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Statistical Treatments of Beams

 Distribution Functions Defined
— Statistical Averaging
— Examples

Kinetic Equations

— Liouville Theorem

— Vlasov Theory

— Collision Corrections
» Self-consistent Fields
Collective Effects

— KV Equation

— Landau Damping

e Beam-Beam Effect
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Treat the beam as a statistical ensemble as in Statistical
Mechanics. Define the distribution of particles within the beam
statistically. Define single particle distribution function

Beam rms Emittance

v (% X'),

where w(Xx,x")dxdx' is the number of particles in [x,x+dx] and
[X',x'+dx'] , and statistical averaging as in Statistical Mechanics,

e. g.
(a)

(@’)

Iq(x, X' W (X, x")dxdx’/ N
jqz (%, X" (x,x")dxdx"/ N
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For zero-centered distributions, I.e., distributions that have zero
average value for x and x'

Closest rms Fit Ellipses

2
5 X))ol
grms grms
XX’
)
grms
12
(x*) o
7/ = =
grms grms
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Case: Uniformly Filled Ellipse ‘_""
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X)=—0
v (% X) .

1 olh X2+ 2axx + Bx
e

O here is the Heavyside step function, 1 for positive values of
Its argument and zero for negative values of its argument

o= ()=
N &%
foc) =2
o =<X’2> :ﬁ(lJraz)
E
s =
4

Gaussian models (HW) are good, especially for lepton machines
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Dynamics? Start with Liouville Thm s \ALids
ODU

Generalization of the Area Theorem of Linear Optics. Simple
Statement: For a dynamical system that may be described by a
conserved energy function (Hamiltonian), the relevant phase
space volume is conserved by the flow, even if the forces are
non-linear. Start with some simple geometry!

(95, Ps)
(% -9)(Ps—P) (%=0)(P.—P)
2 2

(acute angle has line 1- 2 clockwise wrt line 1-3)

(. p,) (9. ;) A,
In phase space

A
/ : Area Before=Area After

Area A =
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Dynamics? Start with Liouville Thm s \ALids
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Generalization of the Area Theorem of Linear Optics. Simple
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Liouville Theorem
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oH OoH
(qu po) — q0+$(qo, pO)At+---, po—a(qo, pO)At+---)

oH oH
(G0 +A0:Po) | G+ AG+ (T +AG, Po )AL, Py =7 (0o + AT, P JAL+ -

oH oH
(qO’ Po +Ap) = % +$(qo' p0+Ap)At+---, Py +Ap_a(qov Po +Ap)At+---

oH
d, +Aq+$(q0 +Aq, p, +Ap) At +---
(G +Ad, py +Ap) >

oH
Po-+ AP =2 -(G +AG, Py + AP AL+
oH oH oH oH
Aq{%(qo +Adq, po)—%(qo, po)}At {a(qo +Aq, po)—a(qo, po)}At
oH oH oH oH
{5(%’ Po +Ap)—$(%’ po)}At Ap—{a(%' Po +Ap)—a(%’ po)}At

1 o°H o°H (AqAp)
AQA :
o (A p){ {aqap(% D, ) - apaq(qo po)} } 5
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Likewise

oH oH oH oH
Aq{—(qo +Ad, py)——(a, + A, p, +Ap)}At {—(qo +Ad, Py ) —— (0, + Ad, P, +Ap)}m
1 op op oq oq
Area A, = Edet

oH oH oH oH
{E(qo, Po +Ap)—$(qo +Aq, p, +Ap)}At Ap{a(qo, Po +Ap)—a(qo +Aq, p, +Ap)}m

A:O%(Aqu){H{s;glp (Go +Ap, P +Ap)— s;qu (g, +Ap, P +Ap)}At} :(Aq—zAp)
Because the starting point is arbitrary, phase space area is
conserved at each location in phase space. In three dimensions,
the full 6-D phase volume is conserved by essentially the same
argument, as is the sum of the projected areas in each individual
projected phase spaces (the so-called third Poincare and first
Poincare invariants, respectively). Defeat it by adding non-
Hamiltonian (dissipative!) terms later.
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Phase Space —
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* Plot of dynamical system “‘state” with coordinate along
abscissa and momentum along the ordinate

Px

Linear
Oscillator

S
==

2 2
X
H = Px + Mo’ =—

2m
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Liouville Theorem —
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* Area in phase space 1s preserved when the dynamics is
Hamiltonian

Px

Area = Area -
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1D Proof “'_"
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av _ “mV(t+At)—V (t)
dt Atoe At
x(st+At)ﬁx(s)+%tAt+ :x(s)+2:(x(s),px(s))At+
P, (S t+At)= px(s)+ddptx At+--- = px(s)—%—l;l(x(s) P, ( ))At+

_ <J§ P dx:_‘L'p (s,t)%(s,t)ds
o) " " ds

V(t+At)= qS p,dx = jpx st+At)d (s,t+At)ds

c(s,t+At) ds

= ][ (9 2 (xt3). (9t & 1(5) - 21 (x(5)p, ()t

p,
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C(Ij\t/::{_ X(S)%Z;(X(S) x(S))+%—|:(X(s) px(S))d);(SS)
) Idpés(s) 2: (x(s) px(S))+2—':(x(s), . (5)) dZ(SS)}dS

[ 2]
c(s.t)

op, OX
By Green's Thm.
=0 when the differential is an exact differential
: o ( oH o (oH .
l.e., = , In other words always
ox \ op,, op, \ OX

note the integrand above is really dH, so H is a "potential*
for phase space!!!
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3D Poincare Invariants —
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* In a three dimensional Hamiltonian motion, the 6D phase
space volume is conserved (also called Liouville’s Thm.)

Ve = | dp,dp,dp,dxdydz

e Additionally, the sum‘of the projected volumes (Poincare
invariants) are conserved

j dp, dx + j dp,dy + j dp,dz

proj(V,) proj(V, ) proj(V, )
j dp,dp,dydz + j dp, dp, dzdx + j dp,dp, dxdy
proj(V,) proj(V,) proj(V,)

Emittance (phase space area) exchange based on this idea

 More complicated to prove, but are true because, as in 1D
o’H  o°H
oqiop;  0paq;
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y 1S a loop in 6D phase space

7(t)=(P(s:).q(s:1))

S{UZ"“}IZ{ (515 20 (1), (61 + S (5(5), () L)
I3 B ). p(0)+ (5051 pls) HL |- § a0

for any surface in 6D phase space V,, with y =0V,

Cﬁi p,dx; = jidpidxi :i J- dp; dx;

ov, 1=1 Vv, 1=1 1=1 proj(V, )

2

3
Z dp;dx; | =dp,dp,dydz +dp,dp,dzdx + dp,dp, dxdy
i=1

3

3
> dp,dx, | =dp,dp,dp,dxdydz
i=1

, Thomas Jefferson National Accelerator Facility @ gJSA
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Vlasov Equation m—
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By interpretation of y as the single particle distribution
function, and because the individual particles in the distribution
are assumed to not cross the boundaries of the phase space
volumes (collisions neglected!), v must evolve so that

(L—l/t/ =0 as the distibution evolves
dy w(t+5t,G(t+6t), p(t+st))—w(t.d(t), p(t)) 0
dt ot—0 5t

where the equation for ANY (this is what makes
It hard to solve in general!) individual orbits
through phase space is given by G(t), p(t)
.0.81//+dq 8:{+dp a"f =0

o0 dt oq dt op

Thomas Jefferson National Accelerator Facility @ €JSA
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Conservation of Probability
ODU

= jz//(t; G, p)d°xd°p is a conserved quantity
continuity equation for  is
oy
...81//+dq 6z;u+dp 61//+w V. 6—H—V*6H =0
ot dt g dt op “op P ag
for the Hamiltonian system
. Oy dqdy dpoy _
ot dt og dt op
) e e “c e ) ...1 +A l...
wa(-q,) - vl arag)
Aq
Ap
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Jean’s Theorem —
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The independent variable in the Vlasov equation is often
changed to the variable s. In this case the Vlasov equation is

Oy  dqdy  dpoy _
0os ds o ds op

The equilibrium Vlasov problem, dy /ot =0, Is solved by any
function of the constants of the motion. This result is called
Jean’s theorem, and is the starting point for instability analysis
as the “unperturbed problem”.

If = f(AB,C,---), where A B,C,--- are constants of the motion

dX oy dp oy _ of (d)‘(’ oA _ dp aAj+ of (d)‘(’ 0B _ dp aBj

dt &x dt op oAl dt 6% dt Op dt % dt op

Jof(dxoc dpec) ot dA of dB af dC
oc | dt ox  dt op oAdt 0B dt | oC dt
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Examples —
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1-D Harmonic oscillator Hamiltonian. Bi-Maxwellian
distribution is a stationary distribution

1 M@
—_—exp(—H /KT)=
v 27T exp( ) 27T
As is any other function of the Hamiltonian. Contours of

constant y line up with contours of constant H

exp(—p; / 2mKT )exp(—mx°e’ / 2KT ),

2 D transverse Gaussians, including focusing structure in ring
w(Six, X3y, Y') o exp(—(yX (s)X* +2a, (s) XX + B3, (s)x’z)/gx)
><exp(—(7/y(s)y2 +2a, (s)yy'+,8y(s)y’2)/gy)

Contours of constant y line up with contours of constant Courant-
Snyder invariant. Stationary as particles move on ellipses!

Thomas Jefferson National Accelerator Facility @ €JSA
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Solution by Characteristics '_""
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More subtle: a solution to the full Vlasov equation may be
obtained from the distribution function at some the initial
condition, provided the particle orbits may be found
unambiguously from the initial conditions throughout phase
space. Example: 1-D harmonic oscillator Hamiltonian.

[x(t)]zi cosm(t-t;) sina)(t—to)/w]£x(to)]_)(xol:[ cosa(t-t,) —Sinw(t—to)/COJ(Xj
X'(t)) (—osino(t-t,) cosm(t—-t,) /| X'(t,) X ) \esino(t-t,) coso(t-t,) )\ X
v (X Xt=t)= f(x,x)

Let w(x,X;t)=f,(cosw(t—t,)x—sino(t—t,)x'/ o, wsinw(t—t,) x+cosw(t-t,)X')

oy _ o, dx (t; x, x') L dx’(t; x, x")

ot Ox dt Ox’ dt

:%[—wsina)(t—to)x—cosw(t—to)X’]+i[wzCOSw(t—to)X—C‘)S‘””(t‘to)x']

OX
dx oy | of of .
— L =x'| —coso(t—t,)+— wsinw(t -t
dt ox [8X o(t-%) ox o 0)}
d—Xa—W=—a)zx{—ﬂsina)(t—to)/a)+icosw(t—to)}.'.d—l//=0
dt ox’ OX ox' dt
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Breathing Mode
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/ /

X X

/ \ X Quarter Y
NY Oscillation |/

X X X

(N T dh
\/ N

The particle envelope “breaths” at twice the revolution
frequency!

; Thomas Jefferson National Accelerator Facili 5
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Sacherer Theory hhhidd
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Assume beam is acted on by a linear focusing force plus
additional linear or non-linear forces

J)effegon Lab

X"+k’x—F =0
y"+k;x—F, =0
For space charge example we'll see

2
- _Ea (1-5°) _ dE,
x(y) 7/mC2,BZ 7/3mC2ﬁ2
Now

(xXx") + kg <x2>—<FXx> =0

(wy")+k (v*)=(Fy) =0

Assume distributions zero-centered and let
£=(0) X=(7) 7 =(r) 7=(y7)

Thomas Jefferson National Accelerator Facility @ gJSA
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rms Emittance Conserved

= (xx><x >+2<x2><x’x>—2<xx’>( ’
:2<x2>( )+ ( Fxx’>)+2<xx’>(kf<x2>—<FXx>)
=2<x2 X () (F )

For linear forces derivative vanishes and rms emittance
conserved. Emittance growth implies non-linear forces.

Thomas Jefferson National Accelerator Facility
J)effegon Lab Graduate Accelerator Physics Fall 2015

W
ODU

@™



Space Charge and Collective Effects s

* (ollective Effects

— Brillouin Flow

— Self-consistent Field
— KV Equation
— Bennet Pinch
— Landau Damping
Jeffegon Lab Thomas Jefferson National Accelerator Facility

Graduate Accelerator Physics Fall 2015
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Simple Problem —
ODU

« How to account for interactions between particles
e Approach 1: Coulomb sums

— Use Coulomb’s Law to calculate the interaction
between each particle in beam

— Unfavorable N? in calculation but perhaps most realistic
— more and more realistic as computers get better

e Approach 2: Calculate EM field using ME
— Need procedure to define charge and current densities

— Track particles in resulting field

Thomas Jefferson National Accelerator Facili :
J)effegon Lab ¥ @ EJSA
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ror ' g 2¢,
Self-Magnetic Field by Ampere's Law

gnpc
2

27rB, = p,qnpear? — B, = u,

Thomas Jefferson National Accelerator Facility
Graduate Accelerator Physics Fall 2015

Uniform Beam Example

r

W

ODU

« Assume beam density 1s uniform and axi-symmetric going
into magnetic field

gJSA



Brillouin Flow Wy
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Total Collective Force on beam particle

F=q(E+Vx I§)ﬁ(q—2n(l—,82)jr

2¢,

effective (de)focussing strength
»° g°n
K=—2— where the non-relativistic "plasma frequency" is a)fJ =—
23°Cy g,M
By previous work with solenoids in the rotating frame, can have

equilibrium (force balance) when

2
)

- - - T Q
2_'° =7 non-relativistic plasma and cyclotron frequencies @, = 2—0
y /4

This state is known as Brillouin Flow and neglects
beam temperature (fluid flow)

; Thomas Jefferson National Accelerator Facili 5
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Comments “'_"
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« Some authors, Reiser 1n particular, define a relativistic

plasma frequency
2

N
of =
gy m

Lawson’s book has a nice discussion about why it is
impossible to establish a relativistic Brillouin flow 1n a
device where beam 1s extracted from a single cathode at an
equipotential surface. In this case one needs to have either
sheering of the rotation or non-uniform density in the self-
consistent solution.

Thomas Jefferson National Accelerator Facili :
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Vlasov-Poisson System
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g=p/m
o) =q(Ei +(\7>< é)l)

o Self-consistent Field

V.E=_vig=
&y
n:jwd?’ﬁ

Thomas Jefferson National Accelerator Facili :
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K-V Distribution

« Single value for the transverse Hamiltonian

X

1 x2+(axx+ﬁxx’)2 s 1 y2+(ayy+ﬂyy’)2
g B, & lBy

y
w (X X,y,y)«cs(C-1)
|

)=
,0() XY
2 | _ 4zg,mc’
l 18373 X g

I X
E =
ngO,BcY(X +Y)

g Thomas Jefferson National Accelerator Facili
.!effegon Lab v
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K-V Envelope Equation

I X
© e i X (X +Y)

__ | y
' e oY (X +Y)

2K
"k X— =0
X+ yX X(X—I—Y)X

2K
"k X~ =0
PV )

Envelope Equation

2

X"k X ——2K &
(X+Y) X?

2K &

Y7 kY - S
YT Y

E

E

Thomas Jefferson National Accelerator Facility
Graduate Accelerator Physics Fall 2015

ODU

@

gJSA



Waterbag Distribution '_""
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 Lemons and Thode were first to point out SC field is
solved as Bessel Functions for a certain equation of state.
Later, others, including my advisor and I showed the
equation of state was exact for the waterbag distribution.

H, = Zprzi\ (x’2 + y’2)+

WZA@(HO_HT)

2 2 2
:”l//dx’dy’:n{l— mcoo(x 4 )—¢SCJ ¢=H,le

2H, )
”sz x +y’2 dx'dy’ _H, 1_ma)§(x2+y2)_¢SC
m? | yax'dy’ m 2Hy 4

Thomas Jefferson National Accelerator Facili :
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Self-consistent potential solves

2 ¢SC er]O mwg (XZ + yz)
Vi + 5 = -1
A5 & 2H,
m H H
As -9 _ \/ gg 2 = 502 2 Debye Length
w, \en, m en,

Analytic solutions in terms of Modified Bessel Functions

me; (X +y?)

eg(r) =

B=0 by boundary condition
A chosen so that solution without I, solution to inhomogeneous eqn.

+ A1, (r/ 25)—1)+BK, (r/ 2,)

Thomas Jefferson National Accelerator Facili
J)effegon Lab ty @ €JSA
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Equation for Beam Radius

Now

10 0 |r’
——Tr =2
ror orj?2
L A=mAL (20 - o)}
At r =r, the density vanishes

Ho =mA3 (20 -l )(1-1,(1, 1 45))

2
@

Lot = 1o (5 / 2
0 p

n (F)=h Lo (1, / A5)— 1, (r/ Ap)
" " l, (1, / 25) -1

Thomas Jefferson National Accelerator Facility
Graduate Accelerator Physics Fall 2015
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Luminosity and Beam-Beam Effec
ODU

e Luminosity Defined
 Beam-Beam Tune Shift

e Luminosity Tune-shift Relationship (Krafft-Ziemann
Thm.)

e Beam-Beam Effect

Thomas Jefferson National Accelerator Facility @ gJSA

Graduate Accelerator Physics Fall 2015
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Events per Beam Crossing
ODU

* In anuclear physics experiment with a beam crossing through a thin
fixed target

Target
Number density n

Beam

/|

» Probability of single event, per beam particle passage 1s
P =nol

* o 1s the “cross section” for the process (area units)

Thomas Jefferson National Accelerator Facili :
J)effegon Lab ¥ @ EJSA
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Collision Geometry Wy
ODU

Beam 2 Beam 1

« Probability an event is generated by a single particle of
Beam 1 crossing Beam 2 bunch with Gaussian density™

2 2 _\y2 2\ oo
I:):JNzexp( X /20-2X)exp( y /202y) jexp(—zZ/ZGZZZ)dz

2 3/2
( 72-) GZXGZyGZZ

N, exp(—x*/207, )exp(-y? /257,

27005, O,

O

* This expression still correct when relativity done properly

Thomas Jefferson National Accelerator Facili
.geffegon Lab Y @ @JSA
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Collider Luminosity AL

I
* Probability an event is generated by a Beam 1 bunch with ODU
Gaussian density crossing a Beam 2 bunch with Gaussian density

P — N, N, o

2 2 2 2
272'\/01)( + o, \/Gly + o3,

* Event rate with equal transverse beam sizes

dN _ TN;N, = P
dt 4roc,o,

* Luminosity
P fN,N,
dro,o,

for f =100 MHz, N, =N, =10, o, = o, =10 microns

Thomas Jefferson National Accelerator Facili
.gef£e20n Lab ¥ @ @JSA

Graduate Accelerator Physics Fall 2015
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Beam-Beam Tune Shift m
ODU

« As we’ve seen previously, in a ring accelerator the number
of transverse oscillations a particle makes in one circuit 1s
called the “betatron tune” Q.

* Any deviation from the design values of the tune (in either
the horizontal or vertical directions), 1s called a “tune
shift”. For long term stability of the beam 1n a ring
accelerator, the tune must be highly controlled.

M 1 0 COS 1 £ sin u
o\ =1/ f 1)\ —sinu/pB" cosu

COS 11 £ sin u
| —cosu/ f—sinul B cospu—(B 1 f)sinu

Thomas Jefferson National Accelerator Facili :
J)effegon Lab ¥ @ EJSA
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Tr(M o
COS(lLl—I—A,u): ( tOt):COSﬂ_'B_S“q/u
2 2 f
A " .
fZAQZ—HZ—'B << f
27 Arxf
Jefferson Lab B e e s @ A
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Bessetti-Erskine Solution

« 2-D potential of Bi-Gaussian transverse distribution

X2 y2
X, = eXp| — eXpP| —
P(%Y)= 27wo,0, P 20° P 205

« Potential Theory gives solution to Poisson Equation

0
ol — N B yz
o &P 207 + q =xP 207 + q
Q' x y
¢ X, ¥Y)= dq
( ) 47750'([ \/20X2+q\/20§+q

« Bassetti and Erskine manipulate this to

Thomas Jefferson National Accelerator Facili
J)effegon Lab ¥ @ EJSA
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’ 2
E, = Q Im X*ly —exp 2— XZJW
250\/27z(af—0'§) \/2 oy —o, 20,
4 2 2
E, = Q Re X+1y —exp(— X > X ij
280\/27r(af—a§) \/2 oy —o, 20, 20,
w(z) Complex error functlon /\

 We need 2-D linear field for small displacements

op . QX 7 1

!

W
ODU

Oy

o)z

X

(o}

|

y

\/2(0'5 —0'3)

(2)(2]]
J2(e? ~o?) |

E, (x.0)=

dqg

Thomas Jefferson National Accelerator Facility
Graduate Accelerator Physics Fall 2015
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e Can do the integral analytically

s 1 o0 J2 —62 +qr
J. 3 dq - I > 3 - 3dq'
0 (4 [262 + q) «/20'5 +q ol +o? (\/Jf —o, + q’) (\/05 —o’+ q’)
2 o —o,+q , (Uj—Gf)q 1
- 2'[ 2 [ 2 2 2\? 0= - 2 2\2 [ ~72 2 NV (e 2 22\
Ao (a7 - (oF — o)) (o3-a) (a7 -(o5-a2)) (a=(e3-a2)) |
1 +a§+af 1 1  —20,0,+0.+0ci+0.—0F 1
0'3 — o, 0'5 —o? 20,0, 20,0, (0'5 —Gf)Zaxay (JX + Gy)dx
e Similarly for the y-direction
op . QY 1
Ey (O’ y) - — 2
oy TTEy O, (GX +Jy)
' Thomas Jefferson National Accelerator Facility JSA
‘!effegon Lab Graduate Accelerator Physics Fall 2015 @ g‘



Linear Beam-Beam Kick

ODU

 Linear kick received after interaction with bunch

Ay, B,mc) =q, T (EZX +(\7>< I§)2X)(>?1 (t),t)dt

—00

by relativity, for oppositely moving beams

Ayp,me =q, (1+ 53,/5,,) j (Ex)(% (). t)dt

Following linear Bassetti-Erskine model

E (X O Z, t)_ q2 1 1 eXp _(Z_IBZZCt)2
2 27e, o, (ax + Gy) 2o, 20,

g, moves with X(t) =(x,0,—2,,ct)
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Linear Beam-Beam Tune Shift {¥?
ODU

1+
Aﬂ/ﬂlxmc ( 1812/822) q2 1
B, + 5, 27E o, (GX +Gy)
1/ .I: :2N2 (1+ﬂ12ﬁ22) r]_ r — e2
i Put+B, O ((TX + (Ty) ' 4ze,mc?
1/ f = 2N,1 Both beams relativistic

V10 (O'X +0o, )

From linear Bassetti-Erskine model, and replacing the beam size
£ N, 1 £ N, | 1

s Y 2y, &, (1+Gylax)(axlay)

27y, & (1+ o, /JX)
Argument entirely symmetric wrt choice of bunch 1 and 2

gi — N T r-| 1 éi — N i r-I 1
2y e (1+o. | Y 2xy g (1 / /
Vi &, o, o, Vi ey\1+o, /0, )0 /0O,
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Luminosity Beam-Beam tune-shifyqgpp
relationship ODU

« Express Luminosity in terms of the (larger!) vertical tune

shift (i either 1 or 2)

N7, , S
L= 2r.,8y* (1—I—Gy /GX)Z - 2I:/,8* (1+0y /GX)

Vad\Y 17~y

Necessary, but not sufficient, for self-consistent design

Expressed 1n this way, and given a known limit to the
beam-beam tune shift, the only variables to manipulate to
increase luminosity are the stored current, the aspect ratio,
and the f* (beta function value at the interaction point)

Applies to ERL-ring colliders, stored beam (1ons) only

g Thomas Jefferson National Accelerator Facili \
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Luminosity-Deflection Theorem {322
ODU

e Luminosity-tune shift formula 1s linearized version of a
much more general formula discovered by Krafft and
generalized by V. Ziemann.

» Relates easy calculation (luminosity) to a hard calculation
(beam-beam force), and contains all the standard results in
beam-beam interaction theory.

« Based on the fact that the relativistic beam-beam force 1s
almost entirely transverse, 1. €., 2-D electrostatics applies.
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2-D Electrostatics Theorem ey

]
ODU
. 2Q" %-X
E(X)=
drg, |)?_)?’2
—y — 1 [* — X, — X . . .
F21=—F12=2ﬂg J pz(X2)|)?2_2|pl(X1)d2X1d2X2 1on?2
0 2

n(%)=p(%)/Q n,(X)= ,ol(T(2 +5)/Q1' zero centerred
Q = [[ A (X)d?*x b = [[ %p, (X)d*X/Q;

= = QQ; = )_(1"‘6_)_6 S \AH29 A2
I:2'1 :_F1’2 — 21 - IIHZ(XZ) . 22 nl(xl)d de X,
778 %, +b — X, |
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ODU

%B- f(l+_l? _j(zz =27z5(x2+bx+x1)5(y2+by+y1)
‘x1+b—x2‘

VB, = %+b )p, (X)d%

5 21—50”/’2( )pl( )

Generalizes V- E = g% (take P, (X)oc 5° (i+5))

Transverse interaction in the beam-beam problem

X — X
Apl — q1q2 fl _}22
27tg,C ‘X1_X2‘

Thomas Jefferson National Accelerator Facili :
J)effegon Lab ¥ @ EJSA

Graduate Accelerator Physics Fall 2015



I5(6) = Aj/llgl = _Am27/2/§2 /' m
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ODU

o) (7e e,

L= N (1+o- | & ) as before
2r.3

Maximum when

o[, ofoo]_,

ob, | @b, ob, | ab,

J)effegon Lab

Thomas Jefferson
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Luminosity-Deflection Pairs m—
ODU

e Round Beam Fast Model

~ /v 2N,rb ~ N,N,o?
oP)- Oy

SN (k) R . 2 2 . 2 2
D (b) - DBassetti_Erskine (b ’ \/Glx + GZX ’ \/Gly + GZy )

N, N,

2 b2
exp| — X exp| — y
27z\/ ol +0o5, \/ 0'12y + Gzzy { \/ ol +0o5 } L \/O'lzy + Gzzy ]
* Smith-Laslett Model

- 5 | (4b” +2b* % 36 )
e |
+b)

2 b 2
e B3
()= N1N2|(2b ~4)b b (1+6) {Sinh{bs Sb}tsinh{g}}} A B

7AB | (a7 Bt) (a6 +5%) 22

L(b)=
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