POLARIZED ELECTRONS AT CEBAF

An Innocent Bystander's View

Bernhard A. Mecking Jefferson Lab

Sinclair Symposium on Photoelectron Injectors and Applications

> Jefferson Lab Newport News, Virginia October 26, 2001

Why and how use \vec{e} Delivering \vec{e} to multiple halls \vec{e} experiments (highlights) Hall B specific issues

.

Physics

measure physical effect that is too small to be observed as a direct change in reaction probability (cross section)

Strategy: amplify effect via interference with large effect

Technique

flip spin direction and look for changes

flip frequency >> time scale for change in experimental setup

average over many reversal cycles (eliminates noise and changes)

experiments easy (as long as beam parameters remain EXACTLY the same)

Types of Experiments

1. only electrons polarized

parity violation: effects are very small $(10^{-4} - 10^{-7})$

2. electron **and** target polarized

typical example: G_E^n in Hall C (effects $10^{-1} - 10^{-3}$) hadron typically detected in direction of momentum transfer

- 3. electron polarized **and** polarization of coincident final state particle measured typical example: G_E^p in Hall A
- 4. electron polarized **and** hadron detected away from momentum transfer typical example: pion electroproduction in Hall B's CLAS

DELIVERING POLARIZED ELECTRONS TO MULTIPLE HALLS

Problem

- only longitudinally polarized electrons are useful for experiments
- electrons for all 3 halls originate at the source with long. pol.
- but:

transfer lines to halls are different

energies to halls can be different

 \rightarrow spin precession different for different halls

Solution

- use Wien filter and linac energy setting as free parameters

Practical Consequence

- one hall wants \vec{e} : no restrictions
- two halls want \vec{e} : perfect spin transfer for selected (periodic) energies
- three halls want \vec{e} : approximate solutions for selected (periodic) energies

POLARIZED ELECTRON EXERIMENTS (Highlights)

- 07/97 first experiment: ${}^{16}O(\vec{e}, \ e' \ \vec{p})X$ bulk GaAs photocathode single 1500 MHz laser $P_e \approx (34 - 37)\%$
- 04/98 first quarter of HAPPEX parity violation experiment: $p(\vec{e}, e')X$ bulk GaAs photocathode single 1500 MHz laser $P_e \approx 35\%, \ I \approx 100 \mu A$
- 08/98 first use of strained GaAs single 1500 MHz laser, $P_e \approx 70\%$ Hall C: 100 nA on \vec{d} for G_E^n Hall B: 10 nA on \vec{p} for spin structure function Hall A: 10 μ A on ${}^3\vec{He}$ for spin structure function

04/99 HAPPEX II

strained GaAs three 500 MHz lasers $P_e \approx 70\%, I \approx 40 \mu A$

now all experiments use strained GaAs single 1500 MHz or three 500 MHz laser no current limitation, $P_e \ge 80\%$

Injector strained GaAs photocathode 3 independent 500 MHz lasers

Linacs energy/pass E = 1.139 GeV (other options: 1.111, 1.167 GeV)

Hall A

experiment: ${}^{16}O(e, e'p)X \rightarrow$ properties of nucleons in nuclei target: waterfall $E_A = 4.620 \text{ GeV}$ $I_A = (100\text{--}140) \ \mu\text{A}$ polarization: unpolarized

Hall B

experiment: $p(\vec{e}, e')X \rightarrow \text{meson production and } N^*$ excitations target: liquid hydrogen $E_B = 5.759 \text{ GeV}$ $I_B = 10 \text{ nA}$ polarization transfer: optimum

Hall C

experiment: $\vec{D}(\vec{e}, e'n)p \rightarrow$ neutron electric form factor, G_E^n target: solid state polarized deuterium $E_C = 3.481 \text{ GeV}$ $I_C = 150 \text{ nA}$ polarization transfer: optimum

Luminosity:

Hall B uses larges acceptance detector, CLAS acceptance $\approx 10,000$ larger than A and C current required $\approx 10,000$ smaller than A and C want ≈ 10 nA (instead of 100 μA)

Polarization:

CLAS measures several reaction channels simultaneously good chance that at least one of them will benefit from \vec{e} \rightarrow Hall B experiments always want polarized electrons