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ABSTRACT

CRABBING SYSTEM FOR AN ELECTRON-ION COLLIDER

Old Dominion University, 2017
Director: Dr. Jean Roger Delayen

Co-Director: Dr. Mauro Napsuciale Mend́ıvil

As high energy and nuclear physicists continue to push further the boundaries

of knowledge using colliders, there is an imperative need, not only to increase the

colliding beams’ energies, but also to improve the accuracy of the experiments, and

to collect a large quantity of events with good statistical sensitivity. To achieve the

latter, it is necessary to collect more data by increasing the rate at which these pro-

cesses are being produced and detected in the machine. This rate of events depends

directly on the machine’s luminosity. The luminosity itself is proportional to the

frequency at which the beams are being delivered, the number of particles in each

beam, and inversely proportional to the cross-sectional size of the colliding beams.

There are several approaches that can be considered to increase the events statistics

in a collider other than increasing the luminosity, such as running the experiments

for a longer time. However, this also elevates the operation expenses, while increas-

ing the frequency at which the beams are delivered implies strong physical changes

along the accelerator and the detectors. Therefore, it is preferred to increase the

beam intensities and reduce the beams cross-sectional areas to achieve these higher

luminosities. In the case where the goal is to push the limits, sometimes even beyond

the machines design parameters, one must develop a detailed High Luminosity

Scheme. Any high luminosity scheme on a modern collider considers—in one of

their versions—the use of crab cavities to correct the geometrical reduction of the

luminosity due to the beams crossing angle. In this dissertation, we present the de-

sign and testing of a proof-of-principle compact superconducting crab cavity, at 750

MHz, for the future electron-ion collider, currently under design at Jefferson Lab. In

addition to the design and validation of the cavity prototype, we present the analysis

of the first order beam dynamics and the integration of the crabbing systems to the

interaction region. Following this, we propose the concept of twin crabs to allow

machines with variable beam transverse coupling in the interaction region to have full

crabbing in only the desired plane. Finally, we present recommendations to extend

this work to other frequencies.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

In the search of shedding light into the processes of nature, that have not been

yet accessible to modern scientific research, more and more advanced experiments

are under construction or design. In order to gather the observables of rare physical

processes, many experiments using colliders are foreseen to use particles at higher

energies, more stable beams, higher polarization, more precise and complex detec-

tion systems, and higher statistics. To reach these goals, accelerator physicists must

push the machine design to their limits. Multiple interaction regions with higher

acceptance detector capabilities are necessary to carry out these experiments, but

also impose strict dimensional constrictions on the machine, at the same time that

introduce beam crossing angles to reduce parasitic collisions, to allow forward detec-

tion, etc. These crossing angles and cramped spaces near the interaction regions give

some extra complications: first of all, the need of crabbing correctors to restore the

luminosity, and secondly, they require compact crab cavity designs that can sustain

the necessary transverse voltages to provide the correct rotation of the bunches at

the interaction point, which can also fit in the reduced available space in the tunnels.

Jefferson Lab is one of the places where the study of nuclear physics and the

Standard Model is of main focus. This facility is currently running under its brand

new 12 GeV upgrade era and it is expected to extend in the following years the

already successful list of discoveries made under their 6 GeV lifetime [1]. Many

experiments including electron-proton and electron-ion deep inelastic scattering are

waiting to prove and push the latest theories of nuclear and elementary particle

physics. However, a great effort in designing and proposing the next step has already

been undergoing for the past few years, namely the Electron-Ion Collider (EIC).

The EIC will collide beams of electrons, protons, and several species of ions, over

a wide energy range. Amongst its many peculiarities, the EIC interaction region

imposes a relatively large beam crossing angle of 50 mrad. Therefore, in order to
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achieve the luminosity requirements ( ∼ 1034 cm−2s−1), crabbing systems are needed

to restore the luminosity. The goals of this research dissertation are to optimize and

test a superconducting rf dipole geometry for a 750 MHz crabbing application for the

EIC, and to analyse—up to first order—some of the complications and considerations

occurring when integrating the crabbing systems to the interaction region. These

complications include synchro-betatron coupling and implications of crabbing in the

presence of beam transverse coupling. Resulting from these studies, some novel

mitigation schemes are proposed for these cases. More generally, these schemes

could allow crabbing systems to provide full crossing angle correction in machines

with variable transverse coupling at their interaction regions.

1.1.1 ABOUT SRF DEFLECTING AND CRABBING DESIGNS

The principal use of radiofrequency cavities in accelerators is to accelerate beams.

The most common geometry of the accelerating cavities is the elliptical geometry,

operated in its lowest resonant mode, the so-called TM010 mode. The TM010 mode

has a longitudinal field that couples to the beam charges, thus, increasing their

longitudinal momentum. While the elliptical cavities are the most suitable for high

β particles, for low and medium β particles, other more complex, TEM structures

are commonly used, such as the quarter-wave, half-wave, or spoke cavities. Recent

developments have also allowed the use of spoke cavities for high-beta applications [2].

A less common type of rf cavities are those that can provide transverse momentum

to the beams. Such type of cavities are called—in general—transverse deflectors.

However, depending on their application, they are also known simply as deflectors,

separators, or crab cavities. The study and applications of transverse deflectors is

a growing field and most of the modern and future colliders adopt—for their high

luminosity schemes—the use of crab cavities to reach their experimental goals.

A deflector/separator will simply change the transverse momentum of the cen-

troid of the beam bunches, changing the direction of their trajectory downstream,

or deflecting the beam. In a nutshell, a crab cavity is a deflector that imprints a

transverse momentum equal and in opposite direction to the particles in the head and

the tail of the beam bunches, respectively, while the effective transverse momentum

given to the centroid of the bunch is zero. A crab cavity, therefore, will not perturb

the trajectory of the bunches or effectively change their longitudinal momentum, but

will cause a rotation downstream that—following the beam’s beta functions in the
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interaction region—will be maximum at (2n + 1)π/2 and minimum at nπ for the

phase advance in the direction of the crabbing. Transverse deflectors are also used

for beam diagnostics, emittance exchange, and x-ray pulse compression [3].

On the other hand, superconducting resonant cavities provide a series of advan-

tages over normal conducting cavities, such as higher gradients during continuous-

wave (CW) operation, higher shunt impedance, and reduced power dissipation. Even

when they require cryogenic systems to operate, they can still lower the cost of oper-

ation and reach tough specification levels that would not be achievable using normal

conducting technology. As mentioned before, the main advantage of the supercon-

ducting materials is that they are not limited by ohmnic losses like their normal

conducting predecessors and, with a proper design and optimisation, it is possible to

obtain compact structures that cope with some of the tight spacial constraints that

many of the complicated lattices have in their interaction regions.

Many deflecting and crabbing structures have been designed and operated since

the 1960’s all over the world, commonly using the transverse magnetic field of the

TM110 mode in an elliptical—or squashed elliptical—cavity to change the transverse

momentum of the particles [4]. However, the need of compact structures [5] have

pushed TEM and TE-like type of geometries to be more attractive and feasible for

the modern applications, where the particles’ transverse momentum change is given

mostly by the transverse electric field component of the crabbing modes.

The compact rf dipole geometry has already been optimized for several other

deflecting (at 499 MHz for the Continuos Electron Beam Accelerator Facility’s 12

GeV upgrade at Jefferson Lab) and crabbing applications (at 400 MHz for the High

Luminosity Upgrade of the LHC at CERN) [6]. For this reason, we have found the

rf dipole geometry, to be a suitable candidate for the EIC crab cavities.

1.2 SCIENCE AT THE 12 GEV CEBAF: THE NEAR FUTURE

The motivation behind the 12 GeV upgrade of the CEBAF itself, is based on that,

currently, significant challenges are still in place for nuclear and particle physics. For

example: exploring the non-Abelian nature of Quantum Chromodynamics (QCD),

the strong coupling at low energies, or the production of exotic mesons from excita-

tions of the gluon field. Multidimensional images of hadrons could give an insight

on the spin content of the nucleon through observables related to the orbital angular

momenta of quarks and gluons. Furthermore, the capability to have high intensity
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(up to 180 µA in CW), highly polarized (86%) electron beams, with improved sta-

bility, provides a new opportunity for probing and extending the Standard Model.

Or, as Dudek et al. put it in [7]:

“...the 12 GeV upgrade of the CEBAF at Jefferson Lab will enable a new experi-

mental program with potential to address these and other important topics in nuclear,

hadronic, and electroweak physics. ”

The Jefferson Lab Program Advisory Committee (PAC) has presently approved

52 proposals of experiments that will require the upgraded facility to run nearly at

full efficiency for 6 years, extending its productivity into the 2020’s.

1.3 THE EIC: ONE STEP FURTHER

In order to understand the dynamical origin of mass in the macroscopic universe

along with the behavior of matter at densities and temperatures in astrophysical

contexts, it is crucial to understand—from first principles—the internal structure of

hadrons and nuclei on the basis of the fundamental theory of strong interactions,

QCD. Theoretical QCD methods have been greatly developed in the last couple of

decades, but rely vitally on new experimental information for further progress. As

yet, there are still several open questions to understand [8]:

1. The three-dimensional structure of the nucleon in QCD: non-valence quarks

and gluons spatial distributions, orbital motion, polarization and correlations.

2. The fundamental color fields in nuclei: nuclear parton densities, shadowing,

coherence effects, color transparency.

3. The conversion of color charge to hadrons: fragmentation, parton propagation

through matter, in-medium jets.

A polarized electron-ion collider, with a variable ep center-of-mass (CM) energy

in the range of
√
s = 20− 70 GeV and luminosity of ∼ 1034cm−2s−1 over most of its

range, would offer a unique opportunity to address these questions. It will represent

the natural next step after the high-luminosity fixed-target ep/eA experiments (JLab

12 GeV, SLAC) and the high-energy HERA ep collider (protons only, unpolarized).

The design proposed by Jefferson Lab (JEIC) would use the 11 GeV CEBAF electron

accelerator and a newly built ion complex as injectors for a ring-ring ep/eA collider

with energies Ee = 4−10 GeV and Ep = 20−100 GeV and a circumference of ∼ 1 km,
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slightly smaller than that of the present CEBAF accelerator. The interaction regions

at the JEIC include ultra high to essentially full detector acceptance capabilities [9].

1.3.1 TECHNICALITIES OF THE JEIC

To have a full acceptance detector, a relatively large crossing angle (50 mrad)

of the colliding beams has to be introduced. Then, the only way to reach the high

luminosity required is to implement crab crossing correctors. A crab cavity suitable

for this application is an rf deflector that operates at the transverse voltages needed

to restore this angle for both protons up to 100 GeV and electrons up to 10 GeV.

The proposed design as a crab cavity candidate for the EIC at Jefferson Lab is an rf

dipole geometry, which operates on a fundamental TE-like mode.

From the points described above as expectations for the nuclear physics program,

the technical requirements for the EIC machine can be summarised roughly as:

1. The CM energy should be between 15 and 65 GeV, s = (4EeEu) from a few

hundred to a few thousand GeV2, where Ee and Eu are the kinetic energies of

the electron and nucleon respectively. So the colliding beams should range:

• from 4 to 10 GeV for electrons,

• from 30 to 100 GeV for protons,

• and up to 40 GeV per nucleon for ions,

while < 20 GeV protons and ions are interesting for other physics processes

investigations.

2. Polarized protons, deuterons, and helium-3 are attractive to use, among other

polarized light ions and heavy ions up to lead without polarization.

3. Three detectors with at least two of them available for collisions of electrons

with medium energy ions. A third detector is desirable for electron collisions

with ions of < 20 GeV/u.

4. 70% of longitudinal polarization for both electron and light-ion beams at the

collision points should be achieved. Transverse polarization of the ions and

spin-flip of both beams at the collision point are desired. And 1 − 2% ion

polarimetry is required.
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5. Polarized positron-ion collisions are desirable with a high luminosity.

6. This point is of the most importance for the present dissertation: The lu-

minosity should range between mid 1033 to above 1034 cm−2s−1 per

interaction point, over a broad energy range. While the optimisation of

the luminosity should be centered around 45 to 50 GeV CM energy (s ∼ 2000

to 2500 GeV2)*.

*Further, an EIC design should be flexible enough to allow an option of future energy

upgrade up to 20 GeV for the electron beam, 250 GeV for protons and up to 100

GeV per nucleon for ions. [10]
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CHAPTER 2

ACCELERATOR PHYSICS AND LINEAR OPTICS

In this chapter we will present a summary of the most relevant concepts related to

linear optics, colliders, and the motivation behind the crab crossing scheme to recover

luminosity. Section 2.1 will introduce the basic lattice elements and the concept of

transport matrices. Then, Section 2.2 will describe what is luminosity, its importance

for colliders and the basic machine parameters that affect it. And finally, Section 2.3

will describe the crabbing concept and its two main schemes (global and local) as a

preamble for Section 4, where these concepts will be employed and extended.

This section is not intended to be a full bestiary of accelerator physics or a

consulting reference, for this, we already have excellent sources like [11, 12, 13] and

of course the handbook [14], to mention just a few. Also, there are countless great

lecture notes from several particle accelerator schools such as USPAS [15], CAS [16],

etc. that serve this purpose. The simple objective of this chapter, is to provide the

reader with a quick overview of a subset of accelerator physics concepts, sufficient to

understand the subject of this dissertation and highlight the goals and motivations

driving its content.

2.1 BASIC ELEMENTS AND TRANSPORT MATRICES

Typically, an accelerator design is based on a basic set of elements—magnets,

drift tubes, etc.—that repeats throughout the lattice, with some extra elements here

and there—like kickers, accelerating structures, or correctors. We call this basic set

of elements a cell and it is in a way, like our LEGO R© block. A cell is designed to

ensure that a beam passing through it, will exit with a proper distribution, given

the distribution at the entrance of the cell. These cells could be periodic or not,

depending on their function and the nature of the machine.

Particle accelerators come in two basic flavours, linear and circular machines.

A linear machine is that on which the particles pass through each element only

once, while in a circular accelerator, the same bunch particles will go through every

element numerous times. In this work, we will develop concepts and technology that



8

could be employed in any collider, being it linear or circular, as long as it requires

high luminosity performance. However, we explore a particular application of these

[crabbing] systems for a circular electron-ion collider. Setting specific goals will help

us to explore the parameter space of the proposed rf structure, in order to understand

the correlations between geometry and performance, as well as to study some of the

effects on the beam dynamics derived from them. For this reason, we will employ

the nomenclature and definitions commonly used in circular machines, but, making

the remark that one should be careful when consulting different sources, if they are

talking about linear or circular, for leptons or hadrons machines, since all of them

carry their own slang, even when the function that relates them is bijective, it can be a

bit confusing. The historical difficulty to standardise the terminology and definitions

in acceleration physics, seems to be a time invariant.

2.1.1 LORENTZ FORCE AND MOVING COORDINATES

It is in the basics of classical electromagnetism that we find our war-horse, since

many important concepts are derived from the definition of the electromagnetic force,

better known as the Lorentz force:

~F = q
(
~E + ~v × ~B

)
, (1)

where q is the charge, ~E an external applied electric field, ~v the particle’s velocity,

and ~B an external applied magnetic field. Equation 1 gives us already a great deal of

information, such as that to accelerate a particle, we need to apply an electric field

in the direction that we want to accelerate, meanwhile in order to deflect or bend

the particle, we need to apply a magnetic field perpendicular to both the direction of

the particle’s momentum and the direction of the desired bend. Obviously, this only

works for charged particles since if q = 0, then the Lorentz force will also be null.

Now, if we imagine a single particle of charge q, moving with constant velocity ~v

perpendicular to a constant field ~B, then the particle will describe a circular orbit of

radius ρ, as illustrated in Fig. 1.

Then, we can remember from classical mechanics that the necessary force to

constrain the particle to this circular orbit, can be derived as follows:

|~a| =
|~v|2

ρ
,

⇒ F = ma =
mv2

ρ
(2)
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~B

ρ

~v

FIG. 1: Charged particle describing a circular orbit, due to a perpendicular constant
magnetic field ~B.

and using Eq. 2, Fig. 1, and the definition of the Lorentz force in absence of electric

fields, with a constant magnetic field ~B, then γ̇ = 0, then we can write:

F = qvB = ṗ =
γmv2

ρ
,

⇒ Bρ =
γmv

q
,

∴ Bρ =
p

q
, (3)

with p as the relativistic linear momentum of the particle. Equation 3 is called

Rigidity and relates parameters of the lattice—in the l.h.s.—as the field B from the

magnets and the radius ρ of the design orbit, with beam parameters—in the r.h.s.—

as the momentum p of the particles and their electrical charge q. The rigidity is a

very important and handy quantity when dealing with beam dynamics and lattice

design.

Now, let’s look again at Fig. 1 and set a coordinate system moving on the particles

reference frame (see Fig. 2), where we set the longitudinal coordinate around the

design orbit as s = ρθ and the horizontal coordinate as x = R − ρ. However, we

already mentioned that this circular orbit (which is typically called design orbit or

golden particle’s orbit), derives from the Lorentz force ~F0 = q ~v0 × ~B.

What happens then if there is a second particle with the same charge but with a

velocity ~vi pointing out at a slightly different angle than the original one? Well, then

the bending force exerted onto this other particle will be pointing out in a slightly

different position ~Fi = q~vi × ~B and if the angle difference between the velocities is

small, then the orbit will also be slightly different (see Fig. 3).

If we plot the horizontal displacement of both particles, as a function of the angle

θ along s, we see a sinusoidal oscillation of the second particle’s orbit with respect to
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s = 0

ρ
z

y

x
θ

FIG. 2: Coordinate systems and reference orbit used for the equations of motion.

θ
~vi

~v0

~B

FIG. 3: Orbits of two particles with different initial angle in an external dipole field.

the design orbit, as shown in Fig. 4. This transverse oscillations are called betatron

oscillations and analogous to the horizontal plane, there is also a betatron motion

in y, typically the two of them are completely independent, as long as they are not

skewed elements or other mechanisms to couple them—some of these cases will be

discussed in Section 4.4.

The number of oscillations performed for a particle in the horizontal (x) or vertical

(y) plane is accounted by a quantity named the betatron tune Qx,y where:

Qx,y =
# of betatron oscillations in x, y

# of turns
=

phase advance per turn

2π
(4)

and the condition for strong focusing is given by:

Q > 1.

Commonly, we use the fractional betatron tunes, denoted νx,y, since the in-

teger parts of the tune do not give meaningful information as the fractional part

does. For example, if we have a tune of Qx = 3.16, its fractional tune is said to be

νx = 0.16, after leaving out the integer part.
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π 3π
2

2π

Second Particle

Golden Particle
0 θ

Displacement

FIG. 4: Transverse oscillation of a second particle around the design orbit, showing
an integer tune (only if there is focusing by bending).

2.1.2 MAGNETS

Next, we will employ magnetic fields in accelerators to deflect (dipoles), focus

(quadrupoles), or correct higher order effects (sextupoles, octupoles, etc.). For this

we will come back to Eq. 1 in absence of external electric fields: ~F = q~v × ~B and

Maxwell’s equations in vacuum and without free currents or external electric fields,

~∇ · ~B = 0, (5)

~∇× ~B = 0. (6)

We then obtain—in the 2D model—from Eq. 5 and 6, respectively,

∂Bx

∂x
+
∂By

∂y
= 0, (7)

∂Bx

∂y
=

∂By

∂x
. (8)

Using cylindrical coordinates (x = r cos θ and y = r sin θ), we can expand the

magnetic fields in a series of multipoles, with respect to a reference radius a (typically

of the order of 2
3

the radius of the beam pipe), as follows:

By = B0

∞∑
n=0

(r
a

)n
(bn cos (nθ)− an sin (nθ)) , (9)

Bx = B0

∞∑
n=0

(r
a

)n
(an cos (nθ) + bn sin (nθ)) , (10)
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with B0 as the central field, and rearranging the equation back to Cartesian notation

we have

Bx − iBy = B0

∞∑
n=0

(an − ibn)

(
x+ iy

a

)n

. (11)

We call the coefficients bn in Eq. 11 the normal 2 (n+ 1)-pole coefficients, while

the an are the skew 2 (n+ 1)-pole coefficients. Therefore, a magnet with b0 = 1

and bn = 0 for all n �= 0, as well as an = 0 for all n, is called a normal dipole.

In the same way, for a magnet which only non-zero element is b1 = 1, we call it a

normal quadrupole and so on [12]. Figure 5 shows the schematic cross section of a

normal dipole (a) and a normal quadrupole (b). Strictly speaking, the �B field lines

should be shown closing into themselves (since �∇ · �B = 0), however, Fig. 5 is just a

simplified conceptual image, intended to show the deflecting principles of dipoles (a)

and quadrupoles (b).

(a) Dipole (b) Quadrupole

FIG. 5: Pole profile of two different bending magnets.

Normal dipoles (without focusing) are very important in circular machines, since

they provide the bending guidance for the particle to stay in orbit around the ma-

chine. Also, dipoles are greatly used as momentum selectors in many detectors, since

they can separate particles with different rigidities. Equation 11 for b0 = 1, as the

only non zero element of the expansion, reduces to Eq. 12 for a pure dipole with

focusing in the bend plane and without fringe fields.

�B = B0ŷ. (12)

Quadrupoles, on the other hand, are used in all accelerators as lenses—by analogy

with optics—due to the fact that they can focus/defocus the beam in the transverse
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direction of its motion, since a charged particle traveling through the magnet will see

a force pushing it towards the center in one transverse plane and pulling it outwards

in the other, shown in Fig. 6 with red arrows. Again, the field expansion for a normal

quadrupole is described by Eq. 13.

(a) QF,x or QD,y (b) QD,x or QF,y

FIG. 6: Focusing/defocusing force due to one quadrupole (a) and another identical
quadrupole rotated by 90o (b), for a charged particle traveling “into the page”.

�B = (xŷ + yx̂)

(
∂By

∂x

)
. (13)

It is very important to remember that a focusing quadrupole QF in one plane, will

always be a defocusing quadrupole QD in the perpendicular plane. This becomes

useful under the concept of strong focusing (see Section 2.1.4 bellow). Also, in

the present work, we will focus on up to the sextupole (n = 2) component of the

expansion, due to its effects on the beam emittance and more importantly, due to

the fact that the sextupole magnets are typically the most important non-linear

contribution to the beam dynamics in synchrotron lattices.

2.1.3 SINGLE ELEMENT OPTICS

Using K.L. Brown approach [14], we can track a charged particle at any po-

sition s with respect to the reference trajectory by a column vector Xt (s) =

(x (s) , x′ (s) , y (s) , y′ (s) , z (s) ,∆P/P0), where x and y are the horizontal and ver-

tical displacements with respect to the trajectory of the golden particle, as shown

in Fig. 4, x′ = dx/ds and y′ = dy/ds are the angle of the particle’s trajectory with

respect to the horizontal and vertical plane, respectively, z is the path difference
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between the particle’s trajectory and the design trajectory, measured from s = 0

and ∆P/P0 is the momentum deviation with respect to the golden particle. Then,

the golden particle’s trajectory is defined by X(0) = 0. If we imagine a particle at

a position s = s0 going through a magnet—as the ones described in Fig. 5—with

X(s0) and coming out from it at s = s1 with X(s1), we can define a transformation

M (s0 → s1) for this magnet, such as:

X (s1) = M (s0 → s1) X (s0) . (14)

This 6×6 matrix M contains all the physics of every single element—being this

a dipole, drift, rf cavity, etc.—derived from the equations of motion for a charged

particle passing through it. Being able to define a linear transformation such as

this for every element of the accelerator, is enormously convenient, since they follow

superposition. Therefore, for a particle going from s0 to sn and passing throughout n

number of elements, we can define a single total transfer matrix MTotal as a product

of every single element transverse matrices, following:

MTotal = M (sn−1 → sn) · · ·M (si−1 → si) · · ·M (s2 → s1)M (s1 → s0) ,

X (sn) = MTotalX (s0) . (15)

This can be extended to non-linear terms as well [17]. There are also other prop-

erties that these single element transfer matrices need to comply with, like unitarity

(detM = 1), or the fact that in static magnetic fields ∆P/P0 is a constant of motion

and independent of z (s). Then, we can expand Eq. 14 taking this into account, as

shown in Eq. 16.

x (s1)

x′ (s1)

y (s1)

y′ (s1)

z (s1)

∆P/P0


=



m11 m12 0 0 0 m16

m21 m22 0 0 0 m26

0 0 m33 m34 0 0

0 0 m43 m44 0 0

m51 m52 0 0 1 m56

0 0 0 0 0 1





x (s0)

x′ (s0)

y (s0)

y′ (s0)

z (s0)

∆P/P0


. (16)

A drift can be considered a particular case of a “magnet” without field. There-

fore, the only effect it has on the particles is that it will allow the transverse coordi-

nates x and y to evolve though the drift length L by their respective angle x′ or y′.
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Or in other words, the particle’s equations of motion, when going through a drift, is

described by Eq. 14 with a transfer matrix described as:

MDrift ≡



1 L 0 0 0 0

0 1 0 0 0 0

0 0 1 L 0 0

0 0 0 1 0 0

0 0 0 0 1 L
γ

0 0 0 0 0 1


, (17)

where L
γ
→ 0 in the ultrarelativistic approximation.

A dipole without focusing, typically produces a horizontal bending of angle θd

(see Fig. 7) and represents a drift of length ρθd—for small θd-s—in the vertical di-

rection. The corresponding transfer matrix is shown in Eq. 18—without considering

dispersion.

θd
ρρ

FIG. 7: Change in orbit due to a dipole (sector magnet) to a particle with a fixed
momentum.

MDipole ≡



cos θd ρ sin θd 0 0 0 0

−1
ρ

sin θd cos θd 0 0 0 0

0 0 1 ρθd 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


. (18)

For the quadrupoles and following Eq. 13—with Bx ≡ yG and By ≡ xG—then

the quadrupole gradient is G ≈ ∂By
∂x

. Then the corresponding horizontal and vertical
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forces are:

Fx = −qβrelcGy , and

Fy = qβrelcGx ,

with βrelc = v the particles velocity in s-direction. Leading to the equations of

motion:

d2x

ds2
+ kx = 0 , (19)

d2y

ds2
− ky = 0 , (20)

where s = βrelct and k ≡ G
Bρ

. Then, the horizontal equation of motion is that of

a harmonic oscillator—with solutions of sin and cos, while the solution to Eq. 20

is given by cosh and sinh, obtaining then the thick lens transfer matrix for the

quadrupoles.

MQuad ≡



cos
(√

kl
)

1√
k

sin
(√

kl
)

0 0 0 0

∓
√
k sin

(√
kl
)

cos
(√

kl
)

0 0 0 0

0 0 cosh
(√

kl
)

1√
k

sinh
(√

kl
)

0 0

0 0 ±
√
k sinh

(√
kl
)

cosh
(√

kl
)

0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

where l is the length of the quad and the top signs correspond to a quadrupole

focusing in x and defocusing in y, while the bottom signs are for a quadrupole

defocusing in x and focusing in y. The thin lens approximation correspond to
√
kl =

constant� 1 when l→ 0 and, therefore, the above matrix reduces to:

MQuad ≡



1 0 0 0 0 0

∓ 1
F

1 0 0 0 0

0 0 1 0 0 0

0 0 ± 1
F

1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, (21)

with kl = 1
F

and F is the focal length of the quadrupole. It is important to remember

that the thin lens approximation is a reasonable approximation, as long as |F | � l.
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2.1.4 STRONG FOCUSING

Having described our basic elements in their simpler representation, now we can

start looking at what we can do when combining them, in particular when we alter-

nate focusing (F) or defocusing (D) quadrupoles, also know as doublets. Figure 8

shows an optical system with alternating focusing and defocusing gradients.

s

L

s

L

FIG. 8: Alternating gradients systems: F-D (top) and D-F (bottom).

Assuming that both focusing and defocusing quadrupoles in Fig. 8 have the same

focal length F , then the 2D transfer matrix of the systems can be calculated as:

Mdoublet =

(
1 0

± 1
F

1

)(
1 L

0 1

)(
1 0

∓ 1
F

1

)
=

(
1∓ L

F
L

− L
F 2 1± L

F

)
. (22)

The element m21 in Eq. 22 gives the inverse of the effective focal length of the

system and its negative sign proves that the alternating gradient provides a net

focusing effect, this is the base of the so called strong focusing. This idea has been

patented since March of 1950 by Nicholas Christofilos (US Patent No. 2,736,799)

and is used as one of the building blocks of most of the modern accelerators.

We could make a small parenthesis at this point—before moving towards the

description of lattices—to discuss some of the figures of merit used in accelerator

physics. To start with, we already talked about the momentum deviation in Sec-

tion 2.1.3, typically we assign to it the symbol δ, where δ � 1.
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Now, generalising Eq. 19 and 20, using Eq. 11, we can rewrite the equations of

motion in the transverse plane—called Hill’s equations—for an array of magnets,

with a periodic function of the coordinate s and period C, in other words kx/y(s+C) =

kx/y(s), then:

x′′ + kx(s)x = 0, (23)

y′′ − ky(s)y = 0. (24)

The period C could be an entire revolution around the machine, or the length of

one repeated cell. For the case of the horizontal plane (i.e. Eq. 23), we use the ansatz

of a quasi-periodic harmonic oscillator, with an amplitude w(s) that is periodic in

C.

x(s) = Aw(s) cos [ψx(s) + ψ0] . (25)

It is important to highlight that ψx(s) in Eq. 25 is not periodic. Then, substituting

in Eqn.23 the appropriate derivatives of x(s) we obtain:

A(w ′′ − wψ′2x + kxw) cos [ψx + ψ0]− A(2w ′ψ′x + wψ′′x) sin [ψx + ψ0] = 0, (26)

where both the sin and cos coefficients should vanish identically, since both w and ψx

do not depend on ψ0. Then—and losing the subindex for x from the nomenclature

for simplicity—we have:

w ′′ − wψ′2 + kw = 0, (27)

2w ′ψ′ + wψ′′ = 0. (28)

From Eq. 28 we find the ψ′ = κ
w2(s)

, where κ is a constant. With this and Eq. 27,

we obtain that:

w 3(w ′′ + kw) = κ2. (29)

Next, we introduce a new set of functions called Twiss functions or Courant-

Snyder parameters, β(s), α(s), and γ(s), such as:

β(s) ≡ w 2(s)

κ
, (30)

α(s) ≡ −1

2
β′(s), (31)

γ(s) ≡ 1 + α2(s)

β(s)
. (32)
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Using the Twiss functions and Eq. 28, we can rewrite the phase advance as:

ψ(s) =

∫
s

dτ

β(τ)
, (33)

and we define as the betatron phase advance as:

ψC = ψ(C) =

∫ s0+C

s0

dτ

β(τ)
. (34)

Then, for Eq. 29, we can express in terms of the Twiss:

kβ = γ + α′. (35)

Again, it is important to remember that β(s), α(s), and γ(s) are periodic in C,

while ψ(s) is not. We can express then Eq. 25 as:

x(s) = A
√
β(s) cosψ(s) +B

√
β(s) sinψ(s), (36)

with ±
√
β(s) describing the envelope for the beam’s transverse oscillations, then:

x′(s) =
1√
β(s)

{[B − α(s)A] cosψ(s)− [A+ α(s)B] sinψ(s)} , (37)

comparing with the initial conditions (x0, x
′
0), as a result, the constants A and B can

be expressed like:

A =
x0√
β(s)

,

B =
1√
β(s)

[β(s)x′′0 + α(s)x0].

We can now write the transport matrix MC of the periodic system as:(
x

x′

)
s0+C

=

(
cosψC + α sinψC β sinψC

−γ sinψC cosψC − α sinψC

)(
x

x′

)
s0

. (38)

A transport matrix of a periodic system is always unimodular det {MC} = 1 and

it can be written as:

MC = I cosψC + J sinψC , (39)

where I =

(
1 0

0 1

)
,

and J =

(
α(s) β(s)

−γ(s) −α(s)

)
,
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and finally, since J2 = −I, the matrix can be also written as MC = eJ(s)ψC and thus,

the transfer matrix, after n turns in a periodic system, is just Mn
C , or:(

x

x′

)
= Mn

C

(
x0

x′0

)
. (40)

We have described most of the concepts used in this work and there is a fair ques-

tion one may ask while reading about periodic systems and their transfer matrices,

namely: What happens with non-periodic systems then? To answer this question,

we can write down the transfer matrix Ms,s0 associated to a non-periodic system

between two locations, s0 and s in the machine.

Ms,s0 ≡


√

β(s)
β(s0)

[cos ∆ψ + α(s0) sin ∆ψ]
√
β(s0)β(s) sin ∆ψ

− [α(s)−α(s0)] cos ∆ψ+[1+α(s0)α(s)] sin ∆ψ√
β(s0)β(s)

√
β(s)
β(s0)

[cos ∆ψ − α(s0) sin ∆ψ]


and notice that after one turn it reduces to the transfer matrix of a periodic system.

Ms0+C,s0 ≡

(
cosµ+ α(s0) sinµ β(s0) sinµ

−γ(s0) sinµ cosµ− α(s0) sinµ

)
,

where µ is the phase advance accumulated after one turn, also this follows Eq. 38

and 39. Thus, we can write the matrix elements mij for the transfer matrix, following(
x

x′

)
s

=

(
m11 m12

m21 m22

)(
x0

x′0

)
,

as

m11 =
w(s)

w0

cos ∆ψ − w(s)w ′0 sin ∆ψ, (41)

m12 = w(s)w0 sin ∆ψ, (42)

m21 =
1 + w(s)w0w ′(s)w ′0

w(s)w0

sin ∆ψ −
[

w ′0
w(s)

− w ′(s)

w0

]
cos ∆ψ, (43)

m22 =
w0

w(s)
cos ∆ψ − w0w ′(s) sin ∆ψ. (44)

All this is very helpful, since if we know the Twiss parameters at any point s0,

we can transport them to any other point s of the machine as follows:
β(s)

α(s)

γ(s)

 =


m2

11 −2m11m12 m2
12

−m11m21 m11m22 +m12m21 −m12m22

m2
21 −2m21m22 m2

22




β(s0)

α(s0)

γ(s0)

 . (45)
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2.1.5 FODO LATTICES

Now we can start describing some periodic systems, specifically periodic cells.

The standard FODO cell is composed by a doublet of opposite-strength quadrupoles

(F and D) separated by drifts (O), or F-O-D-O. Commonly, the periodic structure is

separated as: a focusing half quadrupole F/2 followed by a drift O, a full defocusing

quadrupole D, a second drift O, and finally a second focusing half-quadrupole F/2.

Figure 9 shows the schematics of such cell. An equivalent version for a circular

machine will include bending magnets between the quadrupoles, these will introduce

a small—but not negligible—focusing in the bending plane, which is not included in

Eq. 46. The beam envelopes are sketched with blue lines.

s

F/2 O D O F/2

Lcell

FIG. 9: Schematic of a FODO cell.

Also, we should remember that a FODO cell in one of the transverse coordinates,

will look as a DOFO cell in the other transverse coordinate. Therefore, if we consider

the cell in the top of Fig. 9 as being in the x-direction, then its transfer matrix would

be:

MFODO(xy)
≡

(
1− L2

cell

8F 2 Lcell ±
L2

cell

4F

± L2
cell

16F 3 − Lcell

4F 2 1− L2
cell

8F 2

)
(46)

and the trace of both matrices (x and y) are:

Tr {MFODO} = 2− L2
cell

4F 2
= 2 cos (ψ) , (47)

so we can write the phase advance in a FODO cell as:

ψFODO = 2 arcsin

(
± L

4F

)
, (48)

with F > L
4

as the condition for the phase advance to be real.

The maximum (+) and minimum (−) values of β(s)—corresponding to α = 0—for

a FODO cell are located in the center of the focusing and defocusing quadrupoles,
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respectively. Then, looking at the m12 term in Eq. 46 and substituting by ψ from

Eq. 48, we find:

β± =
L

sinψC

(
1± sin

ψC
2

)
. (49)

So far, we have always left the dispersion out of all our element’s matrices, but the

dispersion is an effect that becomes important for a set of particles with a certain

momentum distribution in the presence of bending dipoles. The linear dispersion

describes how position changes with momentum, or:

η ≡ dx/dδ. (50)

In the case of a FODO lattice as described in Fig. 9 (bottom), we can express the

maximum and minimum dispersion—considering each dipole with length Lcell/2—as:

η±x =
Lθd
4

(
1± 1

2
sin ∆ψ

2

sin2 ∆ψ
2

)
. (51)

2.1.6 OTHER LATTICES AND INSERTIONS

Up to now, we have spent most of the time leaving the dispersion out of the

equations, for simplicity. In the case of the local crab correction—which is ultimately

the subject of this dissertation, and will be described in more detail in the following

sections—ideally the crab cavities ought to be placed at zero dispersion locations in

the machine. This is mainly due to the fact that the local crab correction scheme

requires the exact cancelation by one crab cavity, of the effects given to the beam by

another crab cavity, each placed at opposite sides of the interaction point. For these

effects to be cancelled exactly, the energy change due to the beam-beam interaction

needs to be cancelled by these two cavities as well, and that does not happen if the

dispersion η and its derivative η′ do not vanish at the cavities’ location [18].

A machine made solely by periodic FODO-like cells, would most likely have non-

zero dispersion in the locations we need to place the crab cavities. We then need a

special cell or insertion to suppress the dispersion at these locations, redundantly,

this kind of insertion is called a dispersion suppressor. A dispersion suppressor

is made by two different FODO lattices, one next to each other (see Fig. 10), that
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follow the condition:

θ1 =

(
1− 1

4 sin2 µcell

2

)
θ, (52)

θ2 =

(
1

4 sin2 µcell

2

)
θ, (53)

θ = θ1 + θ2, (54)

where µcell is the phase advance per cell.

s

F/2 θ1/2 θ1/2D F/2F/2 θ2/2 θ2/2D F/2

FIG. 10: General schematic of a dispersion suppressor insertion.

Now, let’s take the particular case of µcell = π/3, then 4 sin2 µcell

2
= 1, so we

obtain the insertion called missing magnet dispersion suppressor, considering

that from Eq. 52 and 53 we have:

θ1 = 0,

θ2 = θ.

We will not directly treat the dispersion suppressors in the lattice of the electron-

ion collider, for which we will be analysing the crabbing systems in this work, but

it is important to mention that such insertions in the design are the ones that allow

us to treat the location of our cavities as dispersion free. Other insertion, that we

will find in the interaction region of all the modern colliders, is called the low beta

insertion. This insertion reduces the beta functions of the beams with the help of

families of quadrupoles called triplets, in our particular design, we call these sets of

powerful quadrupoles as the final focusing blocks. The main goal of the crabbing

systems is to increase the luminosity of the machine. Making the beams smaller

is one mechanism to achieve this. For the moment, we will not delve deeper in

the description of the low beta insertions, we will only show the expression of the

beta functions in such insertions and, in fact, any field-free region that contains a

minimum beam size (see Eq. 55).

β(s) = β∗ +
s2

β∗
, (55)
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where β∗ is the beta function evaluated at the interaction point in the middle of the

insertion and s is the distance from the interaction point (β∗). There will be further

discussions of certain complications given by the β∗ in the following paragraphs.

These are not the only type of insertions, there are double bend achromats, etc. that

are very important for the machines but are not relevant for the present work.

2.2 LUMINOSITY

One of the biggest concerns when it comes to collider experiments is achieving

a high statistical regime in the analysis of specific physical processes, and since we

mainly care about the integrated number of events, we could either increase the

running time for the experiment or increase the event rate—number of interactions

per second
[
dR
dt

]
—where:

dR

dt
= L × σp (56)

and σp is the cross section of the specific interaction (erg. Lepton-parton scattering)

and L is the luminosity, which is a relativistic invariant, independent of the inter-

action, and very important, measurable. We can think as an example the case of

the Large Hadron Collider at CERN, where the total cross section for pp is, let’s say

σpp,tot ∼ 10−25 cm2 [19] and the design luminosity of the LHC is L = 1034cm−2s−1,

then: [
dR

dt

]

pp,LHC

∼ 109 events per second.

For two colliding beams (see Fig. 11), then we have that L ∝ fn1n2/a, where f

as the bunch frequency, n1 the number of particles per bunch in the first beam, n2

the number of particles per bunch in the second beam, and a as the beams transverse

profile.

FIG. 11: Gaussian bunch distributions colliding head-on.
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Then, we can calculate for each bunch crossing:

L = Kn1n2

∫∫∫ ∞
−∞

dxdydsds0 [ρ1 (x, y, s,−s0) ρ2 (x, y, s, s0)] , (57)

where s0 = ct, K is the kinematic factor K =
√

(~v1 − ~v2)2 − (~v1 × ~v2)2 /c2, which for

head-on collisions (i.e. ~v1 = −~v2) reduces to K = 2. We will consider for simplicity

uncorrelated particle distributions in the bunches, such as:

ρ(x, y, s, s0) = ρx(x)ρy(y)ρs(s± s0). (58)

Using this and generalising Eq. 57 to Nb bunches with a bunch repetition rate of

f , then:

L = 2Kn1n2fNb

∫∫∫ ∞
−∞

dxdydsds0 ×

[ρ1x(x)ρ1y(y)ρ1s(s− s0)ρ2x(x)ρ2y(y)ρ2s(s+ s0)] (59)

and

ρi,u(u) =
1

σiu
√

2π
e

(
− u2

2σ2
iu

)
, ρs(s± s0) =

1

σs
√

2π
e

(
− (s±s0)2

2σ2
s

)
, (60)

where u denotes the transverse coordinates x, y, the index i indicates beam 1 or beam

2, and σiu is the bunch size in the u-dimension. Considering normal distributions is

possible as long as we are treating with bunches in equilibrium and is the only way we

can perform this calculation analytically, otherwise we require numerical methods.

Now, lets consider the simple case of identical bunches (i.e. σiu = σju), then:

L =
n1n2fNb

4πε
√
β∗xβ

∗
y

(61)

where ε is the beams’ geometrical emittance, following:

σx,y =
√
εx,yβx,y(s), (62)

with εx,y = πWx,y, (63)

and W = γx2 + 2αxx′ + βx′2, (64)

where W is the Courant-Snyder Invariant and represents the area of the ellipse

described by the states occupied by the particles of the bunch in the phase space.

This volume is invariant under the Liouville’s theorem [12].

If we want to go one step further, we can consider small “complications” to the

problem, such as beam deformations, non-desired beam offsets, dispersion at the
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interaction point, strong coupling, and having a crossing angle (we will be back to

the latter, since is mostly what concerns the crabbing systems). Then we can write:

L =
n1n2fNb

4πε
√
β∗xβ

∗
y

·R (θc, ε, β
∗, σs) , (65)

where we have packed all our contributions to the luminosity degradation in the

reduction factor R (θc, ε, β
∗, σs).

2.2.1 LUMINOSITY DEGRADATION

We will not spend much time in this dissertation looking into detail at all the

mechanisms that contribute to the reducing factor, or simply restrict the luminos-

ity by setting limits (like the tune shift limits given by beam-beam or space-charge

effects) [20, 21]. We will simply use as an example of these mechanisms the luminos-

ity degradation due to beam deformations, or the so called hourglass effect, and

eventually, we will take a more detailed look at the luminosity degradation due to

the crossing angle.

In general, the β-functions depend on the position s in the machine. Now, for

a field-free region, like near the interaction point—where s is the distance from the

interaction point—we can follow:

β(s) ≈ β∗

[
1 +

(
s

β∗

)2
]
, ⇒ σ(s) ≈ σ∗

[
1 +

(
s

β∗

)2
]1/2

. (66)

For instance, the bunch size is a function of s as well, having a minimum at the

interaction point (s = 0). Then, when the bunch length is σs ≥ β∗, the bunch will be

deformed at the interaction point (see Fig. 12 [16]), diluting the luminosity following

Eq. 67.

Rh (β∗, σs) ≡
L(σs)

L(0)
=
√
π
β∗

σs
e

(
β∗
σs

)2

erf

(
β∗

σs

)
, (67)

which describes the curve shown in Fig. 13 and for example, for the ratio β∗/σs ≈ 1.0,

the luminosity has already been reduced by approximately 25%.

2.2.2 CROSSING ANGLE

Now, let’s consider that for reasons like reducing parasitic collisions due to high

repetition rate, increasing the detector resolution, or even increasing the physical

space for magnets we introduce an angle of collision θc between the two beams.
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FIG. 12: Graphic description of the beam envelope at the interaction point (s = 0)
for β∗ = 50 cm (green) and β∗ = 5 cm (red). Image taken from Werner Herr’s CAS
2010 lecture.

Fig. 14 shows the particle distributions aligned with trajectories that have a tilt of

θc/2 with respect to the s-coordinate of the machine. This will effectively reduce the

total area of overlap between bunches and, therefore, will reduce the luminosity.

After choosing conveniently two sets of rotated reference frames, aligned each

with one of the beams’ trajectories, we could then write down their coordinates

parameterised with the machine standard coordinates as follows:

x1 = x cos θc
2
+ s sin θc

2
, s1 = s cos

θc
2
− x sin

θc
2
; (68)

x2 = −x cos θc
2
+ s sin θc

2
, s2 = −s cos

θc
2
− x sin

θc
2
. (69)

So, we rewrite Eq. 59 using these, as:

L = 2Kn1n2fNb

∫∫∫ ∞

−∞
dxdydsds0 ×

[ρ1x(x1)ρ1y(y1)ρ1s(s1 − s0)ρ2x(x2)ρ2y(y2)ρ2s(s2 + s0)] , (70)

we can then use the integral:

∫ ∞

−∞
dte−(at

2+bt+c) =

√
π

a
· e

b2−ac
a

and with some approximations for small angles θc/2 � 1, so sin θc/2 ∼ θc/2 and
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FIG. 13: Percentage of the total luminosity as a function of the ratio between β∗ and
the bunch length, showing a reduction due to the hourglass effect.

FIG. 14: Colliding beams with a crossing angle θc.

discarding all the terms σk
x sin

l θc/2 and xk sinl θc/2, for all k + l ≥ 4, then:

Rc (θc, σs) =
1√

1 +
(

σs

σx
tan θc

2

)2
, (71)

is the geometric factor between bunches induced by the crossing angle θc and the

beam longitudinal size σs, while β∗
x,y = σ2

x,y/ε is the relation between the emittance

ε and the beam transverse sizes at the interaction point. In general, all the above

quantities are machine specific, but while the beta functions change along the lattice,

also, it is by design that they reach their minimum values at the interaction point.
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At the same time, Eq. 71 tells us that at a larger crossing angle, the geometric factor

will grow smaller, making the luminosity to decrease as well. Again, why is that

we need the crossing angle at the electron-ion then? Principally, for a large crossing

angle there is a faster beam separation, reducing spurious signals due to undesired

bunch collisions, amongst other benefits.

2.3 CRABBING CONCEPT AND LUMINOSITY RESTORATION

In the late 80’s Robert Palmer suggested a very elegant solution to correct the

geometric factor due to the crossing angle in colliders [22] and for this, we will need

to define what is an rf transverse deflector. An rf transverse deflector is a radio

frequency cavity that instead of accelerating the particles of a beam, it imprints a

change on the transverse momentum as a function of the particle’s position within

the bunch, all these by using the electromagnetic fields confined within the resonant

cavity. This takes us back to the Lorentz force, Eq. 1, for a charged particle moving

on axis (z) through a horizontal (x) deflector, with speed close to the speed of light,

it will see a transverse voltage given by:

VT =

∫ ∞
−∞

dz
[
Ex(s) cos

ωz

c
+ cBy(z) sin

ωz

c

]
, (72)

where Ex and By are the horizontal electric field and the vertical magnetic field

sustained inside the cavity, respectively. While ω represents the angular frequency

of the rf signal. Figure 15 shows the general concept of how the transverse voltage

of a deflector acts on bunches arriving with different phases—with respect to the rf

signal.

In Fig. 15, for the cases of the black and blue bunches that arrive with a non-zero

phase, they will be “kicked” in one direction or the other—depending on the sign of

the fields at the moment they arrive at the cavity location—being able in this way

to separate the bunches as needed. For instance, the rf separators (499 MHz) in the

CEBAF at Jefferson lab are in charge to separate the bunches to be sent to different

magnet kickers that will provide simultaniusly beam to three different experimental

halls (A, B, and C). A deflector operating in this mode is commonly called an rf

separator.

Lets then take a closer look at the bunches arriving at the zero rf crossing (red),

for which the net transverse moment given by the rf to the bunch centroid is zero.

However, the head and tail of the bunch will see a voltage kicks with opposite signs
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FIG. 15: Sketch of the transverse kick given by an rf deflector to bunches with
different arriving times.

(see Fig. 16), in this way the trajectory of the bunch will not be altered, but instead

the bunch will rotate.

FIG. 16: Sketch of the transverse kick given by an rf crab cavity to the particles
within a single bunch.

An rf deflector operated in this mode is known as a crab cavity, crab corrector,

or rf crabber. Palmer’s idea was to use rf cavities to induce a rotation on the

bunches, allowing then the rotation to compensate the effect of the crossing angle,

and to recover the head-on case for the bunch collisions (see Fig. 17 as opposed to

Fig. 14).

If we work out the transverse crabbing voltage VT , necessary to correct the geo-

metrical factor due to the crossing angle, we obtain that in the case of a linear kick
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FIG. 17: Colliding beams with a crossing angle θc employing full crabbing correction.

without dispersion, it can be written as:

VT =
cEb tan

θc
2

2πf
√
β∗
xβ

C
x

, (73)

where Eb is the beam energy, θc/2 is the angle to be corrected by the crab cavity (per

beam), f is still the bunch repetition rate, β∗ and βC the values of the β-function

of the beam at the interaction point and at the crab cavity location,independently.

The last factors show how for smaller β∗ or higher beam energy, the crabbing kick

required is higher for the same angle. While for higher frequencies as well as bigger

beam envelopes at the crab cavities location, the required transverse kick to correct

for the same angle is lower. Later on, Chapter 4 will focus in the crabbing concept

and its two main schemes (global and local), as well as the specifics of the case for

the Jefferson Lab’s electron-ion collider.
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CHAPTER 3

SUPERCONDUCTIVITY AND RADIOFREQUENCY

This chapter—similar to Chapter 2—will present a quick overview, this time of

the cavity fundamentals and superconductivity, more than anything for complete-

ness. It will also work as a preamble for the discussions later on. Since the main part

of a crabbing system are the rf cavities themselves, then, it is only logical to lay down

the basics of radiofrequency and—for our particular case—of superconductivity as

well. In this way, readers with different backgrounds could easily pick up the main

concepts and analyse the ideas developed throughout this dissertation. However, it

is a common error in our area of study, to transcribe the most popular review books,

like the Padamsee, Knobloch, and Hays [23], only because they do a great job

explaining the theoretical basis, the timelines, and the empirical experience of super-

conducting rf. If the reader is interested in having a better understanding or have a

wider view of the superconductivity in rf for accelerators, we encourage reading [23]

and [24], amongst others. For a nice, short historical recount on superconductivity,

read [25].

3.1 CAVITY FUNDAMENTALS

3.1.1 CONDUCTORS AND BOUNDARIES

A cavity is ideally defined as a volume of vacuum enclosed by a conducting surface.

Then, lets enlist the boundary conditions for a vacuum/conductor interface, using

the definitions described in Fig. 26, as:

n̂ · ~D = Σ,

n̂× ~H = ~K,

n̂ ·
(
~B − ~Bc

)
= 0,

n̂×
(
~E − ~Ec

)
= 0,

where n̂ is a vector normal to the conductor’s surface, Σ is the surface charge den-

sity and ~K the surface current. Now, for linear materials without polarization or
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ξ = 0

y

ξ

Ĥ‖

Ê⊥

n̂Ĥ⊥

Ê‖

vacuum conductor

e−ξ/δ

FIG. 18: Boundary conditions diagram for a vacuum/conductor interface.

magnetisation—like vacuum—we can use the definitions:

~J = σ ~E ,

~D = ε ~E ,

~H =
1

µ
~B,

and so the Maxwell equation,—in differential form—can be written as:

• Gauss’ Law: the flux of electric field is proportional to the enclosed charge.

~∇ · ~D = ρ. (74)

• Gauss’ Law for magnetism: the lines of the magnetic field close on themselves,

there is no divergence and therefore there is no free magnetic monopoles.

~∇ · ~B = 0. (75)

• Faraday’s Law of Induction: variations in time of magnetic fields generate

electric fields, and vice versa.

~∇× ~E = −∂
~B

∂t
. (76)
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• Ampère’s (corrected) Law: relates the magnetic field to the electrical—and

displacement—currents in a circuit.

~∇× ~H =

(
~J +

∂ ~D

∂t

)
. (77)

We can differentiate with respect to time ( ∂
∂t

) Eq. 77 and since for the vacuum

there are no free currents (i.e. ~J = 0), then:

∂

∂t

(
~∇× ~H

)
=

∂2 ~D

∂t2
,

⇒ ∂

∂t

(
~∇× ~B

)
=

1

c2

∂2 ~E

∂t2
. (78)

Since c = 1/
√
ε0µ0 and now taking the curl (~∇×) of Eq. 76, then:

~∇×
(
~∇× ~E

)
= −~∇×

(
∂ ~B

∂t

)
,

~∇
(
~∇ · ~E

)
−∇2 ~E = − ∂

∂t

(
~∇× ~B

)
. (79)

If we are in the vacuum, there is no free charges either (ρ = 0). Then, from Eq. 74

and 78, we can simplify Eq. 79 to:

∇2 ~E =
∂

∂t

(
~∇× ~B

)
=

1

c2

∂2 ~E

∂t2
,

⇒ ∇2 ~E − 1

c2

∂2 ~E

∂t2
= 0,

∴

(
∇2 +

ω2

c2

)
~E = 0, (80)

which is the well known wave equation with planar waves as solutions (E ∝
ei(

~k·~x−ωt)). Now, if we do a similar procedure, but this time taking the derivative

with respect to time ( ∂
∂t

) of Eq. 76 and the curl (~∇×) of Eq. 77 instead, then:

∂

∂t

(
~∇× ~E

)
= −∂

2 ~B

∂t2
, (81)

~∇×
(
~∇× ~H

)
=

∂

∂t

(
~∇× ~D

)
,

⇒ ~∇
(
~∇ · ~B

)
−∇2 ~B =

1

c2

(
~∇× ~E

)
,

⇒ ∇2 ~B = − 1

c2

(
~∇× ~E

)
, (82)
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mixing then Eq. 81 and 82:

∇2 �B =
∂

∂t

(
�∇× �E

)
=

1

c2
∂2 �B

∂t2
,

⇒ ∇2 �B − 1

c2
∂2 �B

∂t2
= 0,

∴

(
∇2 +

ω2

c2

)
�B = 0. (83)

Defining then the wave number as k = ω/c, then Eq. 80 and 83, can be written

as:
(
∇2 + k2

)
{

�E

�B

}
= 0. (84)

3.1.2 PILLBOX CAVITY AND CAVITY MODES

If we consider a cylindrical conducting boundary, then Eq. 84 has solutions of the

form:

�E (x, y, z; t) = �E(x, y)ei(kz−ωt), (85)

�B (x, y, z; t) = �B(x, y)ei(kz−ωt). (86)

FIG. 19: Pillbox cavity with cylindrical symmetry.

For this cylindrical symmetric cavity, there are two sets of solutions for Eq. 83,

which correspond to propagating waves with a transverse magnetic (TM) and with

transverse electric fields (TE) with zero longitudinal electric field on axis. Considering
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the pillbox cavity, as depicted in Fig. 19, then the solutions for the TM modes are:

Ez = E0 cos (kpz) Jm (kr,mnr) cos (mφ) , (87)

Er = −E0

(
kp
kr,mn

)
sin (kpz) J ′m (kr,mnr) cos (mφ) , (88)

Eφ = E0

(
kp

k2
r,mnr

)
sin (kpz) Jm (kr,mnr) cos (mφ) , (89)

Bz = 0, (90)

Br = iE0

(
mω

c2rk2
r,mn

)
cos (kpz) Jm (kr,mnr) cos (mφ) , (91)

Bφ = iE0

(
mω

c2kr,mn

)
cos (kpz) J ′m (kr,mnr) cos (mφ) , (92)

while for the TE modes we have:

Ez = 0, (93)

Er = iB0

(
mω

r
(
k′r,mn

)2

)
sin (kpz) Jm

(
k′r,mnr

)
sin (mφ) , (94)

Eφ = iB0

(
ω

k′r,mn

)
sin (kpz) J ′m

(
k′r,mnr

)
sin (mφ) , (95)

Bz = B0 sin (kpz) Jm
(
k′r,mnr

)
cos (mφ) , (96)

Br = B0

(
kp
k′r,mn

)
cos (kpz) J ′m

(
k′r,mnr

)
cos (mφ) , (97)

Bφ = −B0

(
mkp

r
(
k′r,mn

)2

)
cos (kpz) J ′m (kr,mnr) sin (mφ) , (98)

where R is the cavity radius, L its length, Jm are the first kind Bessel function of

m-th order, J ′m its derivative, with m as the number of half cycles variation in the

radial direction, xmn and x′mn are the zeroes of the Bessel functions (Jm(xmn) = 0)

and its derivative, (J ′m(x′mn) = 0) respectively. Also, kp = pπ/L is the wave number

in the longitudinal modes and p = 0, 1, 2, . . . is the number of half cycles of variation

in the z-direction, kr,mn = xmn/R and k′r,mn = x′mn/R are the wave numbers in

the radial modes, and finally n is the number of complete cycles of variation in the

angular dimension. Next, we can describe the resonant modes using the values of m,

n, and p, expressing the modes’ wave numbers as:

For the TM modes: ωmnp,TM = c

√(xmn
R

)2

+ k2
p, (99)

For the TE modes: ωmnp,TE = c

√(
x′mn
R

)2

+ k2
p. (100)
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The lowest mode of the TE modes is the TE111 mode and of the TM modes is

the TM010 mode, the latter—as long as R/L ≥ 0.5—is the fundamental mode of the

elliptical cavities and is the most commonly used mode to accelerate charged beams

in the machines (see Fig. 20). This type of cavities are known as TM-class cavities

and is important to notice that the frequency of the TM010 mode depends only on

the cavity radius.

ω010 =
x010c

R
. (101)

FIG. 20: Pillbox cavity showing the field configuration for the TM010 accelerating
mode.

3.2 TM110 VS TEM DEFLECTORS

Since the interest of this work in rf cavities is for deflecting (crabbing), rather

than accelerating applications, we will take a look at the TM110 mode of elliptical

cavities. As previously mentioned, TM modes have zero longitudinal electric field on

axis (Ez(r = 0) = 0) and the transverse mode has two polarizations, as long as the

cylindrical geometry is conserved. It is for this reason that the deflecting and crab

cavities operating in the TM110 have a squashed elliptical geometry that breaks

the symmetry and separates the degenerated modes in frequency (see Fig. 21).

There are other type of cavities based in coaxial resonant lines, which are known as

TEM resonators (see Fig. 22). A TEM resonator sustains its fields between the outer

and an inner conductor. However, they differ from the TM resonators, mentioned
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FIG. 21: Squashed elliptical cavity showing the field configuration for the TM110

deflecting mode.

before, because in the TM modes the frequency is related to the transverse boundary

conditions due to the conducting walls of the resonator, while for the TEM modes,

the mode frequency is determined by its length (half wave length λ/2) and not by its

transverse dimensions. This is particularly helpful for low frequencies, when a TEM

resonator can be roughly half the size of a TM cavity at the same frequencies.

We can consider the half wave resonator as a two gap accelerating structure,

there are multi-gap TEM structures, such as the multi-spoke cavities [2] that are

multi connected geometries. Delayen and Huang developed, in 2009, the compact

geometry of a TEM class deflecting cavity for high-β particles called the parallel

rod cavity [26]. Figure 23 shows a diagram of the parallel rod cavity concept. In

this case, just as for the accelerating modes, TEM deflectors reduce considerably the

dimensions of the resonators, making them more suitable for applications in which

the physical space is constraint by the machine.

3.3 TE-LIKE DEFLECTORS: THE RF DIPOLE

Other mode of the elliptical cavities that is important to mention is the TE111

mode, because it has a transverse electric field on axis that could also be thought to

be used as a deflecting mode (see Fig. 24). However, since the contributions of the
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FIG. 22: Field configuration of a TEM class (half wave) accelerator cavity.

electric and the magnetic fields cancel each other exactly, there is no net deflection

of the beam.

The case of the TE111 mode is relevant for this discussion as there are a series

of compact rf cavity designs, for deflecting and crabbing applications, which evolved

from TEM class to TE-like resonators, such as the Brookhaven National Lab’sDou-

ble Quarter Wave [27] and the Old Dominion University’s RF Dipole [28]. The

reason why they are TE-like and not simply TE resonators is because the contri-

bution to the deflection given by the electric field is not fully cancelled out by the

magnetic field contribution. This is achieved by cleverly optimising the geometry to

ensure that the electric field is concentrated along the beam axis region, while the

magnetic field density in the same region is considerably smaller, as a result a net

transverse kick is given to the bunches. Figure 25 (top) shows the electric (a) and

magnetic (b) fields of the TE111 mode of a specific cylindrical cavity. If we add two

loading elements on the sides of the same cylindrical cavity, we obtain the basic rf

dipole geometry. Depicted in Fig. 25 (bottom) the electric (c) and magnetic (d) field

distribution, very similar to the ones of the TE111 mode, with the difference that the

electric field density is higher along the beam axis, while the magnetic field density

is roughly the same as before in that region.

There are other interesting compact designs for crabbing applications, such as

the Lancaster Univeristy’s Four Rod cavity [29], but now on we will focus on the

rf dipole, since it is the geometry we found to be more suitable for the electron-ion

crabbing applications at 750 MHz, that are the subject of this dissertation.
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FIG. 23: TEM class (parallel rod) deflecting/crabbing cavity and its fields distribu-
tion.

3.4 FIGURES OF MERIT

The transverse momentum imprinted on a particle of charge q, traversing a deflect-

ing cavity—like the ones described above—on axis, can be defined as �pT =
∫∞
−∞ dt �FT ,

where �FT is the transverse force derived from Eq. 1. Then, considering that z = vt,

with v as the particles velocity, we can write:

�pT =
q

v

∫ ∞

−∞
dz

[
�ET +

(
�v × �BT

)]
, (102)

where �ET and �BT denote the transverse components of the on axis cavity fields.

At this point, it is convenient to mention the Panofsky-Wenzel theorem, that

relates the transverse gradient of the accelerating voltage and its resulting trans-

verse momentum kick. Joachim Tückmantel gives a short but nice derivation of this



41

FIG. 24: Elliptical cavity showing the field configuration for the TE111 mode.

theorem in his technical note [30]. Considering this and for a particle traveling at

constant velocity �v but with an offset r0—instead of on axis—we can write Eq. 102

as:

�pT = − iq

ω

∫ ∞

−∞
dz�∇TEz,

= − lim
r0→0

(
iq

r0ω

∫ ∞

−∞
dz [Ez (r0, z)− Ez (0, z)]

)
, (103)

with ω as the frequency of the mode.

For the rf dipole crab cavity studied in this dissertation as a horizontal (x)

crab cavity, the transverse fields correspond to �ET = Ex(z) cos (ωt) x̂ and �BT =

By(z) sin (ωt) ŷ. Then, for β = 1 particles, the transverse voltage is:

VT =

∫ ∞

−∞
dz

[
Ex (z) cos

(ωz
c

)
+ cBy (z) sin

(ωz
c

)]
. (104)

Since we are treating with particles traveling with β = 1, we define our reference

length, in order to establish the total transverse voltage seen by the particle inside

the cavity fields VT , as half rf wavelength (λ/2), such as:

ET =
VT

(λ/2)
, (105)

we will also refer to V ∗
T as the transverse voltage at 1 MV/m of transverse field,

defined as:

V ∗
T = (λ/2)× 1MV/m. (106)

Later on, in the chapter dedicated to design and optimization, we will discuss

the importance of the peak surface fields for superconducting cavities. These fields
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(a) Electric field (b) Magnetic field

(c) Electric field (d) Magnetic field

FIG. 25: TE111 and TE-like modes on a cylindrical (top) and rf dipole (bottom)
geometries, respectively.

(Ep and Bp) will set the limit to the operational gradients in any superconducting

cavity, since for the peak electric surface field Ep there is a field emission limit and

for the peak magnetic surface field Bp there is a critical field Hc, after which, it is

not possible for the materials to maintain the superconducting state. We will better

define these fields by normalising them to the transverse gradient as:

E∗
p =

Ep

ET

, (107)

B∗
p =

Bp

ET

. (108)

In order to sustain the fields, currents must flow on the cavity surfaces. Even

for superconductors, there is a small resistance at rf frequencies, this resistance,

even when small—in the order of tens of nΩ for clean Nb—generates losses and

dissipates energy. This dissipation of energy is still smaller than for the case of

normal conductors, for instance, the surface resistance for Cu is typically in the

order of mΩ. We characterise these losses by the surface resistance Rs, which is

defined in terms of the power dissipated per unit area on the cavity surface due to



43

the Joule’s effect (dPloss/dS). Using this, we can write the total power dissipated by

the cavity walls as:

Ploss =
Rs

2

∫
S

dS| ~H|2, (109)

where S is the total rf surface of the cavity walls.

We will present another important cavity parameter, the quality factor Q0,

which roughly gives 2π times the number of rf cycles needed to dissipate the total

energy U contained by the fields inside the cavity (see Eq. 110).

Q0 =
ωU

Ploss

. (110)

Since the rf fields inside a cavity are alternating between each other, in a way that

when the electric field is maximum, then the magnetic field is zero, and vice versa,

the total stored energy on the fields can be calculated using the maximum value of

either field (| ~E| or | ~H|), as a result:

U =
ε0
2

∫
V

dV | ~E|2 =
µ0

2

∫
V

dV | ~H|2 (111)

and V denotes the full vacuum volume inside the resonator.

If we assume that RS is homogeneous over the entire rf surface, then we can

simplify the geometric factor G as:

G =
ωµ0

∫
V

dV | ~H|2∫
S

dS| ~H|2
= Q0Rs. (112)

This quantity is a constant of each geometry and is invariant under linear scaling of

the cavity, thus, it is independent of the frequency. This definition will be used in

the section related to the cavity testing to estimate the surface resistance at different

temperatures, using the values of G calculated from numerical simulations for the

750 MHz rf dipole crab cavity developed as part of this work.

The losses in the cavity can also be characterised using the definition of the

shunt impedance Rsh, which expresses the ratio between the square of the voltage V

sustained by the cavity and the power dissipated through the cavity walls. Then, the

greater the shunt impedance is, the lesser dissipated power for a given cavity voltage,

or:

Rsh =
V 2

Ploss

(113)

and for transverse deflectors:

RT =
V 2
T

Ploss

, (114)
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where RT is the transverse shunt impedance. This definition is in the

linac-Ω convention—lepton machines—since for the circuit-Ω convention—hadron

machines—there is an extra factor of 1/2.

There is a quantity that describes how does the rf mode couples to the charges

in the beam, named R/Q. The R/Q is both independent on the surface resistance

and the cavity size, making it handy to use as a figure of merit and an optimising

parameter. In our case, since we are interested in deflecting cavities, we will define

the transverse [
R

Q

]
T

=
V 2
T

ωU
. (115)

One would like to maximise the R/Q value for the operating mode to ensure effective

acceleration (or deflection), while reducing it for undesired modes. In the case of

superconducting cavities, the loss power dissipation will sustain the fields—including

undesired modes—for long enough time to interact again with the beam. Since a high

R/Q value means strong interactions between the beam and the rf fields, undesired

modes that strongly couple to the beam will degrade its quality and in extreme cases

produce full loss of the beam. Higher order mode damping becomes a more important

issue in superconducting cavities than for normal conducting ones.

Finally, we define one last parameter as the product of the transverse shunt

impedance and the surface resistance, which relates the cavity’s geometrical factor

with the transverse R/Q, as:

RTRs =

[
R

Q

]
T

G. (116)

This parameter is useful during the geometry design phase, since typically both

G and the transverse R/Q compete with each other when varying the geometrical

parameters of the cavity, making RTRs a suitable parameter to optimize both the

geometrical factor and the [R/Q]T .

3.5 HIGHER ORDER MODES

We have seen that the wave equation (Eq. 84) allows several eigenfrequencies,

which in the case of TM and TE modes correspond to Eq. 99 and Eq. 100, respectively.

This means that we can have different modes excited in a single structure, even when

these modes are undesired. Parasitic modes can be excited by diverse sources, such as

beam currents, noise in the rf sources, and mechanical modes of the cavity systems.
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There are three main classifications to these undesired modes: those with frequencies

bellow the operating frequency known as lower order modes or LOMs; those with

frequencies close to the operating frequency but with different field configuration

called similar order modes or SOMs; and finally the most abundant type, those

with frequencies above the operating frequency, the so called higher order modes

or HOMs.

For example, let’s consider that we want to use an elliptical cavity as a deflector in

the TM110 mode. Then, it will have as a LOM the accelerating mode TM010, since—

following Eq. 99—ω110 ∼ 1.59ω010 and is highly likely that we will have to design a

low pass or notch coupler to be able to extract such mode from the cavity to operate

at the desired deflecting mode without problems. It is very important to remark, at

this point, that another advantage of TEM and TE-like over TM deflectors, is the

absence of LOMs, since the deflecting mode is the fundamental—lowest frequency—

mode.

It is said that a good accelerator is also a good decelerator. For the case of an

accelerating cavity this means that a resonator is as capable to transfer energy from

its fields to a charged beam, as it is to transfer energy from a charged beam to its own

fields. This can be extended to transverse deflectors and in general to any resonant

cavity. The time structure of the beam bunches will dictate the frequencies to be

excited inside the cavity, then the geometry of the cavity itself will determine which

ones of those frequencies will correspond to resonant modes that can be sustained

inside. The R/Q—transverse and longitudinal— determines the intensity of each of

the n-excited modes and each one of these n-modes will have their own natural decay

time τn = Q0,n/ωn, with their own quality factor Q0,n and frequency ωn. The modes

will be classified, depending on their field configuration, in deflecting or accelerating.

We will talk more about the higher order modes in Chapter 5, when we analyse the

HOMs of the 750 MHz rf dipole.

The fields generated by the charged bunches traversing the cavities are compared

to the wakes that a sailing boat leaves behind in the water and are called precisely

for this reason wakefields. The study of wakefields becomes more important in

machines with high currents and short bunches. A good design will include couplers

that will strongly couple and extract the power of high R/Q parasitic modes, without

disrupting the operating mode. To design such couplers or dampers, one needs first

to understand which ones are the dangerous modes. This comes from the analysis
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of the cavity design itself. Secondly one needs to work with an impedance budget,

this comes from analysis that the beam dynamics and impedance groups perform,

not only for the rf systems, but for the entire machine. At this point, for the case of

the electron-ion collider at Jefferson Lab, the early stages of the machine design—

at which we started to develop the crabbing systems—have not allowed to have an

impedance budget yet, making the design of HOM damping schemes a problem that

will have to be reassessed later on, once the impedance budget has been laid out.

3.6 MULTIPOLE COMPONENTS

We remember for the case of the magnets studied already in Chapter 2 that Eq. 11

expresses the magnetic field in terms of its multipole components, if we rewrite Eq. 11

in cylindrical coordinates, we have:

B(r, φ) = Bref

∞∑
n=0

(an − ibn)

(
r

rref

)n
einφ, (117)

where Bref corresponds to the field at a given radius rref and φ is just the phase

between the normal and skew 2(n+ 1)-pole components.

The importance of studying the multipole components in rf structures—similar

to the case of the magnets—is based on the fact that azimuthal asymmetries in the

geometry will create non-uniformities in the fields across the beam aperture. In a

deflector, these non-uniformities in the transverse field could degrade the emittance of

the beam due to the undesired components generated in the transverse momentum of

its particles. Different from the static case of the magnets, the multipole components

in rf structures have a time dependence and particles arriving at different times—

different phases—will experience them in different ways, in general we can represent

these time dependent multipoles as:

Ez(r, φ, z)eiωt =
∞∑
n=0

E(n)
z (z)rnei(nφ+ωt), (118)

and by a Fourier series expansion:

E(n)
z (z) =

1

2π

1

rn

∫ 2π

0

dφEz(r, φ, z)eiωt, (119)

=
1

2π

1

rn

∫ 2π

0

dφEz(r, φ, z) [cos(nφ) + i sin(nφ)] , (120)
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where the cos and sin terms in Eq. 120 define the normal and skew multipole

components—respectively—for an rf cavity. We can write the time dependent mul-

tipole component simply by adding the eiωt factor to Eq. 120. We will use these

definitions in Chapter 5 to present a general method to tailor the multipole compo-

nents in the 750 MHz rf dipole. This will allow us to customise the fields according

to the multipole specifications for virtually any given application.

3.7 SUPERCONDUCTIVITY

As a preamble to this section, we would like to recommend the lecture of [31],

where Van Delft and Kes tell the story of how the Dutch physicist H. Kamerlingh-

Onnes discovered superconductivity back in the first decade of the 1900’s. Also, we

would like to highlight that all the formulas presented here have been taken from

literature and, with the intention of not over extending this review, we will not

fully derive them or remark all the considerations taken in their derivations. Again,

this section presents only a sufficient set of superconductivity concepts to allow any

reader, unfamiliar with the subject, to follow the content of this dissertation.

We have previously mentioned that one of the characteristics of the supercon-

ducting materials, that makes them so attractive for the construction of rf cavities,

is their notably low electrical resistance—in the order of tens of nΩ—in contrast

to the normal conductors—in the order of mΩ, for the same frequency ranges. This

“perfect conductivity” characteristic is reached around a critical temperature Tc that

is material specific, for example: 7.2 K for lead, 9.2 K for Niobium, 18.1 K for Nb3Sn,

etc. [32]. However, in 1933 Meissner and Ochsenfeld discovered a second signature of

the superconductors, perfect diamagnetism [33]. The expulsion of the magnetic field

from the bulk material, as the temperature goes bellow Tc, is known as the Meiss-

ner effect and it suggests that at a critical magnetic field Bc(T ), superconductivity

will break down. The temperature dependance of Bc can be approximated by the

empirical relation:

Bc(T ) = B0(0)

[
1−

(
T

Tc

)2
]
. (121)

Figure 26 shows the behavior of the critical field with temperature.
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FIG. 26: Temperature dependance of the critical field for a Type-I superconductor.

3.7.1 THE TWO-FLUID MODEL

The idea behind the two-fluid model is that in a superconductor, there is a current

carried by the normal free electrons, while there is a super-current carried by what

behaves like a superfluid condensate of “super-electrons”. Without going into any

details of the super-current carriers, we can use a sub-index n to denote the normal

carriers and the sub-index s to denote the superconducting carriers. Therefore, we

write the equations that describe the microscopic fields due to this super-current �Js,

as:

∂ �Js
∂t

=
nse

2

ms

�E, (122)

�∇× �Js = −nse
2

ms

�B, (123)

where ms and ns are the mass and the density of super-electrons, respectively, e is

the natural charge, and �Js = −ens�vs. Equations 122 and 125 are commonly known

as the London equations. While for the normal conducting carriers:

�Jn = σn
�E and �Jn = −enn�vn. (124)

Equations 122 and 125 imply that the total density of carriers is the mix between

the n- and the s-carriers: n = nn + ns.

Now, to describe the screening behavior of superconductors in the Meissner state,

we assume an external field B0, applied in the z-direction to the surface of the
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FIG. 27: Magnetic field’s exponential decay inside a superconductor.

superconductor (see Fig. 27). We then apply Eq. 76 to Eq. 125 and considering there

are no displacement currents, we can write:

�∇×
(
�∇× �B

)
= −µ0nse

2

ms

�B,

⇒ d2Bz(x)

dx2
− µ0nse

2

ms

Bz(x) = 0. (125)

The solution to Eq. 125 is Bz(x) = B0e
−x/λL , with the London penetration

depth λL given by

λL =

√
ms

µ0nse2s
(126)

and thus js,y(x) = js,0e
−x/λL . Consequently, both the field and the current density ex-

ponentially decrease with the characteristic length λL, and it is the penetration depth

that ultimately explains the external magnetic field expulsion by superconductors.

One problem that the London equations have, is that they describe only a local

phenomenon, while superconductivity involves the coherent behavior of the super-

conducting carriers at a non-local level. For this reason, A. Pippard introduced the

concept of the coherence length ξ, at which the coherent behavior operates in

the presence of scattering [34]. Considering ξ0 as the coherence length of the pure

material, then:
1

ξ
=

1

ξ0
+

1

�
, (127)

with � = vF τ = 2πvF/ωD, as the electrons’ mean free path, vF is the Fermi velocity

and ωD is the Debye frequency [35]. All this permitted to have a phenomenological
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generalised expression for the supercurrent, as:

~Js = − 3nse
2

4πmscξ0

∫
d3r′

~ρ
(
~ρ · ~A

(
~r′
))

ρ4
e−ρ/ξ, (128)

where ~ρ = ~r − ~r′ and ~A is the vector potential.

Using ∇2 ~B = ~B/λ2, we find the penetration depth to be dependent of the pa-

rameters ξ0, λL, and `. Three important regimes can be defined, depending on the

relative magnitudes of λ, ξ0, and `, as:

λ, `� ξ0 ⇒ λ = λL, the London limit ,

`� ξ0 � λ ⇒ λ� λL, the Pippard limit ,

and λ� ` ⇒ λ = λL
√

1 + ξ0/`, the dirty limit .

3.7.2 THE GINZBURG-LANDAU THEORY

In 1950 Ginzburg and Landau described the transition between the normal and

superconducting phases. They proposed a macroscopic wave function of the super-

conducting carriers ψ(x) that serves as an order parameter, where:

ψ(x) = |ψ|eiφ(x) (129)

and |ψ0|2 = ns is the density of superconducting carriers, with ψ 6= 0 for T < Tc and

ψ = 0 otherwise [36].

By expanding the Gibbs free energy in powers of ψ and ~∇ψ, we get an equation

of ψ, analogous to the Schrödinger equation for a free particle [37], as:

1

2m

(
−i~~∇+ 2e ~A

)2

ψ + β|ψ|2ψ + αψ = 0, (130)

where α and β are the expansion coefficients, m is the electronic mass, and ~A the

vector potential. This accounted for the spatial variation of density of super elec-

trons ns, plus the nonlinear effects on it due to strong fields, features that were not

explained before by the London theory. The penetration depth and the coherence

length—as given by the Ginzburg-Landau theory—are:

λ =

√
mβ

4µ0e2|α|
and ξGL =

~√
2m|α|

. (131)
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Finally, the so-called Ginzburg-Landau parameter is defined as the ratio of both

κ = λ/ξGL and is the parameter that makes the distinction between the supercon-

ductors of Type-I (κ ≤ 1/
√
2) and Type-II (κ > 1/

√
2).

κ =

√
m2β

2µ0�2e2
. (132)

In Type-I superconductors, there is a critical field Hc, at which superconductivity

can’t be sustained and ψ quickly drops to zero in a first-order transition. In Type-II

superconductors, instead of having a spontaneous breakdown of superconductivity,

there is a continuos increase in the penetration of the magnetic field in the material,

forming flux vortices. Then, for Type-II superconductors there are two critical fields

Bc1 and Bc2. Once Bc1 has been reached, flux vortices start to form, the number of

these vortices increases linearly with the external applied field, until Bc2 is reached,

then superconductivity abruptly breaks down.

FIG. 28: Temperature dependance of the critical fields for a Type-II superconductor.

Figure 28 shows a relevant diagram for the discussion that will be presented in the

experimental results section, since in this dissertation we will be referring particularly

to bulk niobium cavities, being Nb a Type-II superconductor.

3.7.3 THE BARDEEN-COOPER-SCHRIEFFER THEORY

In 1955, John Bardeen suggested that, while in a superconducting state, kBTc was

the necessary energy to excite an electron from the surface of the Fermi sea and that

the excited electrons behave similarly to the electrons in the normal state [38]. In
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1956, Leon Cooper described how the electrons could overcome the Coulomb’s poten-

tial by interacting with phonons in the lattice to form weakly bounded pairs, known

as Cooper pairs. The Cooper pairs, at low temperature, have lower energy than

the two individual electrons that conform them [39]. One year after that, Bardeen,

Cooper, and Schrieffer developed their (BCS) theory, assuming that the supercur-

rent was carried by the Cooper pairs rather than by single electrons. The Cooper

pairs behave like a condensate (since they are boson-like quasiparticles, rather than

fermions). Hence, all occupy a single quantum state, the BCS ground state [40].

The energy of the ground state is separated by the energy gap Eg = 2∆(T ) from

the single electron states. Then, the critical temperature Tc is related to the zero

temperature energy gap ∆(0) by the relation

1.76kBTc = ∆(0), (133)

where kB is the Boltzmann constant.

A handy way to characterise a conductor is by its surface impedance, in terms of

the resistance R and the reactance X, it can be expressed as:

Z = R + iX, (134)

with R,X ∈ <. Next, we can redefine the surface impedance in terms of the tangent

fields at the surface as:

Z = i
4πω

c2

[
Ex

(∂Ex/∂z)

]
z=0

, (135)

and following Ohm’s law, we know that the normal current density is Jn = σE0e
−iωt.

The acceleration that the pairs receive, gives raise to a supercurrent density of

Js = i
2nse

2

mω
E0e

−iωt, (136)

and from this expression we can write the conductivity of the superconducting carriers

as σs = 1/(λ2ωµ0).

In this scheme, and explained before by the two fluids theory, DC currents flowing

in the superconductor do not prevent the currents generated by normal electrons

or the Cooper pairs. However, magnetic fields will penetrate the superconducting

surface by λ and their time derivative will generate an electric field that will make

the normal electrons oscillate, generating small currents that produce dissipation,

contributing in this way to the overall surface resistance. Now, the total current



53

density will be the sum of Jn and Js, whereas the associated complex conductivity

would be:

σ = σn + σs. (137)

We can write the conductivity of a normal metal, following the Drude model, as:

σn =
nne

2τn
m

=
nne

2`

mvF

, (138)

where τn is the relaxation time of the electrons and vF is the Fermi velocity. And, for

normal conductors is true that τn � 1/ω, i. e. the relaxation time between collision

is smaller than the rf period.

Then, from Eq. 134 we can write:

Rs =
1

2
σnω

2µ2
0λ

3
L (139)

and

Xs = ωµ0λL. (140)

Thus, the conductivity of a normal metal depends on the energy gap ∆(T ) and

the thermal energy kBT [23] as:

σn ∝ nn` ∝ `e−(∆(T )/kBT ). (141)

Since the surface resistance is the real part of the complex surface impedance, we

find that: Rs = 1
λ
· σn
σ2
n+σ2

s
. As mentioned before, we will focus exclusively on bulk Nb

cavities in this dissertation. Therefore, we can write an approximated expression of

the BCS surface resistance for niobium as:

Rs ∝ λL

(
1 +

ξ

`

)3/2

ω2`e−(∆(T )/kBT ). (142)

Finally, the expression we will use is an approximation for T < Tc/2 and ∆� ~ω.

Which, including a temperature independent parameter that depends on the surface

preparation, called the residual surface resistance Rres, can be written as:

Rs ≈ A

T
ω2e

−
(

∆(T )
kB

)
+Rres = RBCS +Rres. (143)

There are many subtleties on the development of the different superconductivity

theories mentioned above, as well as many important results that we did not men-

tion. After all, superconductivity and its applications are growing fields with lots of

problems that remain to be robustly modelled. We consider that this is a good point

to finish with our brief theoretical review and to continue the discussion on other

aspects of this dissertation.
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CHAPTER 4

BEAM DYNAMICS

From the view point of beam dynamics, the implementation of crab cavities in-

volves different challenges with complexities that depend (among other things) on

the machine’s lattice. There are different approaches one can take on the crossing

angle correction using crab cavities. For instance, a global scheme uses crabbing at a

single point of the machine (see Fig.29(a)), and the total crabbing angle can be built

up turn by turn, allowing to lower the voltage per cavity as well as the total number

of cavities. However, this scheme can considerably reduce the beam lifetime if it

builds up resonant instabilities induced by harmonic excitations [20]. Further com-

plications can derive from the fact that the global scheme requires that the bunches

perform transverse oscillations, following the ring’s betatron function on the crab-

bing plane along the machine. Careful studies of the dynamic beam-beam effects

are necessary to avoid beam losses due to the crab cavities’ physical apertures [41].

In contrast, a local crabbing scheme employs a set of crab cavities at each side of

the interaction point, one set [before the interaction point] to induce the transverse

bunch momentum and a second set [after the IP] to remove the induced transverse

momentum after the collisions, locally confining the crabbing effects within the in-

teraction region (see Fig.29(b)). However, a local scheme requires nπ/2 horizontal

betatron phase advances from the interaction point to the crab cavities on each side.

The present dissertation only considers the study of local crabbing, since it is

the baseline scheme for the MEIC. In Section 4.1, the single turn maps for both the

proton and the electron rings are presented, these descriptions include the interaction

region as a section independent from the rest of the ring. Realistic phase advances,

generated by sets of quadrupoles or Final Focusing Blocks [FFBs], between the crab

cavities located in the expanded beam regions and the interaction point, are shown

to differ slightly from π/2 in Section 4.2. To understand the effect of crabbing on the

beam dynamics for the MEIC, propagation of Gaussian distributions of both electron

and proton bunches were studied over multiple turns (1000 passes). In Section 4.3,

this model was applied to determine linear-order dynamical effects of the synchro-

betatron coupling induced by crabbing and phase advance “slipping”. Section 4.4
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FIG. 29: Cartoon schematic of angle oscillations performed by the bunch for global
(a) and local (b) crabbing correction in a ring.

presents studies, for the simplified case of a symmetric interaction region, the case in

which the transverse coupling introduced to the bunches by the detector’s solenoid is

not locally compensated. In Section 4.4.1, the rotated vector basis parametrised to

the solenoid strength is described. While Section 4.4.3 compares the simple horizon-

tal crabbing kick with the effect of a crabbing kick rotated by the coupling [mixing]

angle, set by the solenoid strength. Also, a general scheme for crabbing in an ar-

bitrary direction is sketched in Section 4.4.4, using twin crab cavities optimized to

compensate for the transverse coupling in the solenoid strength’s range, this scheme

could be particularly useful for machines with non-symmetrical interaction regions.

Lastly, Section 4.5 describes the considerations for modelling the lattice (using the

proton ring as case of study) for particle tracking in Elegant, setting the crabbing

kicks as thin multipole elements [42], and starting the simulations only with the pure

dipole contributions and finally considering different non-zero values for the sextupole

components as well, to infer limits of the higher order multipole content in the cavity

fields that preserve the beam’s lifetime.
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4.1 LINEAR MODEL

Commonly in ring design studies, the equilibrium or closed orbit around the ac-

celerator is approximated to a circle with a fixed radius, or in other words, only

considers a machine made fully with pure dipoles and quadrupoles, then the trans-

verse motion is treated as a perturbation expansion around the equilibrium orbit.

That is to say, it uses a completely linear model. After this is done, it is possible to

look into non-linear effects by adding higher contributions systematically. Analysing

non-linear contributions is important, for example, to avoid higher order resonances

that may raise undesirable dynamic conditions for the machine operations (i.e. beam

filamentation, beam breakup, etc.). In a similar fashion in this section, the entire

electron and proton storage rings 6D dynamics have been reduced to a simple linear

map representation [21], separating the interaction region from the rest of the lattice

(see Fig. 30). For this setup, we neglected any other higher order contribution in the

lattice, to only have non-linearities from the crab cavities, further studies will have

to consider the chromatic sextupoles, since they are the most important non-linear

sources in a typical synchrotron lattice. Due to the high luminosity requirements

imposed on the MEIC [8], stable beam operation while using crabbing correctors, is

of a major importance, and for this reason we will add the next order (sextupolar)

contribution of the crab cavities in a later section.

FIG. 30: Conceptual sketch of the interaction region (blue) connected on its extremes
by a linear map of the ring (red).

The motion both transverse and longitudinal are—up to first order—decoupled,

thus the ring’s one turn map, without dispersion, is a block diagonal matrix as can

be seen in Eq. 144. In the real lattice, due to local dispersion suppression at the

interaction point, the crab cavity downstream will indeed see no dispersion, while
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the cavity upstream may see a dispersion up to the order of -0.04 m.

MRING ≡


(Mx ) 0 0

0 (My ) 0

0 0 (Mz )

 ; (144)

where, the transverse motion maps Mx,y and the longitudinal motion map Mz in terms

of the Twiss parameters (αx/y and βx/y) and the phase advances (ψx/y = 2πνx/y) are:

Mx ≡

 αx sin(ψx) + cos(ψx) βx sin(ψx)

(2αx) cos(ψx)
βx

− (1−α2
x) sin(ψx)

βx
αx sin(ψx) + cos(ψx)

 , (145)

My ≡

 αy sin(ψy) + cos(ψy) βy sin(ψy)

(2αy) cos(ψy)

βy
− (1−α2

y) sin(ψy)

βy
αy sin(ψy) + cos(ψy)

 , (146)

Mz ≡

(
cos(2πνs)

σz sin(2πνs)
σδp

−σδp sin(2πνs)

σz
cos(2πνs)

)
. (147)

A simplified model, of a symmetric interaction region using linear elements in the

thin lens approximation [14], such as horizontal crab kickers, the quadrupole triplets

known as “final focusing block” FFBs, and drifts, was implemented for both electron

and proton bunches (see Fig. 31(a)). A more realistic layout of the current MEIC

interaction region can be seen in Fig. 31(b) [10], a highly non-symmetric interaction

region like this could increase the complexity of certain calculations, for example in

the presence of transverse coupling, but would not significantly change the general

concepts presented.

4.1.1 BUNCH DISTRIBUTIONS

Analytical calculations, for the propagation of 6D Gaussian bunch distribu-

tions through the linear maps, were performed for 1000 passes using Wolfram

Mathematica R©, as a first step to study the linear effects on the beams due to im-

plementation of zero-length linear crabbing kicks to account for a 50 mrad of total

crossing angle (25 mrad per beam), in a local correction scheme. The parameters of

the Gaussian distributions used for this calculations are listed in Table 1, while the

lattice parameters are presented in Table 2.
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(a)

(b)

FIG. 31: Schematic drawings of the symmetric IR showing the 1st (C1) and 2nd (C2)
crab cavity locations in red, the FFBs in blue, the connecting drifts, and the IP in
yellow (a). Layout of the current MEIC IR (b).

4.2 RELATIVE PHASE ADVANCE

The relative phase advance (∆ψx,12) constraint for the crab cavities, in a local

scheme, states that the bunch should describe an integer number of betatron half

oscillations between the crab cavity locations (corresponding to C1 and C2 in Fig. 31)

to ensure a complete cancellation of the transverse kick imprinted across the bunch by

the first crab cavity (i.e. local crabbing). Any difference from nπ in this relative phase

advance will cause mismatched conditions for the ring’s optics and will contribute

to other effects caused by errors on the crab cavities’ voltages, rf phase noise, and

particles’ time of flight errors, among others.

In the present analysis, any effects induced by voltage, phase noise, or time of

flight errors, are neglected by using a linear zero-length kick at the location of the

first crab (C1) that would produce the desired crabbed angle at the interaction

point, independently of the particle’s momentum, and a similar kick at the location
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TABLE 1: Parameters used for the particle’s distributions

Parameter Electrons Protons Units
Energy 5 60 GeV
Number of particles 105 105 –
εN,x 54 0.35 µm
εN,y 11 0.07 µm
σ∆p/p 7.1 3.0 ×10−4

σz 0.75 1 cm

TABLE 2: Lattice parameters

Parameter Electrons Units
Horizontal fractional tune νx 0.73 –
Vertical fractional tune νy 0.32 –
Synchotron fractional tune νz 0.01 –
Crossing angle [per beam] θc/2 25 mrad
Drift length D 7 m
FFB focal length F 7 m

of the second crab (C2) to cancel the crabbing effect. This linear kick will only

accounts for the individual particle’s longitudinal and horizontal positions with re-

spect to the centroid of the bunch. The corresponding transfer matrix -in the base

(x, x′, y, y′,∆t, ∆p/p)- is shown in Eq. 148.

MCrab =



1 0 0 0 0 0

0 1 0 0
Vc tan( θc2 )

D
0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0
Vc tan( θc2 )

D
0 0 0 0 1


, (148)

where Vc is the crabbing voltage, θc the total crossing angle (50 mrad in this case),

and D is the length of the drift placed between the crab cavity location and the IP

(see Fig. 31(a)).

Remembering the standard algebra operations with matrices, we can calculate

the total transfer matrix in the horizontal direction, from one crab cavity to the
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other, using:

Mx = MFFB ·MDrift ·MDrift ·MFFB =

(
−D
F

2D

0 −D
F

)
, (149)

keeping in mind that F = D, according to Table 2.

Once having the total transfer matrix we can make a comparison element by

element with the equivalent transfer matrix constructed by the standard Courant-

Snyder parametrisation [14]. For example, the m12 element of Eq. 45, then:

m12 = 2D

=
√
βC1
x βC2

x sin (∆ψx,12) , (150)

where βC1
x and βC2

x are the horizontal β values at the first and second crab cavity

locations (respectively), while D refers to the drifts’ length as indicated in Fig. 31(a).

Taking into account that the optimal location to place the cavities is as close to

the FFBs as possible, the only way that Eq. 149 accounts for an exact value of

∆ψx,12 = nπ is for
√
βC1
x βC2

x → ∞, for a desirable set-up of the crab cavities.

Therefore, these relative phase advance differences are reduced as the length of the

drifts is reduced or the
√
βx values are increased at the crab cavities’ location. The

calculations performed, using the lattice design for the MEIC proton storage ring [43],

show a relative phase advance difference, between the two cavities, of ∼ 1% with

respect to π.

4.3 SYNCHRO-BETATRON COUPLING

A simple recurrent loop was implemented (using Wolfram Mathematica R©) to

propagate the 6D distributions described in Table 1 through the proper matrices’

sequence (see Eq. 144). Special care was taken to store the evolution at several lo-

cations within the interaction region for each turn to monitor for the evolution of

different effects. Figure 32(a) shows the electron bunch distributions at the interac-

tion point for the uncrabbed initial distribution (blue), the distribution after 1000

turns without implementing the crabbing correctors (orange), and finally the bunch

after 1000 turns with local crabbing on (green). Also, Fig. 32(b) shows the calculated

crabbed angle per turn for the proton bunch with the crabbing correctors turned off

(blue), and when the local crabbing correction is turned on (orange). The crabbed

angle for the distribution is calculated using Eq. 151, taking the approximation for
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small angles.

tan (φcrabbed) ∼ φcrabbed =
〈xz〉
〈z2〉

, (151)

where 〈· · ·〉 is the mean value of the distribution coordinates or their product in this

case.

(a)

(b)

FIG. 32: Electron bunch at the IP (a), for the initial condition (blue), after 1000 turns
without crabbing (orange), and after 1000 turns with crabbing (green). Calculated
proton crabbed angle at IP (b) without crabbing (blue) and with crabbing (orange).

The noticeable periodicity of the effective crabbed angle is consistent with both

the synchrotron and betatron oscillations. This effect is induced by a mismatching,

given by the phase advance differences with respect to π between the crabs. Fig-

ure 33(a) shows the electron distribution at the C1 location, for the initial condition

(blue), that is identical to—and therefore hidden by—the distribution after 1000

turns with the crabbing correctors off (orange), and after 1000 turns when the crab-

bing correctors are turned on (green). In a similar fashion Fig. 33(b) shows the same
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for the proton distribution at the C2 location, as a comparison of the similar effects

induced by the phase advance differences with respect to π on the bunch orientations

for both species. These effects do not show indications of resonances that consis-

tently increase the beam sizes, at least at the linear order and for the small number

of turns used to track the distributions, but they do produce synchro-betatron cou-

pled oscillations due to the induced beam mismatch.

(a)

(b)

FIG. 33: Electron (a) and proton (b) distributions for the initial conditions (blue),
after 1000 turns with no crabbing (orange), and after 1000 turns with the crab-
bing correctors turned on (green). The blue distributions are identical and therefore
hidden under the orange ones.

The “snapshots” of the bunch distributions presented in Fig. 33 show the initial

and final conditions after 1000 turns for the mentioned cases. However, the computed

turn-by-turn beam sizes at different locations show the expected correspondence with

the betatron oscillations for the case when the crabbing correctors are turned off.
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(a)

(b)

FIG. 34: Electron (a) and proton (b) x-z angle after 1000 turns, with no crabbing
(blue) and after 1000 turns with the crabbing correctors turned on (orange).

Whereas for the case when the crabbing correctors are turned on, synchro-betatron

coupling can be observed. Figure 34 shows the correlation of the the horizontal and

longitudinal degrees of freedom for the bunch, when the crab cavities are turned off

(in blue) and when the crab cavities are turned on (in orange). We can see that even

with the crab cavities off, there is a small oscillation around zero on the blue lines,

that corresponds to the fractional betatron tune. This oscillation is accentuated and

convoluted with the synchrotron fractional tune when the crab cavities are turned

on as described by the orange lines.

The transverse and longitudinal fractional tunes of the whole system are: νx =
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0.73, νy = 0.32, and νz = 0.01, respectively. A Fourier analysis of the beam size

oscillations is presented in Fig. 35 as a function of the tune fraction, since the tunes

used in the linear maps for both the electron and proton rings were the same, the

Fourier analysis for each case gives the same result, with only slight differences in

the amplitudes of the peaks and for this reason we do not make a special distinc-

tion between the results for electrons and protons, as the physical meaning of this

phenomenon is independent from the bunch species (see Fig. 35(a) and (b)). We

(a)

(b)

FIG. 35: Fourier analysis of the beams’ horizontal (a) and vertical (b) β-functions,
with the crabbing correctors off (blue) and on (orange).

can see in Fig. 35(b) a perfect match of the vertical fraction tune νy (actually shown

as 2νy − 1 on the graph), for when the crabs are on or off, the blue line is exactly

covered by the orange line. While in Fig. 35(a) we can distinguish, on the right,
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the horizontal fractional tune νx (actually shown as 2νx − 1 on the graph) with a

smaller amplitude for when the crab cavities are off (first peak on the right), consis-

tent to what is shown in Fig. 34 and, on the center, two side bands corresponding

to (νx ∓ νz) − 1. Also, there is a peak corresponding to the synchrotron fractional

tune νz, too small to be appreciated on the plot. Figure 36 shows a close up of the

graph when we can appreciate a peak at exactly 2νz, only for the case on which the

crab cavities are turned on, showing again, a clear synchro-betatron coupling. The

blue line is perfectly at a constant zero value, since there is no coupling with the

synchrotron tune when the crab cavities are off.

FIG. 36: Close up of the Fourier analysis of the βx-functions, with the crabbing
correctors off (blue) and on (orange).

4.3.1 ANALYTICAL APPROACH

The analytical linear models described in Section 4.1, were used to compare the

beam dynamics in an electron-ion collider for the cases when perfect crabbing cor-

rectors are set to restore geometrical degradation of the luminosity due to a 50 mrad

total crossing angle at the IP. Remember that Section 4.2 described the intrinsic

difference of the relative horizontal phase advance [from π] between the crab cavi-

ties, which depends only on the interaction region’s optics and the physical distance

between the crab cavities [for the linear case]. Despite this difference being small,

it can induce synchro-betatron coupling, showing 2 new sidebands (νx ± νz) in the

horizontal betatron motion spectrum, as a result of a typical second order intermod-

ulation between both x and z tunes (see Eq. 152 and 153). These effects do not give

indications of resonances or emittance dilution for the range of (1000) turns studied.

Further studies of this effects for longer number of turns are recommended to ensure
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stable operation conditions for the beams and to identify possible resonances.

νsignal = Axνx +Azνz (152)

|Ax|+ |Az| = O, (153)

with O = 2 in this case. It should be pointed out that other studies of coupling

between transverse and longitudinal motion due to the action of crab cavities in the

lattice, have been very recently carried out by other groups [44] in great mathematical

depth, but with fundamental motivations that constitute a big difference with respect

to case hereby discussed.

4.4 BUNCH TRANSVERSE COUPLING AND CRAB TWINNING

Due to spatial and technical restrictions of the MEIC lattice, high β regions with

transverse coupled beams are being considered as locations for the crabbing cavity

correctors [22]. In this section, simple analytical methods, similar to those previ-

ously described in the chapter, are used to evaluate the effects of a non-compensated

solenoid field in the interaction region. By backtracking the bunches to the crabbing

cavity locations, the proper kick’s angle needed to produce the desired horizontal

crossing orientation of the colliding bunches at the interaction point has been deter-

mined. A basic setup to account for the variable coupling in the crossing correction

scheme to restore luminosity degradation in the machine is proposed. This setup in-

volves the use of double (twin) crabbing cavities that can provide an effective variable

angle kick within the needed range to compensate for the beam energy dependent

transverse coupling. In other words, it is a system that could provide a crabbing kick

in an arbitrary transverse direction.

4.4.1 TRANSVERSE BASIS ROTATION

For this part, only the linear effects of the solenoids [45], crabbing cavities and of

the quadrupoles composing the final focusing blocks [46] are considered. We use the

following notation in the transfer matrix [14]: with F as the final focusing block’s

focal length, D the drift length, C ≡ cos(KL), S ≡ sin(KL), K ≡ qBSol
2P

, where

q is the particle’s charge, BSol the solenoid magnetic induction, P the particle’s

momentum, and L the solenoid length.

The transfer matrix correspondent to the first-half of the interaction region (IR1),

this is to say, from the crabbing cavity location towards the interaction point with
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the crabbing kicker off, can be written as in Eq. 173:

MIR1 = MSOL ·ML ·MFFB; (154)

where MSOL, ML, and MFFB represent the thin-like lens transfer matrices for the

solenoid, drift, and final focusing block respectively. With the basis of the trans-

verse coordinates at the interaction point given by: x̂T = (1, 0, 0, 0, 0, 0) and

ŷT = (0, 0, 1, 0, 0, 0).

x

xcoup

α(BSol)

s

y

ycoup
β(BSol)

FIG. 37: Transverse coordinate basis at the IP (solid) and coupled transverse coor-
dinate basis at the crabbing cavity position (dashed), where BSol is the solenoid field
strength.

Strictly speaking, to split the solenoid, one would have to take into account the

up and down fringe field contributions—Mup and Mdn, repectively—following Conte

and MacKay’s Eq. 4.75 to 4.77 in [12]. Alternatively, we can also obtain a section of

the interaction region, up to the first part of the solenoid, by multiplying MS = Mup ·
MIR1) since the fringe field contributions at the end of the section—Mup and Mdn—

will cancel each other out. Then, to back propagate the IP’s transverse coordinate

basis towards the crabbing cavity position, a new set of transverse coordinates at the

location of the crabbing cavity (x̂coup, ŷcoup) was defined as a linear transformation of

the original transverse basis at the interaction point (See Fig. 37). The longitudinal

coordinates were treated as fully independent.{
x̂coup

ŷcoup

}
= M−1

IR1 ·Mup

{
x̂

ŷ

}
, (155)
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While the transfer matrix—considering a full solenoid—can be written as:

M−1
IR1 =

C(C −DKS) −C2(DK+T )
K

S(DKS − C)
S(DKC+S)

K
0 0

C(C+(F−D)KS)
F

−C2((D−F )K+T )
FK

−S(C+(F−D)KS)
F

S((D−F )KC+S)
FK

0 0

S(C −DKS) −S(DKC+S)
K

C(C −DKS) −C2(DK+T )
K

0 0
S(C+(F−D)KS)

F
−S((D−F )KC+S)

FK
C(C+(F−D)KS)

F
−C2((D−F )K+T )

FK
0 0

0 0 0 0 1 0

0 0 0 0 0 1


,

where with T ≡ tan(KL). Plugging this into Eq. 155, we get:

x̂Tcoup = (C(C −DKS), x′x, S(C −DKS), y′x, 0, 0),

ŷTcoup =
(
−S(C −DKS), x′y, C(C −DKS), y′y, 0, 0

)
.

Once again using this result and the diagram of Fig. 37, the horizontal and vertical

angles can be written as in Eq. 156.

tan (α (BSol)) =
S(C −DKS)

C(C −DKS)
= tan (β (BSol)) = T.

∴ α (BSol) = β (BSol) = φSol = KL. (156)

4.4.2 MIXING ANGLE (φSOL)

As mentioned previously, in this section (Section 4.4), a slightly more complex

scheme is taken into account, where the interaction region includes a solenoid that is

part of the detection system and the upstream/downstream regions are asymmetrical

for both the electrons and protons, as can be noted in the diagrams of Fig. 38.

One could use as a way to visualize the effects of the coupling induced to the

bunches by the solenoid, calculating the mixing angle at the location of the crab

cavities by back-propagating the distributions as explained early in this section in

Eq. 155. Figure 39 shows the analysis of the behavior of this mixing angle φSol = KL,

both for the electrons (with parameters: Pe = 5 GeV, De = 4 m, Fe = 7 m, and

Le = 3 m) and protons (with parameters: Pp = 60 GeV, Dp = 5 m, Fp = 7 m,

and Lp = 2 m), as a function of the solenoid’s field BSol and taking into account

the upstream and downstream asymmetry of the interaction point [46] as previously

discussed.
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FIG. 38: Comparison of the symmetrical IR without solenoid (a), and the asymmet-
rical IR with a solenoid of length LSol = Le + Lp (b).

Examples of the coupled transverse distributions both for electrons and protons

for several values of BSol are presented in Fig. 40 and 41 respectively.

4.4.3 ROTATED CRABBING CAVITY SOLUTION

Since the experiments would like to run at different solenoid strengths, to reduce

systematic errors, only a crabbing cavity rotated by KL about the z axis (MC,Σ) [14],

could always give a kick in the “correct” direction at the crabbing cavity location

to produce the desired crabbed distributions at the interaction point. The transfer

matrix for such a rotated crabber can be seen in Eq. 157.

MC,Σ = R(−KL)MC R(KL) ,

⇒MC,Σ =



1 0 0 0 0 0

0 1 0 0 C tan(φ)
F

0

0 0 1 0 0 0

0 0 0 1 S tan(φ)
F

0

0 0 0 0 1 0
C tan(φ)

F
0 S tan(φ)

F
0 0 1


,

(157)

where the crabbing angle [per beam] in the MEIC is φ = θC/2 = 25 mrad. Then, we

used this and Eq. 173 and 157 to find the total transfer matrix as MCΣT = MIR1MC,Σ.
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FIG. 39: Magnitude of KL in radians for electrons (blue) and protons (purple) at
the position of the crabber.
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FIG. 40: Electron distributions at the crabber location for different BSol at 5 GeV.

In order to compare the solutions given by the rotated crabbing cavity—for dif-

ferent solenoid strengths BSol—with the case with no solenoid and fully horizontal

crabbing, the distributions propagated through MCΣT to the interaction point are

presented in Fig. 42(a) and (b), for electrons and protons respectively.

Using for the electrons: Pe = 5 GeV, De = 4 m, and Le = 3 m; and for protons:

Pp = 60 GeV, Dp = 5 m, and Lp = 2 m, with F = 7 m—in both cases—as shown

in Fig. 38. By plotting the crabbing angle as a function of BSol (see Fig. 43), it

is possible to evaluate the maximum error in the crabbing angle due to additional

solenoid focusing as ∼ 7% for electrons and < 0.1% for protons in the studied range
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FIG. 41: Proton distributions at the crabber location for different BSol at 60 GeV.

for BSol. This extra focusing will be compensated by graduating the currents in the

FFB’s quadrupoles.

4.4.4 TWINNING THE CRABBERS

As a final step for this section, an array of 2 twin cavities (~Cx1 and ~Cx2) was

studied. The superposition of these twin cavities simulates a crabbing kick ~CΣ =

~Cx1 + ~Cx2, with a variable angle (φSol) that will account for the transverse coupling

of the beams. Then, using Fig. 44 and the law of cosines [47] we can write down the

effective kick as:

~CΣ =[Cx1 cos(φSol − αx1) + Cx2 cos(αx2 − φSol)]

× [cos(φSol)x̂+ sin(φSol)ŷ],
(158)

Fig. 45 shows how when optimising to lower the individual voltage needed from

the twins Cx1 and Cx2 (Fig. 45 l.h.s.) to obtain the desired kick, the twins are found

to be parallel, thus the angular coverage collapses to a single coupling angle φSol,

which corresponds to the traditional crabbing concept. And, when optimising for a

maximum angular coverage (Fig. 45 r.h.s.), we lose balance of the voltage contribution

for the cavities. This trade off needs to be considered to find the optimal angle

θtwin that balances the twins ’ voltage contributions for the needed angular range

(φSol = KL) in the machine.
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(a) Electron distributions.
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FIG. 42: Distributions at the IP for different BSol, using a crabber rotated by an
angle of KL, compared to the case w/o solenoid (blue) and w/o both the crabbing
cavity or solenoid (green).

4.5 PARTICLE TRACKING

The studies performed in the present dissertation use the former MEIC baseline

frequency of 750 MHz to analyse the effects of the sextupole component of the rf

kick given by such a cavity on the proton bunches at 60 GeV as a case study, even

when the baseline frequency of collision has changed [10], the methods developed

here can be easily implemented for different beam energies and frequencies without

major difficulties, once the proper lattice updates have been done.
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FIG. 43: Total crabbing angle at the IP (φ) for electrons (blue) and protons (purple)
as a function of the BSol.

4.5.1 MULTIPOLES AND EMITTANCE

By treating the horizontal crabbing of the bunch as a chirp in x, it is possible to

express the change in emittance due to this chirp [3] as:

∆εx
εx

=

√
σ2
x′ + σ2

∆x′

σ2
x′

− 1. (159)

Using a definition of the thin-lens rf multipole transverse kick, such as:

∆x′ =
∆px
pz

≈ V0

(
b1 + b3

(
x2 − y2

)
+ ...

)
cos(φrf), (160)

where x is the horizontal coordinate, V0 ≡ eVx
pzmc2k

: with Vx as the total crabbing

voltage, pz the particle momentum, the wave number k =
ωrf
βc

, b1 and b3 are the

dipole and sextupole coefficients respectively and φrf = 270o as the rf phase with

respect to the bunch centroid.

Then, one can write in these terms:

σ∆x′ ≈
V0b3

2

√
σ2
x2 + σ2

y2 , (161)

thus, using Eq. 159 and 161 in this notation, the change of emittance per turn can

be expressed as follows:

∆εx
εx

=

√
σ2
x′ +

V2
0 b

2
3

4

(
σ2
x2 + σ2

y2

)
σx′

− 1. (162)
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FIG. 44: Twin crabbing kicks ~Cx1 (blue), and ~Cx2 (red) with αx1 and αx2, respec-

tively, and the total kick ~CΣ = ~Cx1 + ~Cx2 (double lined), with a variable angle φSol.
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FIG. 45: |ĈΣ| as a function of both twins ’ normalised amplitudes Cx1 and Cx2, for
the two extreme values of their relative angle θtwin ≡ αx2 − αx1 = 0 and θtwin = π

2
.

This shows that the change in the emittance will depend on the transverse second

momenta of the bunches and the sextupole component. In other words, Eq. 162 tells

how geometrically the sextupole content on the crabbing kicks may have repercus-

sions on the beam luminosity or even limit the beam lifetime. For this reason, in

this section the case with a pure dipole kick is compared to the case, where there is

also a sextupole component to the rf kick, in order to look for possible resonances or

relative stability conditions for the crab cavities’ operation.
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4.5.2 TRACKING METHODS

We first describe the simplifications made to the lattice to focus our numerical

studies on the interaction region, proposing a linear map for the proton storage ring

that properly accounts for the transverse and longitudinal dynamics of the machine,

leaving the full description of the interaction region as a separate block. Secondly,

we present a discussion of the tracking elements and basic calculations performed at

different locations of the interaction region.

As previously mentioned, linear maps were used for the 6D dynamics of the entire

proton storage ring, excluding the interaction region, as seen in the schematic drawing

on Fig. 30, while the elements that conform the interaction region and its associated

transverse Twiss functions are described in Fig. 46. A small script was written in

PYTHON to translate the rings lattice from the MAD-X files created by V. Morozov,

as part of the MEIC design studies, to a transfer matrix with a suitable format for

Elegant.

FIG. 46: Interaction region optics of the proton ring, where the yellow stars represent
the crab cavity locations.

All the 6D phase space tracking was done using Elegant, the linear map was

placed at the end of the interaction region as described in Fig. 30 and 46. The final

focusing blocks at each side of the interaction point were described using elements
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such as QUAD, CSBEND, and DRIFT [42]. While for the crab cavities, zero-length

multipole rf kicker (MRFDF) elements at zero crossing phase (φrf = 270o) were

implemented. In this way and for the purpose of the present study, the number

of non-linear contributions was reduced to isolate the effects of the higher order

multipole contents of the cavities.

A uniform ellipse distribution of protons with the parameters described in Table. 3

were tracked for 1000 turns.

TABLE 3: Parameters of the employed proton distribution

Parameter Value Units
Central momentum 60 GeV
Number of particles 104 –
εN,x 0.35 mm-mrad
εN,y 0.07 mm-mrad
σ∆p/p 3.0×10−4 –
σs 10−2 m

The linear map for the longitudinal dynamics was constructed by following [21],

with a fractional synchrotron tune of νs = 0.01. Fig. 47(a) shows the longitudinal

phase space coming out of the interaction region for the last 20 of 1000 turns of the

lattice without the crab cavities being turned on.

(a) (b)

FIG. 47: Longitudinal phase space, plotted for the last 20 of a 1000 turns without
crab cavities (a) and longitudinal beam size showing oscillations in the order of the
numerical errors (b).
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4.5.3 PURE DIPOLE CASE

To analyse the effects on the bunches due to the higher order contents of the crab

cavity fields, the present study started by setting the corresponding value of the nor-

malised voltage amplitude V0,C1, for the zero-length dipole kick at the first cavity lo-

cation to crab horizontally the bunch at the interaction point by 25 mrad, without any

higher order multipole contribution. Another zero-length dipole kick was set at the

second crab cavity location with a normalised amplitude of V0,C2 =
√

βC1
x

βC2
x
V0,C1 [14],

which would completely cancel the effects of the first crab on the bunch, only for the

case of bunches arriving with an exact nπ phase advance between the crab cavities.

In this case, βC1
x and βC2

x are the horizontal beta functions at the locations of the

first and second crab cavities, respectively. Any multipole contribution, higher than

the dipole, was set to zero for this first step of the work.

After ensuring the conditions above described, the particles were tracked for 1000

turns, Fig. 48(a) shows the crabbed bunch at the interaction point location for the

last 3 of the 1000 turns. While Fig. 48(b) shows the effective crabbed angle for each

of the 1000 turns, calculated using Eq. 163,

tan (θc) ≈ θc =
〈xz〉
〈z2〉

=
〈xt〉

βc 〈t2〉
. (163)

It can be noted from Fig. 48(b) how the effective crabbed angle of the bunches at

(a) (b)

FIG. 48: Crabbed 60 GeV proton bunches at IP (a) and calculated crabbed angle
(b), using a pure dipole contribution from the rf cavities.

the interaction point (tagged as “theta c” on the plot) oscillates around the desired

value turn-by-turn, by roughly ± 0.5 mrad with different convoluted frequencies.

This is due to both synchro-betatron motions and small relative phase advance errors

between the crab cavities, as discussed in Section 4.3 and Section 4.2.
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The behavior of the transverse and longitudinal beam sizes as a function of the

number of turns, gives an insight to the φ [or theta c] variations at the interaction

point. From Fig. 49(a), (b), and (c) can be noted the associated betatron and

synchrotron oscillations of the bunch, and from (d) one could observe how a residual

x-z angle at the location of the first crab will translate in an error of the total

crabbed angle at the interaction point, this residual error appears to be stable for

the studied range (1000 turns) for the case of pure dipole rf kick and could presumably

be accounted for an exchange of horizontal and longitudinal emittances (compared

with Fig. 47(b)). However, more detailed studies need to be performed to determine

the real scope of these effects and their range of stability, which would establish

important criteria for the high luminosity operation of the machine and eventually

for the beam lifetime as well.

(a) (b)

(c) (d)

FIG. 49: Beam sizes for x (a), z (b), and y (c) for the case of a pure dipole rf kick.
(d) shows a residual x-z angle of the bunch at the entrance of the first cavity.
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4.5.4 ADDING A SEXTUPOLE CONTRIBUTION

For this case, a contribution consistent with the characteristic range of the sex-

tupole strength for the 750 MHz rf dipole [at the operating voltage] was added to the

thin multipole [48] and then calculated the crabbed angle at the interaction point,

along with the beam sizes at the first crab cavity location for 1000 turns (see Fig. 50).

(a) (b)

(c) (d)

FIG. 50: For the case of a small sextupole contribution: the crabbed angle at IP (a),
the longitudinal beam size (growing at similar rate than for the pure dipole case) (c),
and both horizontal and vertical beam sizes (b) and (d), respectively.

From Fig. 50(a), a noticeable damping of the amplitude of the crabbed angle vari-

ation after 1000 turns compared to Fig. 48(b) can be observed, as well as variations

of the transverse and longitudinal beam sizes (b), (c), and (d) with the difference

that with the introduction of a non-linear (sextupole) contribution, both transverse

beam sizes seem to be involved in the emittance exchange process. It is apparent

that the relative stability for the case of pure dipole contributions and the case of
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including a small sextupole contribution to the crabbing rf kicks, for the range stud-

ied (1000 turns), does not change radically. However, it is important to perform

detailed studies of these effects to avoid resonances that could compromise the beam

emittances. We can see that in Fig. 50(b), σz has not yet completed even one slow

oscillation, therefore it is difficult to understand its periodicity, there is the underline

of the importance of tracking during many synchrotron periods, but such studies are

considered to be out of the scope of the present dissertation.
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CHAPTER 5

DESIGN, OPTIMISATION, AND CHARACTERISATION

5.1 ELECTROMAGNETIC DESIGN

When designing an rf structure, normally one can start with an “educated guess”,

according to the electromagnetic configuration that suits best the application. In our

case, for example, we have parted from the parallel bar cavity [49]. Once the elec-

tromagnetic configuration has been set—up to a first order—one could approach the

optimisation strategy on several ways, depending on the final goals. In the case of

the rf dipole, we decided to increase the cavity’s shunt impedance, while lowering

the peak surface fields but aiming for a BP/EP ratio of 2. Several geometrical and

characteristic constrains will be fixed by the machine design, the beam character-

istics at the cavity location, and the performance required. Beside the geometrical

constraints, during the process of studying a geometry, one develops a sensibility of

the effects on the electromagnetic properties of the resonator as a function of the

change in its principal geometric parameters.

5.1.1 PRINCIPAL GEOMETRIC PARAMETERS

As previously mentioned, there are many important applications for rf cavities in

particle accelerators, besides the acceleration of charged beams, even when the latter

remains as the principal one. For velocity-of-light applications TEM accelerating

structures have peak surface fields larger than TM010 structures [50]. Even for

deflecting cavities the simulations demonstrate that this is not the case and the peak

surface fields are comparable for both the TEM and TM010 structures. Also, previous

prototypes of the rf dipole have already proven to be very attractive for crabbing and

deflecting applications at low frequencies (400 MHz and 499 MHz for the LHC in

CERN and CEBAF in Jefferson Lab respectively [28, 6]), due to their considerable

small transverse size and dependency of their rf properties on few parameters, which

makes the rf dipole geometry not just compact but efficient as well. The present

chapter, focuses on the design studies performed to develop a 750 MHz rf dipole,

proof-of-principle (PoP) crab cavity for applications in electron-ion colliders.
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FIG. 51: 3D visualization of the fields: magnetic (left) and electric (right), for the
deflecting/crabbing mode.

Figure 51 shows the crabbing mode for the 750 MHz rf dipole cavity final elec-

tromagnetic design. De Silva and Delayen presented already a thorough discussion

of the basic aspects and the design evolution of parallel bar deflectors in [28]. How-

ever, it is important to take a look at the specifics of the design and optimisation

processes for the 750 MHz rf dipole to understand which are the key factors from the

viewpoint of rf performance, fabrication, and machine operations, all these will help

us to understand why the cavity geometry and the fabrication design are the way

they are. The cavity radius is the main knob used to keep the rf dipole at the desired

frequency, in this section we will not describe in detail the effects on the cavity’s

properties due to the change of the cavity radius, until Chapter 8, when we lay down

the notion of other frequencies and future work for the Jefferson Lab’s Electron-Ion

Collider crabbing system. In this section, we will focus on the effects of the other

key parameters in our design. Graphic descriptions of these geometrical parameters

are given in Fig. 52(a), (b), (c), (d), and (e).

We used as a reference length, for all the calculations, the value of a half wave-

length of the rf fields, this is for example λ/2 = 200 mm for 750 MHz. Since the

electric field, being the main responsible for the bunch deflection [crabbing], is lo-

cated in between and along the two parallel bars, it is only natural to optimise the

length of these bars for the longest interaction of the beam with the desired part of

the rf wave, or in other words, the effective “deflecting length” for our cavity is set to

λ/2. This principle would work for any rf dipole structure, no matter the frequency

or the specifics of its geometry. For instance, the bar’s length is one of the parameters

that define the total cavity length, along with the beam pipes’ length (driven by the

electromagnetic decay in a circular waveguide), and the slope of the end-caps, also
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(a) Bar vertical slope (b) Bar width (c) Beam aperture

(d) Bar horizontal slope (e) Bar length

FIG. 52: Graphic description of the principal geometric parameters of the 750 MHz
rf dipole.

used to optimise multipacting [51], the latter will be discussed later in Section 5.2.

Once the bar length was set to λ/2, we started with the bar vertical angle fixed at

45◦ and then varied the beam pipe diameter, while letting the width of the bars be

5% wider than the beam pipe diameter in each case (see Fig. 52).

Results of simulations using CST Microwave StudioR© are shown in Fig. 53. From

this graph, we can observe that as the beam pipe diameter—or more generally—

the ratio of the beam pipe to the half wavelength [d/ (λ/2)] increases, then the R/Q

decreases, thus the transverse shunt impedance [RtRS] decreases and the peak surface

field ratio Bp/Ep increases as well. Therefore, when optimising rf dipole structures

like this, the parameter d/ (λ/2) has to be minimised. At this point, the down

selection of the beam pipe diameter was not made based on the optimisation of the

rf properties, but on the machine’s beam dynamics and more concretely, the expected
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transverse size of the bunches at the crab cavity location. Therefore the beam pipe

aperture diameter was set to be 60 mm.

FIG. 53: R/Q and peak surface fields’ ratio, as a function of the beam aperture.

Some important properties of a preliminary design of the 750 MHz deflecting

structure, obtained from CST Microwave StudioR© simulations, are compared to the

KEK elliptical crab cavity [52, 53] in Table 4. It can be noted that—for the rf

dipole—the deflecting π-mode is the lowest frequency mode, which would simplify the

damping of the undesired modes, especially in the case of high current applications.

Keeping all the parameters fixed and for a beam pipe radius of 60 mm, we then

optimised the rf properties by varying the bar width (see Fig. 53). The results of the

simulations can be seen in Fig. 54. In this case, we can synthesise the optimisation

process as maximising R/Q, while we are aiming for a balance peak field surface

ratio Bp/Ep as close as possible to 2. However, other practical considerations needed

to be taken into account when optimising the electromagnetic design, in terms of

requirements on the homogeneity of the fields along the beam pipe, as illustrated in

Fig. 55, so that the particles can perceive a more uniform kick inside the cavity for

different transverse offset positions in the bunches, this field uniformity is relative

to the stability and emittance dilution requirements for both the electron and pro-

ton bunches. Based on these considerations and the simulation results presented in

Fig. 54, we set the bar width to be at least 5% wider than the beam pipe diameter,

choosing the optimal parameter to 63 cm and reaching values of R/Q ∼ 130 Ω for
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FIG. 54: R/Q and peak surface fields’ ratio, as a function of the bar width.

Bp/Ep ∼ 2 mT/MV/m.

FIG. 55: Visualization’s close up of the electric field in the vicinity of the parallel
loading elements.

Another important fact to highlight is that, as the bar width is increased, then

the peak electric surface field decreases while the magnetic increases, this feature

allows the surface peak field ratio to describe the curve presented in Fig. 54 (red

line). We can see from Fig. 54, that the width that maximises R/Q is between 45

and 50 mm. While we find our optimal region to be slightly above 60 mm of beam

aperture, with a close value of Bp/Ep to 2 mT/MV/m.

As a final optimisation stage, having fixed both the bar width to 63 cm and the

bar length to 200 mm, we then varied for different bar horizontal slopes (φ) several

values of the bar vertical slope (θ), as described in Fig. 54. The resulting peak
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surface field values—as found from CST Microwave StudioR© simulations—and the

corresponding line for the Bp/Ep = 2 mT/MV/m are shown in Fig. 56 and 57 . In

this case, an optimal design is one that keeps the desired balance ratio of the peak

surface fields while minimises the value of each one of them.

FIG. 56: Normalised peak surface fields for the 750 MHz rf dipole optimisation.

From the graphics in Fig. 56 and 57, we observe how the surface peak fields’ ratio

increases as the slopes increases but, at about a vertical angle of 70◦, the horizontal

angle does not make a big difference (see Fig. 57(a)), while for theR/Q, the horizontal

slope represents a bigger change; the bigger the horizontal angle is, the smaller the

R/Q gets. Therefore, we would like to keep small angles for the bar horizontal slopes.

After the electromagnetic optimisation studies, the geometrical parameters were

proposed—and after a couple of iterations with the engineering department in charge

of the construction of the cavity at Niowave, Inc.—it was determined as convenient,

from the construction point of view, to keep a wide enough external bar length

that allowed the blending radius of the bars to meet the blending radius of the

cavity’s end-caps (circled in red in Fig. 58). Therefore, adjusting the end-caps’

slope was needed to keep the bar length at λ/2 and finally, the model that better

accomplished the electromagnetic and production requirements in the most efficient

manner was finalised. The principal parameters for the final design are presented in



87

(a) Peak surface fields’ ratio (b) Behavior of the R/Q

FIG. 57: Peak surface fields and R/Q, as functions of the bar slopes for the 750 MHz
rf dipole.

Table 4. The four side ports were placed in a region of low surface magnetic field

to minimise possible ohmic losses in the non-superconducting flanges and could be

used for chemistry, cleaning, as input, output and possible HOM damping couplers

location for a next iteration of the design. The angle described by these ports (31.58◦)

is necessary to make them perpendicular to the face of the end cap, where they are

placed on. The distance between the load elements is fixed to be 60 mm, following

the same criteria employed to the beam pipe diameter in terms of the σ for the

bunches at the location of the crab cavities.

The TEM-like configuration for the crabbing mode of the final 750 MHz rf dipole

design is illustrated in Fig. 59, where the transverse electric field can be seen between

the oscillating load elements on the top left figure (a). Also, at 90◦ out of phase with

the electric field, the transverse magnetic field can be seen looping around the same

load elements on the top right figure (b). The momentum transfer for the crabbing

of the bunches, is given almost fully by the transverse electric field of the operating

mode. The surface electric field is concentrated in the bars as shown in the bottom

left figure (c), while the surface magnetic field is distributed all around the outer

conductor of the cavity but located with more intensity in the top and bottom walls

of it as observed in the bottom right figure (d). The side ports on the cavity have

been placed in the faces of the end-caps where the surface magnetic field is lower—as



88

FIG. 58: End cap’s blending radio meets curvature of loading element’s external
blending radius.

mentioned before—nevertheless it is not zero at these points and as a consequence

of this, we have ohmic losses on the ports’ flanges, the analysis of these losses will be

presented later in Section 6.5.

To understand the operation of the rf dipole as a crab cavity, we need to un-

derstand Fig. 59(a) and (b). While for understanding the rf properties optimisation

process, we need to study how both Fig. 59(c) and (d), change as variations in the

geometrical parameters are performed.

As final design step, a tuning stack parameter per side (df/dz in MHz/mm) was

determined to estimate the change of the frequency due to the change of the length

of the cavity’s outer conductor. In this way, symmetrical trimming at the ends of

the outer conductor could be employed to tune up the cavity frequency during its

construction before the final electron beam welding.

5.2 MULTIPACTING ANALYSIS

Multipacting is one of the principal limitations of performance in rf structures.

It occurs when electrons, produced by field emission—or any other means—are ac-

celerated and smashed against the resonator’s walls, secondary electrons then can

be emitted and accelerated once again towards the walls, creating new electrons.

This process can lead to localised and resonant trajectories, reaching impact ener-

gies correspondent to a secondary emission yield (SEY) greater than unit, resulting

in a cascading effect that can cause problems, such as low achievable gradients in

the structure, bunch instabilities, and quenches by thermal breakdown in the case
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(a) Electric field (b) Magnetic field

(c) Surface electric field (d) Surface magnetic field

FIG. 59: Fields configuration in the rf dipole for the deflecting/crabbing mode.

of superconducting structures [54]. Due to its complexity and random nature, this

non-relativistic phenomenon has been for a long time an important case of study

that needs to be assessed in order to further improve the operation and performance

of current and future particle accelerators.

The SEY, as a function of the impact energy (δ (E)), changes for different mate-

rials and is surface condition dependent [55], therefore the impact energy bandwidth

(EII −EI)—to have a multipacting condition (i. e. δ > 1)—varies from case to case.

Figure 60 shows the general SEY function curve for an arbitrary surface. In the case

of pure and clean Nb, the range of impact energies for the multipacting condition is

EI > 150 eV, and EII < 2000 eV. The multipacting barriers are known to be either

soft and easily processed and cleaned, or hard multipacting barriers that cannot be

removed by processing and may need redesigning of the cavity geometry in order to

properly operate.
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TABLE 4: Properties of two crab cavity designs

Parameter 750 MHz KEK Units
RFD Cavity

Freq. of π mode 750.1 501.7 MHz
λ/2 of π mode 200.0 299.8 mm
Freq. of 0 mode 1350.6 ∼700.0 MHz
Freq. of nearest mode 1055.9 413.3 MHz
Freq. of lower order mode - 413.3 MHz
Cavity length 300.0 299.8 mm
Cavity width 187.4 866.0 mm
Cavity height 187.4 483.0 mm
Bars width 63.0 - mm
Bars length 200.0 - mm
Bar Vertical Slope 45 - deg
Aperture diameter 60.0 130.0 mm
Deflecting Voltage (V ∗T ) 0.2 0.3 MV
Peak electric field (E∗P ) 4.45 4.36 MV/m
Peak magnetic field (B∗P ) 9.31 12.45 mT

B∗P/E
∗
P 2.09 2.85 mT

MV/m
Geometrical factor 131.4 227 Ω
[R/Q]T 124.15 48.90 Ω
RTRS 1.65 1.11 ×104Ω2

At E∗T= 1 MV/m

5.2.1 REDUCING MULTIPACTING BY DESIGN

We used the extrusion length of the end-caps (see Fig. 61) as a varying parameter

to study the optimisation of the multipacting conditions for the 750 MHz rf dipole,

keeping all the other geometrical parameters fixed with exception of the cavity radius,

this was used as a free knob to correct the resonant frequency of the fundamental

mode. The extrusion of the end-caps results in the change of the total cavity length,

this is not relevant from the design point of view, as long as we keep the parallel

bars’ length constant to the effective length of λ/2 = 200 mm.

Once a set of models with different extrusion lengths from lmin = 20 mm to

lmax = 50 mm were generated, we used the Omega3P and the Track3P modules

from the “Advanced Computational Electromagnetic Simulation” (ACE3P) Suite [56]

developed by SLAC, running in the NERSC [57] super cluster at Berkeley, to obtain
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FIG. 60: Secondary emission yield as a function of the particles’ impact energy.

the eigenmodes and the multipacting conditions respectively.

FIG. 61: Variation of the extrusion length of the end-caps, starting at 20 mm (model
1) and finishing at 50 mm (model 9).

The resulting 3D locations and impact energies (in color code) of the multipacting

conditions for 9 of the studied models are presented in Fig. 62, where the value of the

extrusion length is increasing (from right to left and top to bottom, respectively).

The particles’ resonant locations are considerably cleared out from the top of the

external conductor to populate slightly more the end-caps, where both the electric

and magnetic fields are lower. This places them closer to the auxiliary ports, thus

making it easier for the vacuum systems to help with the evacuation and therefore

reducing the sustainability of the resonant conditions.
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FIG. 62: Comparison of the multipacting impact energy and resonant locations for
increasing values of the extrusion length of the end-caps, from 20 mm (in 1) to 50
mm (in 9).
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We used the two extremal values of our optimisation parameter (i. e. lmin =

20 mm, and lmax = 50 mm) to compare the multipacting levels obtained by the

simulations as seen in Fig. 63. It can be observed that the multipacting barriers do

not appear to have great differences between each other, despite the fact that for the

model with smaller end-cap’s extrusion (i. e. lmin = 20 mm, in the top-right most

model (1) of Fig. 63) higher impact energies are reached, which is not necessarily an

important feature since particles with impact energies > 2000 eV do not contribute

to multipacting in Nb. However, both multipacting barriers are well defined at the

lower voltage levels, keeping the operating region virtually multipacting free. What

is hard to appreciate from the graphs, is that the barriers for the model with smaller

extrusion length are heavily denser than those for the model with longer extrusion

length.

FIG. 63: Multipacting levels as a function of the transverse voltage for the 2 extremal
values of extrusion length of the end-caps: 20 mm (left, model 1) and 50 mm (right,
model 9).

Using this qualitative analysis, we can say that the 750 MHz rf dipole design

does not show critical multipacting levels at the operation voltages (up to 3 MV per

cavity) and most of the barriers are presented at lower voltages as seen in Fig. 64.

It is obvious that the most problematic area for multipacting are the end-caps for

this design, but the in general, the rf dipole shows to be relatively multipacting-

clean design overall. Later, in Section 6.4.5, we will discuss how these results are in

agreement with the multipacting activity observed during the prototype cryo test.
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FIG. 64: Electron’s impact energy vs Vt and their impact location, for the first 5
orders of multipacting in the 750 MHz rf dipole PoP cavity.

5.3 HIGHER ORDER MODE ANALYSIS

For high-current applications—for instance, up to 3 A stored for the electron

beam in the MEIC—the properties of the higher-order modes and their damping

become more relevant for cooling and stability during operations. The rf dipole

geometry has the crabbing/deflecting mode as the lowest frequency mode, the closest

higher order mode is a dipole mode with a frequency of ≈ 1.5 times the fundamental

frequency (f0). The first degenerated vertical mode has a frequency ≈ 2.1 times the

fundamental frequency. We use the field components on axis to characterise the type

of higher order modes, as can be appreciated in Table 5.

TABLE 5: Types of HOMs

Field on Beam Axis Type of Mode
Ex, Hy Deflecting in x
Ez Accelerating

Ey, Hx Deflecting in y
Hz Doesn’t couple to the beam

We have analysed the properties of the higher order modes, up to the beam pipe

cutoff frequency for the 750 MHz rf dipole. In Table 6, we have listed the properties

of the representative modes with relatively higher R/Q values. The HOM spectrum

for the 750 MHz rf dipole is shown in Fig. 65, with the frequencies normalised with

respect to the fundamental frequency of the cavity (f0 = 750 MHz). An important
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factor to highlight for this design, is the absence of any lower order modes and

similar order modes, along with a wide frequency separation between the HOMs and

the fundamental mode, making the damping of the HOMs easier. Finally, the field

distribution for three of the resonant modes are shown in Fig. 66.

FIG. 65: HOMs spectrum for the f0 = 750 MHz rf dipole.

TABLE 6: Modes with highest R/Q

Mode Type Frequency [MHz] R/Q [Ω]
Ex, Hy 750.10 124.294
Ez 1384.03 141.959

Ey, Hx 1589.31 6.51428

The transverse R/Q—or [R/Q]T—values, calculated both using the direct inte-

gration method (Eq. 164) and the Panofsky Wenzel method (Eq. 165) [58], are in

agreement within < 2%. The longitudinal R/Q values for the deflecting modes were

found to be negligible (see Eq. 166). For the fundamental mode and by using Eq. 104

and 167, the net deflection due to the magnetic field is V ∗
T,H = −0.211 MV and due

to the electric field is V ∗
T,E = 0.412 MV (where the mark ∗ means that the voltage has

been normalised to a transverse field ET = 1.0 MV/m), then from Eq. 115 and 103

[
R

Q

]

T

=
|VT |2

ωU
=

|
∫∞
−∞

[
�Ex (z, x = 0) + i

(
�v × �By (z, x = 0)

)]
e

iωz
c dz|2

ωU
, (164)
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[
R

Q

]
T,PW

=
|Vz (z, x = x0) |2

(ωU) (kx0)2 =
|
∫∞
−∞

~Ez (z, x = x0) e
iωz
c dz|2

(ωU) (kx0)2 , (165)

this implies that Ez (x = 0) = 0.

R

Q
=
|Vz|2

ωU
=
|
∫∞
−∞

~Ez (z, x = 0) e
iωz
c dz|2

ωU
, (166)

VT =

∫ ∞
−∞

[
Ex(z) cos

ωz

c
+ cBy(z) sin

ωz

c

]
dz . (167)

(a) Transverse fields for the fundamental mode

(b) Accelerating field of the highest R/Q HOM (c) Fields of the first vertical deflecting mode

FIG. 66: Field distributions along the beam axis for a representative set of modes of
the 750 MHz rf dipole.
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5.4 MULTIPOLE FIELD ANALYSIS

Recently, several studies regarding the rf dipole design have been presented, in-

cluding analysis on the multipole components for some applications [59, 60]. How-

ever, this section is intended to provide a point of comparison on to what extent the

parameters in the rf dipole geometry can be manipulated to tailor specific multipole

components on the electromagnetic field in order to achieve the parameters required

in different applications. In the case of the 750 MHz rf dipole crab cavity corrector

for Jefferson Lab’s Electron-Ion Collider [61], the multipole components and unifor-

mity of the fields are crucial factors in the beam emittance conservation in linear and

circular colliders—as previously discussed in Section 4.5.4. Thus, proper tailoring of

the higher multipole components is key to achieve beam stability conditions for high

luminosity machines, this being the main motivation for the present analysis.

In this section, we surveyed the field uniformities and multipole contents for a set

of 750 MHz rf dipole models, presenting both a qualitative and quantitative analysis

of the inherent flexibility of the structure, to facilitate the study of its potential

limitations for specific applications.

5.4.1 PARAMETERISATION

The rf dipole does not have a longitudinal electric field on axis, and the deflect-

ing/crabbing kick is mainly given by the transverse electric field, which is concen-

trated in the parallel loading elements region. Therefore, the field uniformity and its

multipole components can be modified by introducing an inwards curvature around

the flat section of the parallel bars, effectively wrapping them around the beam

pipe axis to reduce transversal variations of the fields. For the present analysis,

we parametrised this curved deformation of the parallel bars using an ellipse as is

depicted in Fig. 67.

Keeping the parameter rx constant and equal to the beam aperture, we varied the

gap between the bars (dL), as well as the minor radius of the elliptical deformation

(ry). For comparative purposes we analysed twelve models of the 750 MHz rf dipole

design and their correspondent parameters are enlisted in Table. 7.

5.4.2 MULTIPOLE TAILORING SURVEY

Using a Fourier series expansion of the longitudinal field Ez(r, φ, z) (see Eq. 120),
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FIG. 67: Close up of the parallel loading elements and the varying parameters used
to tailor the multipole components for the 750 MHz rf dipole.

TABLE 7: Parameters corresponding to the different 750 MHz rf dipole models

Model # Rx [mm] Ry [mm] dL [mm]
1 30.0 30.0 59.8
2 30.0 29.0 59.8
3 30.0 28.0 59.8
4 30.0 27.0 59.8
5 30.0 26.0 59.8
6 30.0 25.0 59.8
7 30.0 20.0 59.8
8 30.0 30.0 58.0
9 30.0 20.0 58.0
10 30.0 30.0 57.0
11 30.0 20.0 57.0
12 30.0 30.0 56.0
13 30.0 20.0 56.0

we calculated the multipole components as:

E(n)
z (z) =

1

rn

∫ 2π

0

Ez(r, φ, z) cos(nφ) dφ (168)

Following the standard definition of the multipole components used for magnets

and using that for time dependent rf fields E
(n)
acc(z) = E

(n)
z (z)ejωt, then:

B(n)(z) = j
n

ω
E(n)
z (z)ejωt (169)

bn =

∫ ∞
−∞

B(n)(z) dz (170)

Some important remarks to make are that we neglected the skew components
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(an) of the fields and found all the even components of the expansion (i. e. bn, with

n = 0, 2, 4, ...) to be negligible due to the two-fold symmetry of the rf dipole—this is

true as long as the fabrication errors are also negligible. A detailed description of the

analytical and numerical methods used to calculate the multipole field expansions

is described by S. U. De Silva in [59]. To illustrate the field multipole component

tailoring capabilities of the rf dipole, we present in Fig. 68 the survey of the main

multipole strengths for the set of 750 MHz crab cavity models studied in this section.

FIG. 68: Survey of the first non zero multipole components: dipole (black), sextupole
(red) and decapole (blue) strengths for the design models at VT = 1 MV.

Even when it is hard to appreciate a clear tendency of the dipolar strength for the

different models in Fig. 68, due to the scale difference on the axis, it is important to

notice that the variation range for b1 is less than 0.1%, while for b3 is ∼ 45%, and for

b5 it is about 75%, showing that it is possible to tweak higher multipole components

without causing major altering in the dipolar content.

5.4.3 COMPARISON OF TWO CASES

Next, two cases from the set of models studied in this section are presented,

which correspond to two extremal values of b3 and b5, such as model 1 and 12 (see

Fig. 68 and Table 7). Figure 69 shows the difference in the curved deformation on

the parallel loading elements for each one of these models.

The comparison of the first two multipole components of the field for both models

are depicted in Fig. 70, where it is possible to see the reduction of the sextupolar
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FIG. 69: Cut-plane views of two different shaped loading elements, corresponding to
Model 1 (left) and Model 12 (right).

component while the dipolar component remains the same, up to a ∼ 99.9%.

After analysing the feasibility of employing elliptically parametrised curved de-

formations on the parallel loading elements as a tailoring method for the multipole

components and transverse uniformity of the fields on the 750 MHz rf dipole, the

results showed the versatility of the rf dipole for applications with strong emittance

and bunch instabilities control requirements. We present, as point of comparison,

the results of the two extremal cases from the set of models examined in here. The

main multipole strength components are listed in Table 8.

TABLE 8: Multipole components for two models of the 750 MHz rf dipole

Model 1 Model 12 Units

VT 1.0 1.0 MV

b1 3.336 3.336 mTm

b2 0.0 0.0 mT

b3 8.025 4.933 ×102 mT/m

b4 0.0 0.0 mT/m2

b5 -2.1780 -8.218 ×105 mT/m3

5.5 STRUCTURE ANALYSIS

In general, superconducting cavities see themselves under different stresses during

their different operating conditions. For instance, a niobium cavity under vacuum

will see a diverse set of external pressures, for example: during a leak check at room

temperature (1 atm), in the vertical test dewar at 4 K (1.1 atm) or 2 K (0.003 atm).
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FIG. 70: Comparison of the multipole components: dipolar (top) and sextupolar
(bottom), along the z- axis with a radial offset roff = 1 cm for Models 1 (blue) and
12 (red).

For cryomodule testing, the conditions could vary between 1.5 and 1.8 atm, while

the safety limit specifications could reach the 2.6 atm of external pressure at 300

K. These numbers are taken from specifications given for the HL-LHC crab cavities

for the SPS test [62], specifications for the 750 MHz rf dipole have not been set

yet. However, it is important to know the behavior of the cavity with respect to

the external pressure. In this section, we present mechanical simulations made in

ANSYS [63], both for the external pressure sensitivity (∂f/∂P ) and the change in

frequency due to internal radiation pressure—or Lorentz force detuning—(kL). The

Lorentz force detuning (LFD) and the pressure sensitivity will be discussed later
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on in Sections 6.4.4 and 6.4.2 respectively, where the calculations presented in this

section will be compared to the results obtained during cryogenic testing of the rf

dipole proof-of-principle cavity.

The material properties of the niobium used in the simulations, both for the

pressure sensitivity and the Lorentz force detuning, are enlisted in Table. 9.

TABLE 9: Niobium properties at room and cryogenic temperatures

Parameter Value Units
Density 750.10 kg/m3

Poisson’s ratio 1384.03
Young’s modulus (300 K) 1589.31 Pa
Young’s modulus (4 K) 1589.31 Pa

5.5.1 PRESSURE SENSITIVITY

The rf dipole structure is affected by external pressure, due to its relatively large

flat surfaces on the parallel bar region, since the proof-of-principle cavity has been

constructed without the intention of reaching operating conditions, the effects of ex-

ternal and radiation pressure are prominent in it, due to the lack of stiffening or

structural reinforcement, along with a wall thickness of 3 mm (before forming or

chemistry). Figure 71 shows a 3D model of the 750 MHz rf dipole, after reducing its

size using its 3 mirror planes of symmetry to economise the computing time; in the

images we can see that, when under an external pressure, the flat sections of the load-

ing elements suffer an inwards deformation, increasing the cavity’s capacitance and

therefore lowering its frequency—following the fact that ω0 = 1/
√
LC, where ω0 as

the resonant frequency, L the inductance, and C the capacitance. The change of the

resonant frequency, as a function of the external pressure, is what we call pressure

sensitivity and after simulations—always considering we are working under a linear

regime—it was found to be ∂f/∂P = −0.52 kHz/torr. Crab cavity applications are

typically stringent on the pressure sensitivity and Lorentz force detuning of the crab-

bing structures. Since the goal of this thesis is to present and study a general scheme

of the crabbing systems for an electron-ion collider—for which the proof-of-principle

cavity will suffice—these detailed structural studies will be proposed as future steps

towards a finalised model ready for operations. However, it is worth mentioning that

other rf dipole structures (499 MHz and 400 MHz) have been proven to reduce the
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pressure sensitivity for at least 1 order of magnitude using 4 mm thickness of the

walls and stiffening bars [62], giving us confidence that this could be also extended

to the 750 MHz.

FIG. 71: Symmetry section of the 750 MHz rf dipole showing the deformations caused
by external pressure.

5.5.2 LORENTZ FORCE DETUNING

The alternating fields inside the cavity, produce changes on the surface charge

and current distributions on the cavity walls, thus inducing radiation pressure onto

the structure, this pressure is excerted in different directions for the regions with high

electric or high magnetic field. Changes on the high magnetic field region will change

the effective inductance (L) of the cavity, while changes in the high electric field region

will change the effective capacitance (C) and therefore resulting in detuning for both

cases. The expression for the radiation pressure (P ) due to the electric (E) and the

magnetic (H) field magnitudes, can be seen in Eq. 171. While the detuning (∆f)

due to this pressure, in terms of the transverse gradient (Et), is written in Eq. 172.

P =
1

4

(
ε0E

2 − µ0H
2
)
, (171)

∆f = −kL · E2
T , (172)

where kL is called the Lorentz coefficient.

Figure 72 shows the deformations on the 750 MHz rf dipole, due to the Lorentz

force. It is interesting to notice that the flat walls on the loading elements experi-

ence an inwards deformation, very similar to the one due to the external pressure.
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However, it can also be observed that there is an extra deformation outwards on the

curved walls, due to the high magnetic field contribution. These images depicting

the deformations on the 750 MHz rf dipole due to the Lorentz force, were generated

using ANSYS and the calculated Lorentz coefficient using this method was found to

be kL = −258.8 Hz
(MV/m)2 .

FIG. 72: Symmetry section of the 750 MHz rf dipole showing the deformations caused
by radiation pressure.
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CHAPTER 6

FABRICATION, PROCESSING, AND TESTING

Transverse deflectors have been studied for several applications in the past but

when it comes to designing for high performance applications which require compact

superconducting structures, some interesting approaches have been taken into consid-

eration. TEM parallel rod cavities showed promising performance for high
[
R
Q

]
T

[26]

and after a long evolution and optimisation of parameters such as balanced peak sur-

face fields and low multipacting, a TE-like resonant structure known as the rf dipole

was developed by S. U. De Silva et al at Old Dominion University [6, 28, 64, 65].

The optimisation of an rf dipole structure will depend greatly on its applications

and machine-specific constraints, from the impedance budget and field flatness to its

physical dimensions. In this chapter, we present the fabrication, tests preparation,

and results of a proof-of-principle (PoP) superconducting rf dipole, designed as a

prototype for a 750 MHz crabbing corrector for the Jefferson Lab’s Medium Energy

Electron-Ion Collider. The 750 MHz rf dipole has been successfully tested at 4.20

K and 1.99 K at the Jefferson Lab’s Vertical Testing Area (VTA). The analysis of

its rf performance during cryogenic testing, along with Helium pressure sensitivity,

Lorentz detuning, surface resistance, and multipacting processing analysis are pre-

sented in this work. Detailed calculations of losses at the port flanges are included for

completeness of the cavity’s cryogenic performance studies. Its principal parameters

and rf properties have been discussed in Chapter 5, Table 4. For instance, Fig. 73

represents a visualization of the longitudinal (a) and transverse (b) cross sections of

the structure.

It is important to remark that the design and fabrication of the 750 MHz MEIC

crab cavity prototype was performed under the Small Business Technology Transfer

(STTR) program of the United States Department of Energy (US-DOE) [66], as a

project funded for both phases I & II, in a collaboration between Old Dominion

University and Niowave, Inc.
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(a) Longitudinal (b) Transverse

FIG. 73: Cross sections of the optimised PoP 750 MHz rf dipole.

6.1 FABRICATION

During Phase I of the STTR, the preliminary electromagnetic design of the cavity

[described previously in Chapter 5] was used as the basis for the mechanical design

of the cavity prototype. The mechanical design was finalised during Phase II of the

STTR project and its final version [shown in Fig. 74] was accepted for production.

FIG. 74: Mechanical Design of the 750 MHz crab PoP cavity (Image: Niowave, Inc).

Several sets of subassemblies were manufactured from 3 mm thick, large grain,

non alloyed, high purity, annealed Niobium sheets (residual resistivity ratio RRR =

355-405) [67], and deep drawn. Electron beam (EB) welding was used for joining

parts and subassemblies together, Fig. 75 (a), (b), (c), and (d) show the subassemblies
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prior to the final EB welding.

(a) End-cap ports EB welding (b) Cavity sections previous to final EB welding

(c) End-cap detail (d) Center body cross section view

FIG. 75: EB welding of the 750 MHz crab MEIC cavity end-cap’s ports (a), welded
subassemblies before the final welding (b), end-cap subassembly (c), and center piece
(d). Images: Niowave, Inc.

As the final design step, a tuning stack parameter of df/dz=-0.9354 MHz/mm per

side was calculated to estimate the relation between the length of the outer conductor

and the change in the resonant frequency of the cavity. Following this, symmetrical

trimming at the ends of the outer conductor were employed to tune up the cavity

frequency during its construction prior to electron beam welding, a df/dz=-0.9259

MHz/mm per side was measured (see Fig. 76).

The preliminary measurements performed at Niowave, Inc. included the fre-

quency spectrum measurements at room temperature in a vertical stack-up setup

after EB welding (see Fig. 77). The measured frequency spectrum can be seen in Ta-

ble 10. Additional room temperature measurements performed at ODU and Jefferson

Lab will be discussed later in this chapter.
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FIG. 76: 750 MHz crab cavity tuning stack calculations (black) and measured (red).

FIG. 77: Welded 750 MHz crab cavity preliminary room temperature testing.

6.1.1 BUFFERED CHEMICAL POLISHING

To remove the Nb layers damaged during forming and handling, the cavity was

etched after the final welding, using a bulk buffered chemical polishing (BCP) acid

mixture of HF:HNO3:H2PO4 in 1:1:2 parts each. Iced bags were used to decrease and

control the temperature of the acid mixture to reduce hydrogen absorption by the

rf surface, the cavity was fixed vertically to a cart and the side ports were used to

circulate the acid, a nominal removal of 150 µm (see Fig. 78(a)). Since all the surface

processing was made at Niowave, Inc., we do not have cavity wall thicknesses, acid
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TABLE 10: Measured eigenmodes at room temperature

Mode f [MHz] Q Loss [dB]
1 749.492 5600 -53
2 1058.027 6900 -37
3 1370.410 1200 -16
4 1377.506 2000 -19

flow or etching rate measurements to present. Later surface treatments realised at

Jefferson Lab will be discussed in Section 6.3.

(a) Vertical BCP (150 µm surface removal) (b) HPR after chemistry

FIG. 78: 750 MHz crab cavity during surface preparation.

After the BCP, and high pressure rinsing (HPR) with ultra pure water, the cavity

was let to dry vertically inside the clean room. In a following leak check, the cavity

was found to have a leak at the braze joint in one of the side ports. To fix this, the

side port was cut and a Nb plug was EB welded, Figure 79 shows the plugged port

from the exterior (a) and the interior (b) of the cavity. A light BCP was performed

by the vendor on the cavity after EB welding of the Nb plug, with a reported nominal

removal of 15 µm. The vendor realised some tests of the cavity at 4.20 K, their results

will be presented in Section 6.4 as a preamble to the cryogenic tests performed at

Jefferson Lab. After the testing, the cavity was carefully packed and sent to Jefferson

Lab/ODU for further studies.

After receiving the shipping from Niowave, Inc., the cavity was cleansed, de-

greased, high pressure rinsed again, and prepared for cryo-testing at 4.20 K and
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(a) External view (b) Internal view

FIG. 79: Nb plug on side port replacing leaky braze joint, view from outside (a) and
inside (b).

1.99 K at the Jefferson Lab’s SRF institute. The cavity was then plugged into a

vacuum pumping for 3 days for a slow evacuation, after which the vacuum levels

were oscillating in between 10−4 and 10−6 Torr. The cavity was suspected to have

a virtual leak due to a probable volume trapped inside or dirty hardware; the test

was temporary set in stand by and the cavity was vented and dissembled. One of

the possible reasons for a trapped volume was the 0.22 in Niobium plug capping the

side port, since the cavity had been confirmed as vacuum tight beforehand, there was

no obvious reason to suspect a physical leak. In order to take a closer look of this

area, the cavity was set onto a borescope and we proceeded to perform an optical

inspection (see Fig. 80).

After the visual inspection we determined that even when the plugged port is not

ideal for cleaning, it does not seem to represent a big problem or trapped volume for

the vacuum (see Fig. 79(b)). We then proceeded to do a leak detection in several

steps.

6.1.2 LEAK DETECTION AND CHARACTERISATION

Following the optical inspection and with the support of Jefferson Lab’s cryomod-

ule group, we performed a detailed leak check on the cavity, after pumping down for

several hours with a turbo pump and several runs of dry nitrogen gas to try to clean
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(a) Borescope setup and controls

(b) Cavity inspection (c) Capturing images

FIG. 80: Optical inspection with borescope used to discard trapped volumes at the
Nb plug.
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up the cavity to reduce trapped moisture inside of the vacuum volume, the system

was not able to reach vacuum levels ( 10−5 Torr) sufficient to run the mass spectrom-

eter for residual gas analysis (RGA). Changing the copper gaskets and retightening

the bolts did not solve the problem, so the cavity was switched to a Helium leak

detector that works at higher pressures and is very sensitive to Helium leaks in vac-

uum (down to 10−12 Torr·l/s). Having determined a real leak in the beam port area

with this system, an optical inspection was then performed using Jefferson Lab’s

Kyoto-KEK type optical bench (see Fig. 81(a)).

(a) Cavity on the optical bench

(b) Beamport weld (c) Beamport weld rotated by 180o

FIG. 81: Optical inspection of the beam port welding area, consistently showing a
blurry spec (b) and (c).

During the optical inspection, a small blurry spot that corresponds to the site

marked up (in the outside) by the technician was found and determined as a suspect
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location for the leak. This spot presented a higher light dispersion than the rest of

the seam, this “blurry spot” is characteristic of chemical residuals, it was suspected to

be alcohol sprayed by the technician during the leak check that then seeped through

a crack on the seam made by mechanical stresses or thermal shock during previous

test or shipping (see Fig. 81(b) and (c)). The pictures shown in Fig. 81, are both

taken at the same spot, changing the illumination and camera angles by 180 degrees.

This reinforces the notion that is not an optical illusion due to shades or reflections

on the surface but a real residual spot.

The cavity then was taken to the installations of the Center for Accelerator Science

(CAS) at ODU for a more detailed leak inspection, having then carefully diagnosed

that the leak was in the bracing of the beam pipe flange. After careful analysis, the

decision was taken to cut out both the leaky beam port and the plugged side port

and replace them with leak tight certified new ports, bought from Niowave, Inc.

6.1.3 BEAM PIPE AND PORT PIPE WELDING

After receiving the new ports, the cavity was sent to Jefferson Lab’s machine shop

to have the faulty ports cut out and the pipes machined for EB welding, as seen in

Fig. 82 for the beam pipe port (left) and side pipe port (right).

Figure 83 shows the cavity after having the beam port welded, being mounted

with the help of a customised fixture onto the EB weld chamber for welding the side

port (top-left), a close up to the welded side port (top-right), and a top-down view

of the cavity after repair (bottom).

6.2 ROOM TEMPERATURE MEASUREMENTS

Once repaired, the cavity was sent back to ODU for leak test to conduct a series

of studies at room temperature that included bead pull measurements to determine

the symmetry of the fields and couplers calibration as part of the preparations for

the cryogenic tests.

6.2.1 BEAD PULL

The bead pull measurements consist of finding the frequency shift (
[

∆f
f

]
D

) due

to the perturbation on the fields by a small dielectric (teflon) bead pulled along the

cavity’s longitudinal axis, the relation between the associated frequency shift and the
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FIG. 82: Faulty brazed pipes machined and ready for EB welding of the new flanges.

FIG. 83: The cavity was repaired at Jefferson Lab and leak checked at ODU.
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transverse electric field can be related to this frequency shift using Eq. 173.[
∆f

f

]
D

= −πa
3

U

[(
εr − 1

εr + 2

)
ε0|E|2

]
. (173)

Where a is the spherical bead radius, U the energy stored in the fields inside the

cavity, εr the Teflon’s relative permittivity, and ε0 the vacuum permittivity. Then,

for a conductor bead (brass) the frequency shift (
[

∆f
f

]
C

) is given by Eq. 174:

[
∆f

f

]
C

= −πa
3

U

[
ε0|E|2 −

µ0

2
|H|2

]
. (174)

With µ0 as the vacuum permeability. Thus, from Eq. 173 & 174 we can derive the

absolute value for the fields as:

|Ex| =

√(
−U
πa3

)(
εr + 2

εr − 1

)
1

ε0

[
∆f

f

]
D

,

|Hy| =

√(
2U

πµ0a3

){[
∆f

f

]
C

−
(
εr + 2

εr − 1

)[
∆f

f

]
D

}
.

Figure 84(a) shows the relation of the frequency shifts for both the teflon and the

brass beads, while Figures 84(b) and (c) compare respectively the extracted electric

and magnetic fields from the bead pull, to the ones obtained by the CST Microwave

Studio R© simulations. No scale factors have been used to match the simulated fields

to the measurements. It is worth mentioning that the system employed is precise

enough to allow us to extract the transverse magnetic field profile fairly well, despite

the small signal-to-noise ratio. The apparent slight asymmetry of the magnetic field

is attributed to errors of alignment between the frequency shift curves (see Fig. 84(a))

at the moment of their subtraction to calculate the field.

In case of need to re-tune the cavity at this point, the capacitive plates could

be plasticly deformed inwards to increase the capacitance and therefore lower the

cavity’s frequency, or the beam ports could be plasticly deformed inwards or outwards

in a tuning bench, to increase or lower the frequency, respectively.

6.2.2 COUPLER ROD CALIBRATION

Copper rod electric antennas of 9.5 and 3.1 mm diameters were used as fundamen-

tal power coupler (FPC) and field probe (FP) respectively. The distance from the

probes tip to the cavity end cap entrance, along with their external coupling (Qext)
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(a) Frequency shift

(b) Transverse electric field

(c) Transverse magnetic field

FIG. 84: Bead pull measurements and transverse fields extracted from the numerical
simulations.
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were measured and recorded during the calibration. Fig. 85 shows the calibration

data compared to Qext simulations on CST Microwave Studio� for perfect electric

conductor rods of different diameters (see Fig. 86).

FIG. 85: Comparison of measured and simulated data for the 750 MHz crab cavity
field couplers.

(a) Longitudinal cross section, cavity with FPC (b) FPC rod in the side port

FIG. 86: Model used for the calculations of the Qext using CST Microwave Studio�.

Figure 85 shows the measured values of the Qext for the field probe antenna (star)

and the fundamental power coupler (black square) for different lengths of the rod,

compared to the Qext values obtained from simulations on CST Microwave Studio�

for perfect electric conductor rods of different diameters. The dotted lines show the

cavity expected Q0 of the cavity at 4 K (black) and 2 K (red), a further discussion
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on the behavior of Q0 for the cavity will be presented in the following Sections 6.3

and 6.4.

6.3 SURFACE TREATMENT

Having performed a bulk BCP on the cavity previously, and for purposes of

studying the limitations and flexibility of the rf dipole structure, a 30 µm horizontal

electropolishing (HEP) was performed (see Fig. 87). Due to the complexity of its

geometry, the rf dipole presents some challenges for electropolishing surface etching.

To address this, the employed aluminium cathode was covered with a dense teflon

grid to mask its surface when the distance between this and the cavity surface (anode)

was shortest, and correspondingly, making the grid less dense to expose more cathode

surface as the distance to the walls was increasing, to procure uniform etching rate.

Figure 88(b) shows, in black empty diamonds, the measured removal at different

locations after the HEP, the highest achieved removals correlated to the points, where

the distance between the cathode and the walls are shortest (i.e. points 1 and 12 in

Fig. 88(a)), while the lowest removals correspond to the points placed in the farthest

walls (i.e. 2 to 11 as Fig. 88(a) indicates).

FIG. 87: Comparison of measured and simulated data for the 750 MHz crab cavity
field couplers.

A flash 5 µm buffered chemical polishing (BCP) followed the HEP, with a more

uniform thickness removal along the different measured points (shown in Fig. 88(b) as

empty red diamonds). This proves that the rf dipole geometry favours the use of BCP,

nevertheless, it perfectly allows the use of HEP with a bit of cathode customisation,

which would be useful when in search of higher gradients. Figure 88(b) shows, in solid

blue diamonds, the effective Nb removal at the different measured points after both
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(a) Thickness measurement points

(b) Thickness removal per location

FIG. 88: Nb removal after a 30 µm HEP (empty black) and a flash 5µm BCP (empty
red).

processes. Thickness measurements previous to the clean assembly were performed,

followed by a thorough high pressure rinse (HPR), using deionised water at 1250

psi. After the surface treatment and clean assembly, the effective surface resistances

expected were RS = 200nΩ at 4 K and RS = 23nΩ at 2 K, both corresponding

to the unloaded quality factors of Q0(4K) = 6.57 × 108 and Q0(2K) = 5.71 × 109

respectively.
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6.4 CRYOGENIC RF TEST

The cavity’s quality factor “Q0”, field levels, and resonant frequency were moni-

tored using the in-house phase locked loop (PLL) system and after placing the cavity

under vacuum on the liquid Helium bath at the vertical test area in Jefferson Lab,

both for 4.20 K and 1.99 K cases. Using this information we can analyse and study the

cryogenic performance of the rf dipole, including: multipacting processing, quenches,

field emission, Lorentz detuning, and power losses among other things.

6.4.1 SURFACE RESISTANCE

Starting from the definition of the surface resistance derived in [68](Eq. 143) from

the BCS theory [40, 69]:

RS =

(
A

T

)
f2e−∆/kBT +Rres , (175)

where A is a material dependant constant, kB is the Boltzmann constant, f the rf

frequency, 2∆ the Nb energy gap, T is the surface temperature, and Rres the residual

resistance.

The methodology followed to determine the residual resistance was to record the

Q0 of the cavity and the temperature of the He bath while cooling down from 4.20 K

to 1.99 K, at a controlled gradient range of ET = 0.49 to 1.99 MV/m. Then, using

from Table 4, the geometric factor G = 131.4 Ω and the relation:

RS =
G

Q0
. (176)

The recorded RS was plotted against the inverse of the cavity’s temperature

and fitted using Eq. 175, leaving A, ∆, and Rres as free parameters, with kB =

1.38 × 10−4nΩ · K · s2 and f = 750 MHz, obtaining Rs = 39.34nΩ as shown in

Fig. 89.

The residual resistance was found to be almost double as the expected 20nΩ, even

when this could be due to some surface contamination, we have reasons to believe

it is consistent with power losses at the S.S. flanges, similar observations have been

confirmed previously with other rf dipole designs [6] and the proper calculations and

discussion are presented in the Analysis on Losses section bellow (Section 6.5). The

cavity was not baked after etching, low temperature baking could be expected to

lower the Q0, but presumably move the quench point farther up in field level [24].
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FIG. 89: Cryogenic measurements of the surface resistance.

6.4.2 PRESSURE SENSITIVITY

Another important aspect of the structure design is its relative robustness to

maintain the resonant frequency within a small range while under stresses, exerted

by the pressure differences between the ultrahigh vacuum inside the cavity and the

He bath it is submersed into. This difference is about 11 orders of magnitude (from

an inside vacuum of ∼ 10−9 to a liquid Helium bath of 755 torr).

Plotting the frequency shift as a function of the liquid Helium bath pressure

during the cool down, the pressure sensitivity can be obtained by extracting the

slope from a linear fit, which, in the case of the proof-of-principle (naked) 750 MHz

rf dipole studied in this thesis, was found to be ∂f/∂P = 0.7 kHz/torr as shown

in Fig. 90. This measurement differ by about a 26% from the calculated pressure

sensitivity of 0.52 kHz/torr, found by simulations using ANSYS [63], as previously

discussed in Section 5.5.1. The pressure sensitivity can be easily reduced by adding

properly placed stiffening elements to the cavity walls. In order to do so, structural

studies using numerical tools can be performed to optimise the place and number of

stiffening required, such analysis won’t be discussed further in this thesis, since it is

not relevant for the proof-of-principle cavity.
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FIG. 90: Pressure sensitivity from measurements of the resonant frequency shift
during the liquid Helium pump down in the Dewar (from 760 to 23 torr).

6.4.3 QUALITY FACTOR

Figure 91 shows the measured Q0 at 4.20 K (black) and at 1.99 K (blue), as a

function of the transverse electric field ET , the transverse voltage VT , and the electric

and magnetic peak surface fields EP and BP respectively. The empty triangles show

the radiation levels measured by the x-ray monitors placed outside the dewar.

The notorious dips on the 4.20 K (black) Q0 curve show Q degradation due

to multipacting activity, this will be discussed in more detail in the corresponding

Multipacting section bellow (Section 6.4.5). When it comes to the 1.99 K (blue)

Q0 curve, there is no strong low field Q slope, however, an evident medium field Q

slope can be noticed, as described in Padamsee, et al [24], this can be attributed

to a non-linear surface resistance, which is a function of the magnetic field, due

to grain boundaries, defects, and impurities. A thorough study on this slope may

include fairly complex calculations and detailed analysis of the surface composition

and structure that could be extended into a PhD thesis in itself. Thus, we will not

extend any further on the matter in the present work, a reduced bibliography on this

subject could include for example [70, 71, 72].

A high field Q slope appears at about ET = 12 MV/m at 1.99 K, the ramp up



123

4.20 K
1.99 K

Rad 1.99 K

FIG. 91: Quality factor at 4.20 K (black) and 1.99 K (blue), with radiation measure-
ments (maroon).

on the x ray emission after ET = 10 MV/m may indicate activation of field emitters,

which could be addressed by He processing. It is worth pointing out that a low

temperature baking may push the quenching point further up in gradient. However,

it is important to notice the fairly high peak surface fields reached of about Ep = 60

MV/m and Bp = 125 mT, reached at the VT = 2.7 MV of deflecting voltage at 1.99 K

with a very low x-ray emission ∼ 1 mrad/h, which, even when not at the theoretical

limits yet, are still in a high value region, showing a good performance of the cavity.

6.4.4 LORENTZ FORCE DETUNING

During operation, cavity deformations occur due to the force exerted on the

walls by the radiation pressure; the contribution due to the magnetic field exerts

an outwards force on the cavity walls, while the electric field contribution to the

radiation pressure pushes the cavity outer conductor inwards, all this is in accordance

to the Slater’s theorem. Thus, resulting in a shifting (decreasing) of the resonant
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frequency. This frequency shift is known as Lorentz detuning, for the case of the

750 MHz rf dipole, the Lorentz coefficient kL was determined by a linear fit to the

recorded frequency shift as a function of the squared of the transverse gradient E2
T ,

as can be seen in Fig. 92.

1.99 K

FIG. 92: Lorentz detuning measurements.

The Lorentz coefficient was experimentally found to be kL,exp = −223.4

Hz/(MV/m)2, compared to the calculated value from simulations kL,sim = −252.8

Hz/(MV/m)2 [as previously discussed in Section 5.5.2], shows a very good agreement

within a 13% margin. The high sensitivity to the radiation pressure is due to the

relatively large flat surfaces on the loading elements subjected to the high electric

fields. The Lorentz coefficient can be improved by adding stiffeners in the areas of

higher deformation similarly to the case of pressure sensitivity. Numerical studies are

necessary to determine the mechanical properties of the structure, in order to reduce

these coefficients. In the case of a proof-of-principle cavity, such as the one described

in the present work, these studies are not relevant, nevertheless and depending on

the applications for operating cavities, pressure sensitivity, Lorentz detuning, as well

as promptness to ponderomotive effects can be of high relevance to the specifics of

operation and control [73].

6.4.5 MULTIPACTING

As mentioned in the Quality factor section above and looking closer to the Q0
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curve obtained at 4.20 K (shown in solid black in Fig. 93), it is possible to see

two clear multipacting barriers occurring at slightly above VT = 0.4 MV and slightly

bellow VT = 0.9 MV, these barriers have a width in between 0.1 and 0.2 MV and were

found to be easily broken with an increase of power, their observation reocurred with

following measurements at 4.20 K. The degree of Q degradation shown depends on the

amount of energy put into the multipacting process by the rf fields. Benchmarking

the multipacting simulations obtained, using TRACK3P from the ACE3P suite, we

observed a great consistency between the expected range of voltages for multipacting

occurrence and the barriers encountered. The areas affected by multipacting at these

levels are mostly the end caps and the high magnetic surface field area on the outer

conductor (cavity’s top and bottom, so to speak). Also, from the simulations we

observed that predominantly there is 1st and 2nd order multipacting for this geometry.

It can be suspected, primarily the 1st order multipacting (shown as red empty

circles in Fig. 93), since this is the fastest process to put energy into from the rf fields,

also seems to be consistent with the field levels at which the barriers were observed.

At 1.99 K the two barriers were observed in the same voltage levels as expected, but

after the first gradient sweep, they were successfully cleaned up and they were not

observed again. Higher voltage barriers were neither predicted by the simulations

nor observed during the test (see the 1.99 K Q0 curve (blue) in Fig. 91).

4.20 K

FIG. 93: TRACK3P simulation (empty dots) and multipacting barriers encountered
during the test at 4.20 K (solid dots).
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6.5 ANALYSIS ON LOSSES

In this section, we calculate the power dissipated on the flanges due to Ohmic

losses generated by the residual magnetic field at their location. In order to do this,

we will consider the total loss as the sum over the 2 beam pipes and the 4 auxiliar

ports’ flanges. The time-averaged power dissipated at the flanges per unit area due

to the rf fields can be expressed as:

dPloss

dA
=
RS

2
|H|||2 , (177)

then, the dissipated power by one of the flanges is:

Ploss =
RS

2

∫∫
|H|||2dA . (178)

For the rf dipole’s fundamental mode, H|| corresponds to Hy, while the integral

is bounded to the area A of the flanges exposed to the fields. RS is the resistance

presented to the rf fields by the flanges’ surface and can be expressed in terms of the

material’s conductivity σm and the rf frequency ω as shown in Eq. 179.

RS =

√
µ0ω

2σm
, (179)

where m is only an indicator that refers to copper (Cu) or stainless steel (S.S.).

The 3D fields were extracted from the CST Microwave Studio R© simulations, a

script to calculate the numerical area integral of the field at the flanges location

was written using Visual Basic. The quality factors associated to the total power

dissipated by all the flanges ΣPloss can be calculated using Eq. 180 and the results

are presented in Table 11.

Q0 =
ωU

ΣPloss

. (180)

TABLE 11: Power Dissipated by the Flanges at U = 1 J

Material σm [S/m] ΣPloss [W] Q0

Copper 5.80× 107 0.2265 2.08× 1010

Stainless Steel 1.45× 106 1.4324 3.29× 109

The goal Q0 shown in Fig. 94 (star) was calculated using Eq. 176, for Rres = 20nΩ

and RBCS = 4nΩ at 2 K. The measured Q0 at 1.99 K (see Fig. 94 (blue)) is very close

to the expected value when the power dissipation is dominated by the losses at the
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1.99 K Test

FIG. 94: Measured Q0 for the cavity (blue), Q0 associated with the losses on the
flanges for Cu (grey) and S.S. (red).

stainless steel flanges, shown as a red line in Fig. 94. Then, presumably, changing to

copper or copper-coated flanges, should avoid any limitations to reach the expected

Q0 value due to undesirable losses, as shown by the grey line in Fig. 94. This result

presents speculative arguments to explain why the Q0 measured at 1.99 K is lower

than the value correspondent to the expected residual resistance, but would need to

be confirmed in the future with a new cryogenic test beyond the scope of this thesis.
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CHAPTER 7

CONCLUSIONS

7.1 PROTOTYPE DESIGN AND PERFORMANCE

A compact proof-of-principle superconducting crab cavity was fabricated by

Niowave, Inc. based on the 750 MHz rf dipole design developed as part of this

thesis work. This prototype was tested in several occasions, both in Niowave, Inc.

and Jefferson Lab’s vertical testing areas (VTA). Two multipacting barriers at low

transverse voltage levels (VT < 1 MV) were observed at both 4.2 K and 2.0 K cry-

otests, but found to be easily processed and eliminated at 1.99 K. Figure 95 shows a

comparison between the Q0 data with multipacting events taken during the cryotest

at Jefferson Lab’s [74] and the multipacting levels obtained from the simulations,

showing a very good agreement.

FIG. 95: Q0 data at 4.20 K (solid black) and 1.99 K before (solid blue) and after (solid
green) processing of multipacting, compared to the multipacting levels obtained from
simulations (open circles). The purple lines define the operating voltage range per
cavity.

In this thesis, we studied the effects on the resonant locations and incident en-

ergies for multipacting condition on the 750 MHz rf dipole due to variations of the
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geometrical parameter extrusion length of the cavity end-caps (l), for a range be-

tween 20 mm to 50 mm. We presented a subset of the studied models to illustrate

the variations in the location and density of resonant particles in the cavity struc-

ture using the parameter l as tweaking knob. Even when the multipacting barriers

appear at roughly the same field levels in all our simulations, the density of the

resonant particles and their impact energy decrease and also the resonant positions

relocate to potentially less problematic areas of the structure for larger values of the

parameter l. We compared the simulation results with the experimental observation

of multipacting events for the 750 MHz rf dipole prototype with considerably good

agreement. We concluded that by modifying the extrusion length, the multipacting

can be tweaked for the case of the rf dipole, but one should always keep in mind that

by doing this, the cavity becomes longer and physical space restrictions for machine

integration may apply. It is necessary to carry out further studies to determine if a

different parameter can also be used to lower further the mutipacting levels in the

rf dipole geometry, such as the blending radius of the end-caps, which consistently

showed to be one of the locations most susceptible to multipacting. However, the

experimental data has proven that multipacting is easily processed and is not a lim-

iting factor in the rf dipole performance, not just for the 750 MHz prototype, but for

the 400 MHz and the 499 MHz prototypes as well [6].

Bead pull measurements were presented in agreement with the numerical sim-

ulations. The surface resistance analysis showed to be consistent with losses on

the stainless steel flanges, suggesting the use of copper flanges to reach a better

Q0 at 1.99 K, for the 750 MHz rf dipole in the—high Q—vertical test. The pres-

sure sensitivity and the Lorentz detuning of the bare proof-of-principle cavity were

found to be df/dP = −0.7 kHz/torr and kL = −223.4 Hz/(MV/m)2 respectively,

compared to the calculated values of df/dP = −0.52 kHz/torr and kL = −258.8

Hz/(MV/m)2.The field levels achieved in the 1.99 K test were considerably high,

ET = 13.5 MV/m for the transverse gradient, with peak surface fields of Ep = 60

MV/m and Bp = 126 mT which are fairly close to the practical limits, all of these

for a transverse voltage of VT = 2.7 MV before quench.

7.2 BEAM DYNAMICS REMARKS

The design strategy of the Medium Energy Electron-Ion Collider (MEIC) at Jef-

ferson Lab considers both the matching of the beam spot sizes at collision and a
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50 mrad crossing angle along with crab crossing scheme for both electron and ion

beams over the energy range (
√
s = 20 − 70 GeV) to achieve high luminosities at

the interaction points. However, the desired locations for placing the crabbing cav-

ities may include regions, where the transverse degrees of freedom of the beams are

coupled with variable coupling strength that depends on the collider rings’ magnetic

elements (solenoids and skew quadrupoles). In this thesis, we explored the feasibil-

ity of employing twin rf dipoles that produce a variable direction crabbing kick to

account for a range of transverse coupling of both beams.

We proved analytically that an orthonormal transverse basis—at the interaction

point—back propagated towards the crabbing cavity location considering a solenoid,

will still be orthonormal, but rotated by an angle that depends on the solenoid

strength as θcoup(BSol) = KL. Thus, for the MEIC in the case of electrons at 5 GeV,

this angle changes from 0 to∼ π
8

for a solenoid magnetic inductionBSol ≤ 5 T. Also, it

is important to remark that all the contributions due to the angles and energy spreads

have been neglected from the calculations for simplicity, since—for the purpose of

studying the twin crab scheme—we did not propagate 6D bunch distributions, but

merely the 2D transverse coordinate system as a first approximation. We concluded

that for the Jefferson Lab’s Electro-Ion Collider a scheme of twin crabbing cavities

that provides the proper kick for several angles in the necessary range for the various

solenoid strengths is feasible and the extra solenoid focusing has to be compensated

by the FFB to avoid a maximum error on the crabbing angle of ∼ 7% for electrons

and < 0.1% for protons. Further studies will require consideration of the higher order

contributions of the magnetic elements and particle tracking analysis.

The impact on the beam dynamics of Jefferson Lab’s Electron-Ion Collider, due to

the multipole content of the 750 MHz crab cavity, was studied using thin multipole

elements for 6D phase space particle tracking in ELEGANT. Target values of the

sextupole component for the cavity’s field expansion were used to perform preliminary

studies on the proton beam stability, when compared to the case of pure dipole

content of the rf kicks. Finally, important effects on the beam sizes due to non-linear

components of the crab cavities’ fields were identified and some criteria for their

future study were proposed, concluding that more detailed long-term tracking—

for several thousand turns—needs to be done to fully insure beam stability during

operations.

The lattice model proposed for particle tracking studies hereby presented has
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proven to properly describe the transverse and longitudinal dynamics of the MEIC

proton storage ring. Also, rf crab cavities were successfully implemented to account

for a relative 25 mrad crabbing angle of the 60 GeV proton bunches at the interaction

point, showing effects of small phase advance errors between the crab cavities that

are consistent with previous analytical calculations. The stability of the longitudinal

beam size growth, due to the induced emittance exchange, needs to be studied for

a sufficient amount of turns, both for the case of pure dipole and sextupole compo-

nents to ensure stable operation conditions and to establish multipole budgets for

the rf crab cavities on the MEIC. These criteria are—in general—applicable to any

Electron-Ion Collider, provided that the proper lattice design is implemented for the

analysis.

7.3 SUMMARISING

We studied extensively the rf dipole geometry, with specific applications at

750 MHz. The electromagnetic optimisation process—using a few geometric

parameters—showed to be consistent to previous rf dipole designs developed at Old

Dominion University. An important remark was made about the necessary trade off

between the rf performance and the machine constraints—both from the machine

integration and the beam dynamics point of view—when finalising a cavity design.

But most important is the fact, that from the present studies we can conclude that

the rf dipole is a very suitable compact design for crabbing applications, both for

electron and proton species, at low, medium, and high energies for the future high

luminosity machines.



132

CHAPTER 8

FUTURE WORK

8.1 AN IMPORTANT CHANGE

After the Nuclear Science Advisory Committee Electron-Ion Collider Cost Es-

timate Sub-Committee evaluated the preliminary cost estimate for Jefferson Lab’s

Electron-Ion (JEIC) proposal in January, 2015, the baseline for the accelerator fixed

some major changes. Amongst the most relevant—from the view point of the present

work—is the fact that the rf frequency has changed from 750 MHz to 476 MHz. This

due to the fact that, in order to reduce the costs of fabrication, the JEIC will reuse

hardware—magnets, vacuum chambers, rf cavities, and rf sources—from the PEP-II

High Energy Ring (HER). The HER beam line and a 476 MHz accelerating cavity

can be seen in Fig. 96.

(a) Rf section in PEP-II (b) 476 MHz Cu cavity

FIG. 96: Rf elements from PEP-II to be used for the JEIC (Images courtesy of SLAC
PEP-II archives).

This decision was taken after careful cost studies and lattice analysis. Probably

the biggest changes derived from this, were on the ion lattice design: the exchange of

the pre-booster (3 GeV) and booster (10 GeV) for a single figure-8 booster based in
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super ferric magnets as the new baseline, along with the 476 MHz bunch repetition.

But it is worth to say that for the case of developing a crabbing system, these changes,

even when leaving the 750 MHz option obsolete, they also open two new doors : a

476 MHz or a 952 MHz bunch repetition rate—and with that—the opportunity to

explore several criteria which one should consider when choosing the final frequency.

This chapter intends to present a reduced list of aspects to take into account when

choosing and designing the new repetition frequency, from the rf point of view. I

hope that all lessons learned during the development of this thesis will be of good

help to those developing the final crabbing system for the JLEIC and other future

high luminosity colliders.

8.2 ELLIPTICAL VS COMPACT

To have a general point of comparison, a quick optimisation was made, using

two different squashed elliptical geometries—inspired by the KEK crab cavity orig-

inal design—and the rf dipole geometry. For this, the designs were scaled to fit

the desired frequencies, keeping the beam aperture to 60 mm in all the cases, this

is important due to the—previously discussed in Section 5.1.1—shunt impedance

dependency with respect to ratio of the beam aperture to the rf half-wavelength

(d/λrf/2). Figure 97 shows the shunt impedance dependency to d/λrf/2 for different

models, the description of these models will be given shortly after.

(a) R/Q (b) (R/Q) ·G

FIG. 97: Comparing the impedances for different models, including the KEK 500
MHz crab cavity (star), the 400 MHz rf dipole (blue solid diamond), and the 499
MHz rf dipole (open black diamond).

Figure 97 is very helpful to understand the performance dependance of the crab

cavities with respect to their dimensions. For example, it becomes obvious that for
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larger values of the d/(λrf/2) ratio (∼0.3), the transverse shunt impedance of the rf

dipole geometry becomes comparable to the elliptical design—at least for this very

simple analysis. However, the message should be that for higher frequencies, more

refined optimisation of the rf dipole needs to be performed. Recently, H. Park et

al. presented optimised versions of the rf dipole for 476 and 952 MHz, showing

promising improved properties and explore as well as the possibility of using multi

cell cavities for high frequency applications of the rf dipole [75]. Other examples of

multi-cell, high frequency deflecting structures, have been studied and developed by

Z. A. Conway et al. in Argonne National Lab [76].

8.2.1 A MATTER OF SCALE

By doing this scaling exercise, we can get a general idea of the strengths and

weaknesses of compact structures, such as the rf dipole. For instance, even when

the transverse dimension of all the cavities will scale linearly with the rf wavelength

λrf, the scaling factor for the elliptical cavities is considerable bigger than the one

of the rf dipole, and therefore going to lower frequencies with elliptical cavities will

considerably increase the cavity size and volume, posing restrictions both to machine

integration and cooling systems—in the case of superconducting cavities. Figures 98

to 100 show qualitatively the scale difference between the two elliptical geometries

and the rf dipole, for three different frequencies, keeping a constant beam aperture.

As it can be seen, the difference can be substantial, showing one of the advantages

of the compact structures.
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(a) 476 MHz (b) 750 MHz (c) 952 MHz

FIG. 98: Elliptical-01 design for crabbing.

(a) 476 MHz (b) 750 MHz (c) 952 MHz

FIG. 99: Elliptical-02 design for crabbing.
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(a) 476 MHz (b) 750 MHz (c) 952 MHz

FIG. 100: RF dipole design for crabbing.

8.2.2 A MATTER OF FIGURES

There are different operational aspects to consider in the crabbing systems, when

changing the collision frequency of a collider. The most relevant ones are: the voltage

needed to crab the bunches, the cavity’s physical dimensions (including fabrication

tolerances and integration restrictions), rf performance, impedance budget, extrac-

tion of higher order modes, etc. Again, to get a general idea of the differences on the

figures of merit between the squashed elliptical and the rf dipole geometries, Some

quick comparisons were made; Fig. 101 shows the peak surface fields for the different

models, while Fig. 102 shows the cavity impedances.

(a) Peak surface electric field (b) Peak surface magnetic field

FIG. 101: Peak surface fields for the different models.

Some of these analyses could be misleading if we do not take into account that

this simple scaling of the geometries is not entirely correct, due to small features

such as the beam aperture diameter typically needed for HOM damping in elliptical
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FIG. 102: Impedances for the different models studied in this chapter.

structures, etc. that will show detrimental effects in their properties. However, it

gives us a general idea of the representative figures of merit. Having said that, in

Fig. 101 we observe that for this rough approach, the rf dipole shows higher peak

surface fields than the elliptical cavities, while the rf dipole shows considerably higher

shunt impedance. For frequencies higher than 750 MHz, it starts to be comparable

to the elliptical geometries if no further optimisation is performed on them. The

latter can be solved by following [75].

8.2.3 A MATTER OF RESISTANCE

Another practical detail—that even when arguably less important—that is easily

overlooked, is the frequency dependence on the cavity’s surface resistance. Figure 103

shows, in a log-log plot, the surface resistance of pure untreated niobium for different

frequencies and cryogenic temperatures.

From this plot, we can see that at a fixed temperature, the difference between 476

MHz and 952 MHz correspond to an increment on the surface resistance of about

a factor of ∼3. This will reduce the expected Q0 of the cavity by a factor ∼3 by

following the relation Q0 = G/Rs and neglecting the residual resistance contribution

(Rres). One should not forget that at lower temperatures the Rres term becomes more

dominant than the BCS term in the surface resistance (Rs = RBCS +Rres).
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FIG. 103: Nb surface resistance as a function of frequency for different temperatures.

8.2.4 A MATTER OF VOLTAGE

We have seen in Section 2.3 that the total crabbing voltage VT needed to correct

for a crossing angle θc depends on the bunch frequency ωb, or VT = cEb tan(θc/2)

ωb

√
β∗xβ

c
x

. This

means that the crabbing voltage needed will increase inversely proportional to the

crab cavity frequency. Figure 104 shows the crabbing voltage VT as a function of

the beta function of the beams at the location of the crabs (βcx), for both species, to

understand better the impact of the different frequencies on the requirements.

FIG. 104: Crabbing voltage needed to correct for 50 mrad, as a function of the beam
β at the crab cavity location, for electrons (solid) and protons (dashed).

Perhaps a more useful plot would be the total number of cavities needed to correct
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for the 50 mrad of crossing angle. One could calculate this by using the results from

the cryogenic test of the 750 MHz rf dipole (see Section 6.4.3), more specifically the

peak surface fields reached by the proof-of-principle cavity at 2 K (i.e. Ep = 60

MV/m and Bp = 125 mT), and finding the correspondent VT for the 476 and 952

MHz that could be reached at this peak surface fields, respectively. Figure 105

presents—as a back-of-the-envelope estimation—the number of cavities needed to

provide the necessary crabbing kick to correct the 50 mrad crossing angle, for both

electron and proton species, for the different rf dipole frequencies and as a function

of the beam βcx at the crabbing location.

FIG. 105: Number of cavities needed to correct 50 mrad crossing angle for different
repetition frequencies, as a function of the beam β at the crab cavity location, for
electrons (solid) and protons (dashed).

It is essential to underline, that these numbers are not final, especially due to the

quick nature of the analysis presented in this chapter. However, this sets the general

idea of the first steps to take into account for the future work on finalising the JEIC

crabbing systems. Not all the numbers presented here—for the 750 MHz are dipole—

are directly scalable, but the methods presented for its design and optimisation, are

completely generic for this geometry and can, therefore, be used as guideline for other

rf dipole designs, after applying the proper machine dependent constraints.
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