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Physical interpretationof vx g =7

Stokes’ theorem tells us that for any smooth vector field H:
[,V xd-dS={ i-af (4)

where the closed loop ' bounds the surface S.

Applied to Maxwell's equation i
VxH= f, Stokes’ theorem tells

us that the magnetic field H in-

tegrated around a closed loop

equals the total current passing

through that loop:

—

j{_ﬁ-dé’: /TJ-d§=I. (5)
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Linearity and superposition

Maxwell's equations are linear:

and:

Vx(ﬁl—l—ﬁ2)=V><ﬁ1—l—V><ﬁ2. (7)

This means that if two fields §1 and §2 satisfy Maxwell’'s
equations, so does their sum §1 + 52.

As a result, we can apply the principle of superposition to
construct complicated magnetic fields just by adding together a
set of simpler fields.
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Multipole fields @

Let us first consider fields that satisfy Maxwell's equations in
free space, e.d. the interior of an accelerator vacuum chamber.
Here, we have J = 0, and B = poﬁ; hence, Maxwell's equations
(1) and (2) become:

V.-B=0, and VxB=0. (8)

Consider the field given by B. — constant, and:

By +iBy = Cp (x +iy)" 1, (9)

where n is a positive integer, and (), is a complex number.

Note that the field components B, By and B. are all real; we
are only using complex numbers for convenience.
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Multipole fields

Now consider the differential operator:

%, %,

— —. 10

Ox + Zay (10)
Applying this operator to the left hand side of (9) gives:

8,_3’” —~ 8:_8*”’“" + i 8,3‘3 + ?TB@’
dx dy Ox dy

J L0 ,

= {va*LJrz'v-B’. (11)

In the final step, we have used the fact that B. is constant.
Also using this fact, and the fact that 5, and By are
independent of z, we see that the  and y components of V x B
vanish.

Applying the operator (10) to the right hand side of (9) gives:

(d + Ed) (z + z'y)”_l = (n—1) (xz + z'y)'n'_2—|—3'2(n—1) (xr + iy)'”’_z = 0.
dx dy
(12)
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Multipole fields

Hence, applying the operator (10) to both sides of equation
(9), we find that:

—_

V-B=0, V x B=0. (13)

Therefore, the field (9) satisfies Maxwell’s equations for a
magnetostatic system in free space.

Of course, this analysis simply tells us that the field (9):

By + iBy = Cp (¢ 4 iy)" 1

iIs a possible solution to Maxwell's equations in the situation we
have described: it does not tell us how to generate such a field.

Fields given by (9) are called multipole fields. Note that, since
Maxwell's equations are linear, we can superpose any number
of multipole fields, and obtain a valid solution to Maxwell’s
equations.
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Multipole fields

(> =real, normal quadrupole (5> =imaginary, skew quadrupole
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Multipole fields

For C';, = O for all n, we have:

B; = By =0, B. = constant. (14)

This is a solenoid field, and is not generally regarded as a
multipole field.

In the conventional notation (see Chao and Tigner), we rewrite
the field (9) as:

00 x4 iy n—1

n=1

The b, are the “"normal multipole coefficients”, and the a, are
the “skew multipole coefficients”. By and R,qf are a reference
field strength and a reference radius, whose values may be
chosen arbitrarily; however their values will affect the values of
the multipole coefficients for a given field.
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Multipole fields

The interpretation of the multipole coefficients is probably best
understood by considering the field behaviour in the plane
y = 0:

>0
By = Bref »_ bn (

n=1

» n—1 o0 » n—1
) ) and ng — Bref Z an ( ) .
Ryef

Rref n=1
(16)

A single multipole component with n = 1 is a dipole field:
By = b1 Byer is constant, and B; = a1 B,ef is also constant.

A single multipole component with n = 2 is a quadrupole field:

i xr
ref Ryef

Both B, and B, vary linearly with .

For n = 3 (sextupole), the field components vary as a:2, etc.
E— .geffel?son Lab s Thomas Jefferson National Accelerator F acility e
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Generating multipole fields from a current @
distribution N~

To see how to generate a multipole field, we start with the
magnetic field around a thin wire carrying a current Ij.
Generally, the magnetic field in the presence of a current
density J is given by Maxwell’'s equation (2):

—
e .

VxH=.]

Consider a thin straight wire of infinite length, oriented along
the 2 axis. Let us integrate Maxwell's equation (2) over a
circular disc of radius r centered on the wire, and normal to the
wire:

1AVX§@§=Lfd§=%, (18)
where we have used the fact that the integral of the current

density over the cross section of the wire equals the total
current flowing in the wire.
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Multipole fields from a current distribution @

Now we apply Stokes’ theorem, which tells us that for any
smooth vector field F':

ﬁf‘?xf-d{;“:ﬁ_?ﬁ-da (19)

where C' is the closed curve bounding the surface S.

Applied to equation (18), Stokes' theorem gives us:

H.-di = I, 20
j{c 0. (20)

By symmetry, the magnetic field must be the same magnitude
at equal distances from the wire. We also know, from Gauss’

theorem applied to V- B = 0, that there can be no radial
component to the magnetic field.
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Multipole fields from a current distribution

Hence, the magnetic field at any point is tangential to a circle
centered on the wire and passing through that point. We also
find, by performing the integral in (20), that the magnitude of
the magnetic field at distance » from the wire is given by:

- I
=2 (21)
27r
H
If there are no magnetic materials
present, i = g, SO. !
— — I
B=uoH =190 (22
27r
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Multipole fields from a current distribution

Now, let us work out the field at a point ¥ = (x,y,z) from a
current parallel to the 2 axis, but displaced from it. The line of

current is defined by * = xq, ¥ = yo.

The magnitude of the field is given, from (22) by:

I
HO40 (23)

27 |7 — 7ol

where the vector 7y has components 75 = (x0,v0.2).

Since the field at r is perpendicular to v — rp, the field vector is
given by:

JUJOIU (y_yOr_x_I_anO) (24)

B =
2m 7 — 7| ?
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Multipole fields from a current distribution
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Multipole fields from a current distribution

It is convenient to express the field (24) in complex notation.

Writing:
i i
r+iy=re”, and xg-+ iyg = roe 0, (25)
we find that:
—160 —16
| In e "0 —re
B, +iB, =19 o . . 2). (26)
27 ‘7‘06390 — rett

Using the fact that for any complex number ¢, we have

[¢]2 = ¢

rolo 1
271 roeifo — ret?

By +iB: =

_ rolo o7t (27)
: o i(6—60))
2Tro (1 :083( 0))
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Multipole fields from a current distribution

Using the Taylor series expansion:

o0

1-0 1= 3 ¢~ (28)

n=0

(valid for |(] < 1) we can express the magnetic field (27) as:

J _ o0 . n—1 _
By +iB, = HOoL0 8—390 Z () Et(n—l)(Q—Qo)? (29)

2mro =1 \70

which is valid for » < rg.
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Multipole fields from a current distribution

The advantage of writing the field in the form (29) is that by
comparing with equation (15) we immediately see that the field
IS @ sum over an infinite number of multipoles, with coefficients

given by:
B ¢ ' MOIO E—z'n@o
nrfl (bn +ian) = 2 n—1" (30)
ref Tro rg
If we choose:
I
Byer = Ho °, and Ryef = 70, (31)
21rg
we see that:
b, + ian = e %0, (32)
S— .geff;?son Lab s Thomas Jefferson National Accelerator Facility T —————
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Multipole fields from a current distribution @

Now, let us consider the total field generated by a set of wires
distributed around a cylinder of radius rg, such that the current
flowing in a region at angle 65 and subtending angle dfg at the
origin is:

IO = [,,, COS TTI(QO — 9-;71_) dQO: (33)

where m is an integer.

The total field is found by integrating over all 5. From (29):

polm o= r n=1l 2
By + 1B, = Z — Ez(n_l)gf e~""% cos m(0o — O0m) dbg
2mro n=1 \"0 0
i m—1 _
— HOoLm (T) ez(m—l)@ ?_l_e—ﬁ'nl-lq?n. (34)
2mrg \70o

We see that the cosine current distribution (33) generates a
pure 2m-pole field within the cylinder on which the current
flows.
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Multipole fields from a current distribution

Choosing the reference field and radius (31) as we did above:

Byef = . and  Ryer = 70,

we find that the multipole coefficients for the field generated
by the cosine current distribution (33) are:

b + 1a,;, = e imOm. (35)

For 6,,, = 0 or #,,, = 7, we have a normal 2m-pole field.

For 0,, = £+m/2, we have a skew 2m-pole field.
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Multipole fields from a current distribution @

Dipole Quadrupole
AT
VY
Y/
\
N
N
SN g

Sextupole
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Superconducting quadrupole - collider final focus (§

Second layer of a six-layer superconducting quadrupole devel-
oped by Brookhaven National Laboratory for a linear collider.
The design goal is a gradient of 140 T /m.
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Dipole Error

ODU

Kick at every turn. Solve a toy model:

PAB d? k,d ., = o
AO = —— k =AG@> O6(s— L
() {dsz+Q OIS+ 5 |1x(s) .Z:o: (s—s'+iL)

X (5) = iZ:;exp(—kB (s—s'+iL)/2Q)sin(k; (s—s'+iL))

ki =kg1-1/4Q? q= exp(—kg (s—s")/2Q)

Geometric series summed

sin(kg (s—s"))(1—qcoskgL)+cos (kg (s—s'))gsinkgL
1—-2qcoskiL+q”

X;, (5) oc exp(—kg (s—5")/2Q)

. A@ cos(kg (s—s")+kyL/2)
% (8) =3 2sin (kgL /2)
integer resonance
blows up when
keL =nx
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Closed Orbit Distortion ‘_""
ODU

Perform summation over all kick sources
_ k —S. k.L/2
. s)éZAQ' cos B(-s. s,)+kgL/2)
—~ kg 2sin(kgL/2)

(bound) oscillation generated by error

Source (dipole powering, quad displacement, etc.)
Oscillation can be observed and corrected
Using the real betatron motion

(M), =/B(s)B(s)sin(p(s)—p(s"))

the proper result is

Xeo (S) = Z\//B(Z):BiAHi

cos(@(s)—e(s))+vr)
2sin(vr)
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Beta Measurement Wy
ODU

If BPM close to steerer (there is little phase
advance between them), and the tune has been

measured, induce a closed orbit distortion to
measure the S

Xeo ( Sopm ) = LAY oty
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Dipole Error Distribution '_""
ODU
2, (8) = A (A0 ()5 (5,80, (s))

cos(p(s)—o(s)+vr) cos(go(s)—(p(sj )+V72')
2sin(vr) 2sin(vr)

X

ds,ds,

Angular stuff averages assuming independence of error distributions
(AG%)12

<u020 S)>: -,82(3) Zﬁi <A‘9>i2
2 _ 'B(S)N <,8> 2

O Ap

u = 8sin® (vr)

For quad displacements replace

oy =0,1f
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Closed Orbit Correction ‘_""

Suppose orbit does not go through center of ODU
all BPMs. What do you do? (At CEBAF just

steer to BPM centers!)

Trim magnets added whose purpose is to bring CO

as close to zero as possible.

Ueo S) = Z\/ﬂ(s)ﬂiAgi COS(¢(S)_¢(Si)+V7z)

2sin(vr)

At BPM j closed orbit reads

COS((p(Sj )—qp(si)+wz)
2sin(vr)

U, =u, Z\/,B ) B,AG

Measure response matrix as trim magnets (index k) varied

cos(gp(sj )—qD(Si)—Wz)

2sin(vr)

Au. —Z\/,B ) BAG, =R, A6,
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Correction Algorithm

ODU

Desire Au; = —u;. If have enough trims simply update
Af, = —R; AU,
More sophisticated when less trims than BPMs, minimize

Ngp N2
> o (A0,++,A0,,, ) =(d—(R-6))

i=1
analogous to "least squares fitting" and generally uses the same
types of computer algorithms, including Singular VValue Decomposition
(SVD).
How many BPMs/trims?
Fourier Analyzing closed orbit equation

00 (5) =B 3 LB R [ 57 (s) a0 (s s

| =—oc0

Need enough to resolve the betatron orbit and distribute
uniformly in betatron phase
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