 2 2

2 2 2 2 2

2 2 2

2 2

2

2 2 2

2

3

2 2

2 2

Also

1

2

/ 0

0

x x

x x

x x

x

x

x xx x xx

x x xx xx x

xx x xx x k x F x

x xx xx x x k x F x

xx x x
x xx x xx k x F x

x

xx x x F x
x k x

x x

x

    

       

       

         

 
       

 
    

 
2

2

3
0      "Envelope" equation

xrms
x

F x
k x

x x


  



                          Graduate Accelerator Physics Fall 2015 

rms Emittance Conserved 

 

 

   

22 2

2 2 2 2

2 2 2 2 2

2 2 2 2

2

         

2

2 2 2

2 2

2 2

x x

x x x x

x x

x x xx

x x x x xx xx

xx x x x x xx x k x F x

x k x x F x xx k x F x

x F x xx F x


 

       

         

      

  

For linear forces derivative vanishes and rms emittance 

conserved. Emittance growth implies non-linear forces. 
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Space Charge and Collective Effects 

 

• Collective Effects 

– Brillouin Flow 

– Self-consistent Field 

– KV Equation 

– Bennet Pinch 

– Landau Damping 
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Simple Problem 

• How to account for interactions between particles 

• Approach 1: Coulomb sums 

– Use Coulomb’s Law to calculate the interaction 

between each particle in beam 

– Unfavorable N2 in calculation but perhaps most realistic 

– more and more realistic as computers get better 

• Approach 2: Calculate EM field using ME 

– Need procedure to define charge and current densities 

– Track particles in resulting field 
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Uniform Beam Example 

• Assume beam density is uniform and axi-symmetric going 

into magnetic field 
 n r

r a
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Brillouin Flow 
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Comments 

• Some authors, Reiser in particular, define a relativistic 

plasma frequency 

 

 

 

• Lawson’s book has a nice discussion about why it is 

impossible to establish a relativistic Brillouin flow in a 

device where beam is extracted from a single cathode at an 

equipotential surface. In this case one needs to have either 

sheering of the rotation or non-uniform density in the self-

consistent solution. 
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Vlasov-Poisson System 
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K-V Distribution 

• Single value for the transverse Hamiltonian 
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K-V Envelope Equation 
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Waterbag Distribution 

• Lemons and Thode were first to point out SC field is 

solved as Bessel Functions for a certain equation of state. 

Later, others, including my advisor and I showed the 

equation of state was exact for the waterbag distribution. 
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Equation for Beam Radius 
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Luminosity and Beam-Beam Effect 

• Luminosity Defined 

• Beam-Beam Tune Shift 

• Luminosity Tune-shift Relationship (Krafft-Ziemann 

Thm.) 

• Beam-Beam Effect 
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Events per Beam Crossing 

• In a nuclear physics experiment with a beam crossing through a thin 

fixed target 

 

 

 

 

 

 

 

• Probability of single event, per beam particle passage is 

 

• σ  is the “cross section” for the process (area units)  
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Collision Geometry 

 

 

 

• Probability an event is generated by a single particle of 

Beam 1 crossing Beam 2 bunch with Gaussian density* 
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* This expression still correct when relativity done properly 
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Collider Luminosity 

• Probability an event is generated by a Beam 1 bunch with 

Gaussian density crossing a Beam 2 bunch with Gaussian density 

 

 

 

• Event rate with equal transverse beam sizes 

 

 

• Luminosity 
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Beam-Beam Tune Shift 

• As we’ve seen previously, in a ring accelerator the number 

of transverse oscillations a particle makes in one circuit is 

called the “betatron tune” Q. 

• Any deviation from the design values of the tune (in either 

the horizontal or vertical directions), is called a “tune 

shift”. For long term stability of the beam in a ring 

accelerator, the tune must be highly controlled. 
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Bessetti-Erskine Solution 

• 2-D potential of Bi-Gaussian transverse distribution 

 

 

• Potential Theory gives solution to Poisson Equation 
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• Can do the integral analytically 
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Linear Beam-Beam Kick 

• Linear kick received after interaction with bunch  

       

      

 
 

 

1 1 1 2 1
2

1 1 1 2 2 1

2

22
2 2

0 2

v ,

by relativity, for oppositely moving beams

1 ,

Following linear Bassetti-Erskine model

1 1
,0, , exp

2 22

x x
x

x z z x

z

x

zx x y

mc q E B x t t dt

mc q E x t t dt

z ctq x
E x z t

 

  



    









   

  

 
 

 





   1 1 moves with ,0, zq x t x ct




 


 



                          Graduate Accelerator Physics Fall 2015 

Linear Beam-Beam Tune Shift 
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Luminosity Beam-Beam tune-shift 

relationship 
• Express Luminosity in terms of the (larger!) vertical tune 

shift (i either 1 or 2) 

 

 

 

• Necessary, but not sufficient, for self-consistent design 

• Expressed in this way, and given a known limit to the 

beam-beam tune shift, the only variables to manipulate to 

increase luminosity are the stored current, the aspect ratio, 

and the β* (beta function value at the interaction point) 

• Applies to ERL-ring colliders, stored beam (ions) only 
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Luminosity-Deflection Theorem 

• Luminosity-tune shift formula is linearized version of a 

much more general formula discovered by Krafft and 

generalized by V. Ziemann. 

 

• Relates easy calculation (luminosity) to a hard calculation 

(beam-beam force), and contains all the standard results in 

beam-beam interaction theory. 

 

• Based on the fact that the relativistic beam-beam force is 

almost entirely transverse, i. e., 2-D electrostatics applies. 
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2-D Electrostatics Theorem 
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Luminosity-Deflection Pairs 

• Round Beam Fast Model 

 

 

• Gaussian Macroparticles 

 

 

 

• Smith-Laslett Model 
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