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Clarifications from Last Time 

 On Crest, 

 

 

 

 Off  Crest with Detuning 
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Off Crest/Off Resonance Power 

 Typically electron storage rings operate off crest in order 

to ensure stability against phase oscillations.  

 As a consequence, the rf cavities must be detuned off 

resonance in order to minimize the reflected power and the 

required generator power. 

 Longitudinal gymnastics may also impose off crest 

operation in recirculating linacs.  

 We write the beam current and the cavity voltage as  

           

 

 The generator power can then be expressed as:  
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Optimal Detuning and Coupling  

 Condition for optimum tuning with beam: 

 

 

 Condition for optimum coupling with beam:  

 

 

 Minimum generator power:  
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C75 Power Estimates 

G. A. Krafft 
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12 GeV Project Specs 

7-cell, 1500 MHz, 903 ohms
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7-cell, 1500 MHz, 903 ohms
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Assumptions 

• Low Loss R/Q = 903*5/7 = 645 Ω 

• Max Current to be accelerated 460 µA 

• Compute 0 and 25 Hz detuning power curves 

• 75 MV/cryomodule (18.75 MV/m) 

• Therefore matched power is 4.3 kW 

(Scale increase 7.4 kW tube spec) 

 

• Qext adjustable to 3.18×107(if not need more RF 

power!) 
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RF Cavity with Beam and Microphonics 

The detuning is now: 0 0

0 0

0

0tan 2 tan 2

where  is the static detuning (controllable)

and  is the random dynamic detuning (uncontrollable)
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Qext Optimization with Microphonics 
2 2
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where f is the total amount of cavity detuning in Hz, including static 

detuning and  microphonics. 

  Optimizing the generator power with respect to coupling gives: 
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Correct Static Detuning 

 To minimize generator power with respect to tuning: 
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Optimal Qext and Power 

 Condition for optimum coupling: 

 

 

 

 

     and 

 In the absence of beam (b=0):  
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Problem for the Reader 

 Assuming no microphonics, plot opt and Pg
opt as function 

of b (beam loading), b=-5 to 5, and explain the results.  

 

 How do the results change if microphonics is present?  
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Example 

 ERL Injector and Linac:  

      fm=25 Hz, Q0=1x1010 , f0=1300 MHz, I0=100 mA, 

Vc=20 MV/m, L=1.04 m, Ra/Q0=1036 ohms per cavity 

 

 ERL linac: Resultant beam current, Itot = 0 mA (energy 

recovery) 

      and opt=385   QL=2.6x107   Pg = 4 kW per cavity.  

 

 ERL Injector: I0=100 mA and opt= 5x104 !   QL= 2x105  

 Pg = 2.08 MW per cavity!  

      Note: I0Va = 2.08 MW   optimization is entirely 

dominated by beam loading.  
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RF System Modeling 

 To include amplitude and phase feedback, nonlinear 

effects from the klystron and be able to analyze transient 

response of the system, response to large parameter 

variations or beam current fluctuations 

 

• we developed a model of the cavity and low level 

controls using        SIMULINK, a MATLAB-based 

program for simulating dynamic systems.  

 

 Model describes the beam-cavity interaction, includes a 

realistic representation of low level controls, klystron 

characteristics, microphonic noise, Lorentz force detuning 

and coupling and excitation of mechanical resonances 
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RF System Model 
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RF Modeling: Simulations vs. 

Experimental Data 
 

 

 

 

 

 

 

 

 

 

     Measured and simulated cavity voltage and amplified gradient 

error signal (GASK) in one of CEBAF’s cavities, when a 65 A, 

100 sec beam pulse enters the cavity.  
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Conclusions 

  We derived a differential equation that describes to a very 

good approximation the rf cavity and its interaction with 

beam.  

 We derived useful relations among cavity’s parameters and 

used phasor diagrams to analyze steady-state situations.  

 We presented formula for the optimization of Qext under 

beam loading and microphonics.  

 We showed an example of a Simulink model of the rf 

control system which can be useful when nonlinearities 

can not be ignored.  
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RF Focussing 

In any RF cavity that accelerates longitudinally, because of 

Maxwell Equations there must be additional transverse 

electromagnetic fields. These fields will act to focus the beam 

and must be accounted properly in the beam optics, especially in 

the low energy regions of the accelerator. We will discuss this 

problem in greater depth in injector lectures. Let A(x,y,z) be the 

vector potential describing the longitudinal mode (Lorenz gauge) 
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Gauge condition satisfied when 
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So the magnetic field off axis may be expressed directly in terms 

of the electric field on axis 
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And likewise for the radial electric field (see also                  ) 
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Motion of a particle in this EM field 
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The normalized gradient is 

 
 

2

0,

mc

zeE
zG z
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These equations may be integrated numerically using the 

cylindrically symmetric CEBAF field model to form the Douglas 

model of the cavity focussing. In the high energy limit the 

expressions simplify. 

   
   
   

 
 
 

 
   

   
  











z

a zz

x

z

a z

x

dzzt
zz

zGzx
azax

dz
zz

zz
axzx

''cos
''

'

2

'

'
''

''
                  

2












                          Graduate Accelerator Physics Fall 2015 

Transfer Matrix 
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Kick Generated by mis-alignment 
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Damping and Antidamping 

By symmetry, if electron traverses the cavity exactly on axis, 

there is no transverse deflection of the particle, but there is an 

energy increase. By conservation of transverse momentum, there 

must be a decrease of the phase space area. For linacs NEVER 

use the word “adiabatic” 
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Conservation law applied to angles 
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Phase space area transformation 
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Therefore, if the beam is accelerating, the phase space area after 

the cavity is less than that before the cavity and if the beam is 

decelerating the phase space area is greater than the area before 

the cavity. The determinate of the transformation carrying the 

phase space through the cavity has determinate equal to 
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By concatenation of the transfer matrices of all the accelerating 

or decelerating cavities in the recirculated linac, and by the fact 

that the determinate of the product of two matrices is the product 

of the determinates, the phase space area at each location in the 

linac is 
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Same type of argument shows that things like orbit fluctuations 

are damped/amplified by acceleration/deceleration.  
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Transfer Matrix Non-Unimodular 
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Solenoid Focussing 

Can also have continuous focusing in both transverse directions by applying solenoid 

magnets: 

 B z

z



                          Graduate Accelerator Physics Fall 2015 

Busch’s Theorem 

For cylindrical symmetry magnetic field described by a vector potential: 

Conservation of Canonical Momentum gives Busch’s Theorem: 

    
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Beam rotates at the Larmor frequency which implies coupling 
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Radial Equation 

  2 2

2

2 2

2 2
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thin lens focal length
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        weak compared to quadrupole for high 
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If go to full ¼ oscillation inside the magnetic field in the “thick” lens case, all particles 

end up at r = 0! Non-zero emittance spreads out perfect focusing! 
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Larmor’s Theorem 

This result is a special case of a more general result. If go to frame that rotates with the 

local value of Larmor’s frequency, then the transverse dynamics including the 

magnetic field are simply those of a harmonic oscillator with frequency equal to the 

Larmor frequency. Any force from the magnetic field linear in the field strength is 

“transformed away” in the Larmor frame. And the motion in the two transverse 

degrees of freedom are now decoupled. Pf: The equations of motion are 
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