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ABSTRACT

This work is a study of beam dynamics in the CEBAF superconducting cavities
under the influence of the fields generated by externally applied RF and beam particles.

A full 3-D modeling of the CEBAF 5-cell superconducting cavity is carried out.
Details of the modeling with MAFIA are discussed. Multipole fields due to the asym-
metric couplers are studied by means of 3-D Fourier transforms. The cavity steering
and focusing of the multipole fields are studied. Experimental measurements of these
effects are performed to validate the modeling. Evaluation of the cavity misalignment
is discussed. The emittance degradation effects in the CEBAF superconducting linacs
and an FEL driver linac due to the head-tail effects of the cavity steering and the z — y
coupling effects of the multipole fields are studied.

The beam-cavity interactions for cases of v,, v # c are studied. The Lindman
boundary condition is implemented to accommodate simulation of infinite long beam
pipes of the beam line. A fourth-order finite-difference algorithm is derived in cylindrical
coordinates to reduce the frequency dependent truncation errors, which were discovered
in the process of calculating wake fields of very short bunches, of the second-order Yee
algorithm. The effects of the slippage between the source particle and the test particle
are considered in the wake function calculations. Radial scaling relations are obtained
for calculating the wake functions on the axis from the integrated value at the beam
pipe radius. The scaling found not only depends on the beam energy but also depends
on the bunch length of the beam and the opening of the cavity. The conditions for the
validity of the ultrarelativistic treatment of the wakefield are discussed.

The emittance growth and the energy spread due to the combined effects of the
cavity multipole fields and the wakefields in a 40 MeV IR FEL driver linac are studied.

xiv



BEAM DYNAMICS IN THE CEBAF SUPERCONDUCTING CAVITIES



Chapter 1
Introduction

Since the first charged particle accelerator was built in 1932 for nuclear reaction
studies, research and development in accelerator physics have blossomed significantly
in the past several decades. Today, particle accelerators are found in a wide variety
of applications such’as nuclear and high energy particle physics research, synchrotron
radiation sources for a wide variety of applications of ultraviolet and x-ray beams in
material science, medical therapy, heavy ion fusion, oil and natural gas exploration, and
food treatment. Electron accelerators are also used to drive free electron lasers (FELs),
which provide high power and wavelength tunable light which can meet the needs of
basic research and industrial appl@cations.

The heart of each high energy accelerator is the RF accelerating section which is
generally composed of a number of accelerating modules each of which is a chain of
coupled RF resonant cavities. An accelerating cavity is energized by two power sources.
One is the RF generator which supplies power to the cavity in order to make up for
the power dissipated in the walls and absorbed by the accelerating beam. Breaking
of the cylindrical symmetry of the cavity, for example, by power couplers can gener-
ate deflecting fields at the fundamental RF frequency. The other power source is the
bunched particle beam itself which deposits energy into the cavity in a wide band of
frequencies. The interactions between the beam bunches, the fundamental deflecting
fields, and the higher-order modes generated by the beam may result in serious side
effects which are the prime factors that limit the beam current. Even if well under the

threshold current, the beam quality and the machine performance are still limited by
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these beam-cavity interactions. The theoretical and experimental study of the beam
dynamics in the superconducting linacs is the subject of this dissertation.

This work is performed at the Continuous Electron Beam Accelerator Facility (CE-
BAF) being built in Newport News, Virginia. The CEBAF superconducting recirculat-
ing accelerator will provide electron beams at energies from 0.5 GeV to 4 GeV to nuclear
physics experiments in three experimental halls. The CEBAF accelerator compromises
a 45 MeV superconducting injector linac, two 400 MeV superconducting linacs, recircu-
lation beam lines, and a beam extraction system. The electron beam can be recirculated
five times to yield a beam energy of 4 GeV for three nuclear physics end-stations at av-
erage current up to 200 xA. In addition to the average current, good transverse and
longitudinal beam quality is necessary for effective nuclear physics experimentation.
The design goals are a full energy spread of 10™¢ and a normalized rms emittance of
0.1 cm-mrad. Recently, it has been proposed to use a superconducting linac to drive
an IR FEL. One such FEL driver consists of a 10 MeV superconducting injector and a
30 MeV superconducting linac. TI;e beam final energy is 40 MeV. The normalized rms
emittance is 1 cm-mrad. Energy spread (og/E)is 2 x 1072 at 40 MeV. The reference

design will also be addressed in this dissertation.

1.1 The CEBAF superconducting cavity

A M o
HOM coupler FP coupler

Figure 1-1: The CEBAF 5-cell cavity.
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The superconducting cavities used in the CEBAF linacs were initially designed at
Cornell. A cavity consists of five elliptical cells and a pair of couplers-one for fundamen-
tal power (FP) coupling and one for higher-order-mode (HOM) coupling, Fig. 1-1. The
cavity operates with the 7 mode, which has a frequency of 1497 MHz. The advantage of
using a superconducting cavity over a normal temperature cavity is the low operation
cost and high field gradient (for CW operation). The unloaded Q, defined as

_wU

Pw (1 - 1)

Q

where U is the stored energy in the cavity and P, is the power lost in the Joule heating
the cavity wall, of a superconducting cavity (order of 10°) is much higher than that of
a normal copper temperature cavity (order of 10%). At the same accelerating gradient,
for example 5 MV /m for the CEBAF cavity, the dissipated power in a superconducting
cavity is less than 5 Watts. Considering the power being absorbed at 2-4 K and the
efficiency of the refrigerator at such a low temperature, the total power needed for
the wall loss is several kilowatts, which is still hundred of times lower than the power
dissipated in an equivalent copper structure. The theoretical limitation on the maximum
accelerating gradient for niobium material is about 50 MV/m at 2 K [1]. Higher than
10 MV/m has been obtained experimentally at CEBAF. The nominal gradient of the
CEBAF cavities is 5 MV/m. It could be upgraded to higher gradients. Because of the
efficiency of the cavities (maximization of shunt impedance is not as crucial as with room
temperature cavities) and the requirement of coupling through the beam pipe to avoid
sites for multipactoring and breakdown, a typical RF cavity has a large aperture. The
large opening reduces the coupling impedance of the higher-order modes; for transverse
modes this coupling can be an order of magnitude below that would be expected for
an optimized room temperature cavity. The shape of the cells of the CEBAF cavity
are elliptical. Two-dimension codes LALA (2] and SUPERFISH (3, 4] were used for

cavity-shape optimization and mode analyses.



The 2-D codes only take into account the five cylindrical symmetric cells in the
caléulation. As a whole, the cavity must have a power coupler to couple the RF power
from the generator into the cavity. The asymmetric coupler generates multipole fields
in that region. The field of the steering mode steers the beam off axis. This may cause
several problems. Firstly, it causes head-tail effects due to the finite length of the bunch
and the time variation of the field. Secondly, the off axis particles interact with the
cavity and generate HOM fields. This not only creates unwanted Joule heating but
also may build up a high field which leads to beam quality degradation or even beam
breakup. To avoid such circumstances, the external Qs of dangerous HOMs have to be
reduced to low values. This is done by adding the HOM coupler to damp the cavity
HOMs. The HOM coupler waveguide propagate only waves with frequgncies higher than
the fundamental mode. Strong coupler-cell coupling is obtained by using a particular
geometry structure and connecting the coupler directly to the end cell of the cavity.
Although this can efficiently reduce the wakefield effects, it will generate other side
effects like steering and cross-plam; coupling. It is these effects of coupler fields that we

want to study.

1.2 The effects of the multipole fields of the cavity

The dominant multipole fields of the cavity are the dipole, quadrupole, and skew
quadrupole fields. They are localized at the coupler regions. The dipole steering results
in a movement of the bunch centroid, and most importantly a differential movement of
the head of the bunch relative to the tail of the bunch, the so called head-tail effect. The
beam centroid movement can be corrected by use of orbit correctors. The differential
movement between the head and the tail will, however, result in an (projected) emittance
growth. The emittance of the beam is defined as the area of the phase space in the (z,
') plane divided by 7. At each longitudinal location of the bunch, a phase space (z(z),

z'(z)) can be found. Usually the projection of these phase spaces onto the z = zg plane



head

center

Figure 1-2: Projected emittance of the head-tail effect due to the cavity steering.

occupy the same area, where 2y is the center of the bunch. If differential kicks are
applied to different part of the beam, the resulted projected phase space would look
like Fig. 1-2. The area of the phase space is increased. The head-ta,il effects linearly
depend on the bunch length. It can be reduced by carefully arranging the orientation
of the couplers of the cavities in the cryomodule. The cancellation, however relies on
the gradient distribution in the cryomodules.

The z — y coupling smears the  and y emittances. The force of the coupling has
the form of

yXo + Yo (1-2)

The particles with horizontal offsets will be deflected vertically and vice versa. The
coupled emittance shows a pattern similar to Fig. 1-2. Unlike the head-tail effects, the
T — y coupling occurs within the same longitudinal plane.

Other effects of the cavity multipole fields include normal quadrupole focusing and
azimuthal focusing. These effects do not degrade the beam quality. They only modify
the 3 functions of the beam line, which can be adjusted by changing the focusing of the

external elements.

To quantitatively study the multipole field effects, full 3-D modeling of the cavity is
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needed. The 3-D code MAFIA [7] is used for this purpose. Unlike the 2-D simulations,
the requirement for the number of mesh points for a 3-D simulation is large. As the
memory of the computer limits the maximum number of mesh points that can be used,
the cavity shape will not be accurately fitted by the 3-D meshes. In such a case, the
modeling should be made to represent the cavity as closely as possible. The discrepancy
of the calculated cavity from the real cavity will lead to a frequency shift, which needs
to be tuned back to the frequency of 1497 MHz. The local field errors caused by the
unsmoothened cavity boundary will not strongly perturb the field distribution near the
axis. The whole cavity model includes the 5-cells as well as the FP coupler and the
HOM couplers. The different couplings between the cell to the FP coupler and the cell
to the HOM coupler imbalance the fields if the two end cells are identical. A flat field
distribution in the 5-cells is needed and this is accomplished by slightly adjusting the
size of the two end cells. Since the code cannot model the open condition for the FP
waveguide, appropriate boundary condition should be applied so that a finite domain
can be defined for the problem. ’i‘he length of the FP waveguide is found by finding
the short position of the fundamental mode in the waveguide. Finally, the coupling
strength of the FP to the end cell is found to simulate the experimental condition where
the power flow in the FP coupler is 500 Watts, the gradient is 5 MV /m, and the beam
current is low with negligible beam loading.

The 3-D fields calculated by use of MAFIA are Fourier decomposed in a 3-D cylindri-
cal coordinate system. Then, the multipole fields and their impact on beam dynamics
are analyzed. Experimental measurements were performed to validate the numerical
modeling. The results agree with the numerical simulations. Full 3-D modelling of
the CEBAF superconducting cavity is included in the beam dynamics studies in the
CEBAF injector, linacs, and FEL driver linac. Head-tail and skew-coupling emittance

growth under nominal operation conditions and mismatched conditions are studied.



The experimental results on the emittance growth and cavity focusing in the linacs are
explainable by the numerical simulations. Methods of reducing the z — y coupling are

suggested.

1.3 Wakefield effects on beam dynamics

The beam-cavity interaction that generates wakefields which in turn act back on the
beam is a prime concern in accelerator designs. In the design of CW linear accelerators
using the latest generation of superconducting RF cavities, cost optimization and cer-
tain operational requirements favor configurations where the beam passes several times
through the same accelerating structure. It has long been recognized that recirculating
a beam through a linac cavity can lead to a transverse instability in which transverse
displacements on successive recirculations can excite modes that further deflect the ini-
tial beam. The recirculated beam and cavities form a feedback loop that can be driven
unstable at sufficiently high currents, and this effect is worsened by the higher Q’s as-
sociated with modes of a superconducting RF structure. This multipass beam breakup
has limited the current of early superconducting linacs such as the Stanford recyclotron
[8] to currents of a few tens of microamperes. However with the improvements obtained
in HOM damping through the HOM couplers, the threshold current is significantly in-
creased. The analyses of the multipass beam breakups have been well documented in
the early work of theoretical and experimental studies [9, 10, 11].

In addition to the multipass and coupled-bunch phenomena, there is a large class
of single-bunch, single-pass effects which limit the peak current (more precisely, bunch
charge and length) handling capabilities in storage rings and linacs. In a single pass
through a RF structure, there is insufficient time for the bunch to experience the long-
term ringing associated with the high @s characteristics of superconducting cavities.
Thus, these current limits are not particularly sensitive to success or failure of damping

the HOM @Qs. In the situation of high beam current (but lower than the threshold
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current), like in an FEL driver, the single-bunch, single-pass effects may worsen the
machine performance.

In this dissertation, we will not address the issue of beam breakup due to wakefield
effects. We will instead investigate the beam optics under the influences of both the
wakefield effects and the cavity multipole-field effects in the cases of beam current that
is lower than the threshold current but high enough to generate unwanted beam quality
degradation. We will take a 40 MeV IR FEL driver linac as an example.

In the FEL application, the bunches do not fill up all of the RF cycles of the funda-
mental mode. The igterbunch spacing is large. For a 25 MHz repetition frequency and
a 1497 MHz RF frequency, the interbunch spacing is 12 meters. The higher frequency
modes are strongly damped within the interbunch spacing and produce wakefields that
act effectively only within the bunches. The effects of single bunch wakefields that
concern us are the energy spread that is induced by the variation of the longitudi-
nal wakefield across the bunch and transverse emittance degradation effects due to the
dipole steering modes of the wakefields. The energy spread generated by the longitudi-
nal wakefields may be reduced by adjusting the RF phase of the acceleration field. By
doing so, the skew-coupling and head-tail effects of the cavity multipole fields will also
be changed since they are functions of the RF phase. The correlation of these two kinds
of effects is an issue that needs to be understood.

The evaluation of the wakefield effects relies on the correct calculation of the wake-
fields. Usually, wakefields are calculated under the assumption that the particles are
ultrarelativistic, which is the case for high energy electrons. In some applications, this
assumption may be questionable. The 40 MeV IR FEL linac, for example, has a in-
jection energy of 10 MeV. At this energy the velocity of the electron is 0.9987¢. Other
scenarios include beams with different velocities. In an earlier proposed CEBAF IR

FEL, the nuclear physics beam and the FEL beam are accelerated simultaneously in
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the 45 MeV injector of the CEBAF accelerator. The injection energy for the physics
beam is 5 MeV while for the FEL beam is 10 MeV. The 3 (v/c) values for these beams
are 0.9948 and 0.9987 respectively. For such cases both the ultrarelativistic assumption
and the slippage between the beams should be considered.

To evaluate the wakefield effects in a 40 MeV IR FEL driver linac, the wakefields
for the cases of § < 1 needs to be calculated. Since the ultrarelativistic assumption and
the causulity condition can not be used in such a case, analytical analysis of the high
frequency wakefields is difficult. A numerical method is used to solve the Maxwell’s equa-
tions in the time domain. Here, wakefield calculations are based on the code TBCI (12],
which is the widely used numerical code for wakefield calculations. In order to use
TBCI, several modifications have to be made. In the case of v < ¢, TBCI does not
have the capacity of handling open boundary conditions for the open. beam pipes. We
implemented the Lindman boundary conditions to TBCIL. The Lindman boundary con-
dition optimizes the reflection coefficients of waves with different incident angles (or
phase velocities). The reflection coefficients for incident angles from 1° to 89° are less
than 1%. Implementing the Lindman boundary condition not only enables the code to
deal with v < ¢ with proper open boundaries, it also provides a better open bound-
ary approximation for the cases of v = ¢ than the one-dimension boundary condition,
which assumes all phase velocities the speed of light, used in TBCL For the cases of
vt # Vs, the slippage between the source and the test particles is included in the wake
function integration. The integral for the wake function can only be carried out at
the beam pipe radius since the problem is solved in a finite domain. A radial scaling
algorithm for the wake function is needed in order to calculate the wake functions in-
side the beam pipe. We found that the scaling of the wake functions at different radial
position can be obtained in terms of the weight function. The wake function at any

radial position r is a weighted average of the wake function calculated at the pipe radius.
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The smearing effect due to the low v of the beam is studied. Conditions for applying
the ultrarelativistic limit in the wake function calculation are discussed. Even though
TBCI has been successful in calculating wakefields of many structures, problems are
encountered in calculating the wakefields of the CEBAF cavity with. very short bunch
lengths. The wake functions calculated for o, = 0.5 mm bunch in the CEBAF five-cell
cavity are obviously unphysical. It is found that the errors that cause the unphysical
results are related to the truncation errors of the finite-difference algorithm that are
frequency dependent. To reduce the truncation errors, a fourth-order accuracy finite-
difference algorithm for solving the Maxwell’s equations in the time domain is derived.
The algorithm is implemented in a modified TBCL

The modified TBCI is used for the wakefield calculations in this dissertation. Wake-
fields of cases of v, # v # ¢ and v, = v; # ¢ are studied. If the siippage between
particles is finite, the wake function seen by the test particle also slips in the frame of
the source particle. In evaluating short range wakefield effects, the slippage is a impor-
tant factor that needs to be included. The smearing effect is important at low energies
and for short bunches. The quantity that measures the smearing effect is R = a—fﬂ,
where a is the pipe radius. Large R value corresponds to weak smearing. We found that
smearing effects for R > 1.5 are, in general, small enough to be neglected. For example
the CEBAF cavity has a = 1.74 cm, the R value for 0,=3 mm and E = 10 MeV is 3.37,
and the smearing effect is small; for o, = 0.5 mm and E = 10 MeV, R=0.65, and the
smearing effect is strong.

The combined effects of the wakefields and the cavity multipole fields are studied
in a 40 MeV IR FEL linac. The energy spread and the emittance growth due to the
head-tail effects of the steering fields and the z — y coupling of the cavity fields are

evaluated. The energy spread compensation through the RF phasing and emittance

behavior at off crest phase is studied.



Chapter 2

Numerical Simulation of the CEBAF 5-Cell Cavity

The CEBAF 5-cell superconducting cavity has five cylindrical symmetric cells and
two end-couplers as shown in Fig. 2-3. One of the two couplers is the fundamental-
power(FP) coupler which couples the RF power to the cavity. The other one is the
higher-order-mode (HOM) coupler which is designed to couple the higher-order-mode
fields, generated by the beam, to a RF power dump[14]. FP and HOM couplers do not
have cylindrical symmetry. These asymmetric structures generate asymmetric fields in
their adjacent regions, and the transverse fields on the axis are no longer zero. The
particles will be deflected by these fields when passing through the cavity. A detail

study of the field distributions in the CEBAF 5-cell cavity is presented in this chapter.

A J_ﬂ/\ﬂ/\/\ﬁ_ﬂl o
HOM coupler FP coupler

Figure 2-3: The CEBAF 5-cell cavity and the HOM and FP couplers.

The field of the CEBAF five-cell cavity is calculated by use of the 3-D code MAFIA
(7). To solve the Maxwell’s equations, MAFIA uses 3-D cuboid meshes to discretize
the problem. The boundary of the cavity is replaced by a number of discrete mesh
points. The accuracy of reproducing the real boundary of the cavity is limited by the
mesh size. Small mesh size is good for both fitting the curvature of the cavity and
reducing the numerical error in the calculation. But the use of small meshes requires

a large number of mesh points, which is limited by the computer memory. The cavity

12
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is not a isolated structure. It is connected with other cavities or structures by beam
pipes and RI' waveguides. A finite computational domain should be established to
include only the cavity and part of the beam pipes and the waveguides, and appropriate
boundary conditions should be applied to each side of the domain to simulate the
unbounded structure. The version of MAFIA used in our calculations, however, can
only deal with two kinds of boundary conditions; closed boundary (or the E boundary),
E; = 0 on the boundary, and open boundary condition (or the H boundary), H; = 0
on the boundary. The fields that of interest are those of the fundamental mode. The
frequency of this mode is 1497 MHz. The beam pipes and the HOM couplers have
higher cutoff frequencies than 1497 MHz. The fundamental mode exponentially damps
in these structures. These structures can be terminated at a position where the fields
of the fundamental mode is negligible, so that E boundary condition can be applied.
The cutoff frequency of the 3.5 cm beam pipe is w, = 3281 MHz which has a wave
number k35 = 68.71. The cutoff frequency of the 1.74 cm beam pipe is 6599 MHz
which has a wave number ki 74 = 138.22. The fundamental mode has a wave number
ko = 31.35. On the HOM side, the 3.5 cm radius beam pipe, 13.932 cm long, is attached
by the 1.74 cm radius beam pipe. The beam pipe is terminated at 12.5 cm from the end
of the left cell. The fields of the fundamental mode are damped to e=VE~R x0125 _
4.8 x 10~%, which is small so that E boundary can be used. On the FP side, the 3.5 cm
beam pipe is 3.37 cm long, and at the end of this pipe, the 1.74 cm beam pipe is attached.
The beam pipe is terminated 12.5 cm away from the end cell, and the fundamental mode
damps to e~ VRS s ~R x0.0337—/k-1.T47~ET x0.0468 _ 9 3 10~*, which is also small enough
to place the E boundary condition. In a cavity-pair, the space between the two adjacent
end-cells of the cavities is 25 cm. Since the fields at the center of this beam pipe are
small, there is essentially no interference between the two cavities for the fundamental

mode. The modeling has the effective field region extended to 12.5 cm on each side of
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the cavity. The total length of the cavity is 75 cm. The actual computational region
is chosen to be a little bit larger than 75 cm since the E and the H fields are not all
defined at the mesh points.

The transverse dimension of the cavity is determined by the length of the couplers.
The HOM coupler has a dimension of 7.899 ¢cmx3.81 cm. The cutoff frequency of
the coupler is 1898 MHz, which has a wave number of kgopr = 39.75. If we termi-
nate the HOM coupler at a length of 15.5 cm, the fundamental mode would damp to
e=VFhon -k x0.155 _ 2.26 x 1072, If the E boundary condition is applied at this point,
an error with this strength will be reflected back to the pipe region. Since the error
also damps in the coupler, when it reaches the pipe region, the strength is reduced to
the order of 5 x 10™4, which is small and can be ignored. So, even if the HOM coupler
can not damp the fields to a very small number at the termination,A the error due to
the enforced E boundary condition is considerably smaller. This is desirable so that a
small computational region can be used. The length of the HOM coupler is chosen to
be 15.5 cm.

The FP coupler is a 13.44 cmX2.5 cm rectangular structure. At one end, it is
connected by a 7.899 cmx2.5 cm adapter. The adapter has a length of 9.65 cm and is
terminated by metal material. The position where the adapter is connected is called
stub position. This position determines the coupling between the cavity and the coupler.
The other end of the FP coupler is connected to the power supply system (recirculator
and klystron) through a waveguide. The fundamental wave propagates in the coupler
in the form of a T1o mode. The fields do not damp in the FP coupler. Since the cavity
has very high @, the position of the termination of the coupler is not important as long
as we only study the fields in the cavity region. It is important when the fields in the
coupler-pipe region are of interest, which is the case of this work. So the length of the

FP coupler should be chosen carefully. The idea is to'find the position of the standing
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wave minimum. At that position, the E field has minimum value, ideally zero, and the
E Bounda,ry condition can be applied. Since the wavelength of the fundamental mode
is 20 cm in free space and 30 cm in the propagation direction of the FP coupler, the
length of the termination is roughly estimated to be in the range of 20-30 cm. The
termination of the FP coupler will be discussed in a later section.

The cross section of the cells is approximately elliptical. The three center cells are
identical, with a major axis of 9.4 cm and a minor axis of 5 cm. The two end cells are
slightly smaller than those center cells in order to have flat field distribution.

With the computational domain determined as above, the whole region is discretized
in 3-D Cartesian coordinates with an average mesh size of 4 mm. The number of mesh
points is about 1.3 million. Even with this mesh size, the elliptical shape cavity and
cylindrical beam pipes cannot be perfectly fitted. This causes the volﬁme of the cavity
be slightly changed, which results in a frequency shift. The flat field distribution in the
five cells can no longer be held due to the change of coupling between the cells. The
coupling between the cavity and the coupler will also be changed. Since the field strength
in the coupler region is directly related to the coupling strength and the gradient of the
cavity, it is important to obtain the right coupling in order to study coupler steering
effects.

The frequency shift and the flat field distribution can be tuned to the designed values
by carefully maneuvering the shape of the cells. The right FP coupling strength can be
obtained by adjusting the stub position. In the next sections, we will study how the

boundary perturbations can be used for these adjustments.
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2.1 The theory of resonant cavities

We wish to solve the Maxwell’s equations within a volume bounded by certain sur-

faces.
VxE-{—%—]tB:O | (2-3)
VxH—%—?:J (2 -4)
V:D=p (2-5)
V.-B=10 (2-6)

The solution will be in terms of a summation over certain modes, which possess orthog-
onality properties. To do that, we would like to find the orthogonal functions which
satisfy certain boundary conditions. The electric and magnetic fields can be expanded
in terms of these fun‘ctions. The theoretical studies of resonant cavities presented in

this chapter follow the treatment of Slater [15].

2.1.1 Orthogonal functions

Consider an arbitrarily shaped cavity with one opening as shown in Fig. 2-4. The

Figure 2-4: Cavity with one opening.

surface is divided into two parts labeled § and §’. We will impose the short-circuited
boundary condition on S, which requires that the tangential component of E and the
normal component of H be zero, and the open-circuited boundary condition on S,
which requires that the normal component of E and tangential component of H be zero.
The spanning orthogonal functions can be found by solving the source free Maxwell’s

equations under these boundary conditions.
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In general, there are two kinds of vector fields, the solenoidal, with zero divergence,
and the irrotational, with zero curl. Let E, and H, be the orthogonal functions of the
solenoidal fields and F, be the orthogonal function of the irrotational fields. We will
use E, to expand the solenoidal part of E, F, to expand the irrotational part of E and

use H, to expand H. E;, H, and F, satisfy the following boundary conditions

nxE, =0 on S, n-E;,=0 on ¢ (2-7)
nXxH,=0 on § n-H,=0 on § (2-28)
nxF, = 0 on § and §

il

Va 0 on S and 5’ (2-9)

where k, is the wave number, V¢, = k,F,. Assume E, and H, satisfy the following

relation

kB, =V xH,, kH,=VxE, (2 - 10)

H, is the magnetic field scaled by \/u/e. E,, H, and 9, satisfy the wave equation

VZE, +kE, = 0 (2-11)
VH, +kH, = 0 (2-12)
V2¢a+kg¢a. =0 (2-13)

The E,s, Hys and F,s are normalized and readily shown to be orthogonal.

2.1.2 Maxwell’s equations in a cavity

To solve the Maxwell’s equations in a hollow cavity, the fields are expanded in terms

of the 6rthogonal functions described in Sec. (2.1.1).

E = Z(EG/E-Eadv+Fa/F-Fadv)



H = YH [H Ha
) (JG/E-Eadv-f- F. [3 ~Fadv)
}:wa/m/)adv , (2-14)

[
Il

©
1l

Substituting (2-14) into Eq. (2-3) - (2-6) we have the following equations for the expan-

sion coeficients

ka/E-Ea-f—ud%/H-Hadv:—/S(an)-Hada (2 - 15)
ka/H-Ha—e%/E-Eﬂv:/J-Eadv—/SI(an)-Eada (2 - 16)
—e%/E-Fadvsz-Fadv (2-17)
—kae/E-Fadv=/p-¢adv (2-18)

B is a solenoidal vector, so V- B = 0 is automatically satisfied.

Among these equations, Eqs. (2-15) and (2-16) determine the solenoidal part of the
fields. This is the part of the fields which shows the properties of wave propagation.
We can combine Eqgs. (2-15) and (2-16) to get separate equations for the coefficients

JE-E,dvand {H H,dv

2
ep%/E-Eadzw-kZ/E-Eadv = —pdilt (/J-Eadv

- /S’(n x H) - Eada) ke /S(n x E) - H,da (2-19)

2
eu;ldt—z/H-Hadez/H-Hadv = K (/J-Eadv
d
- /;I(n x H) - Eada) - /S(n XE)-Hoda  (2-20)
JE-E.dv and [H-H,dv are functions of time. They satisfy the differential equation

of a forced harmonic oscillation. The driving forces are the current in the cavity and

the current on the cavity wall.
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2.2 Frequency adjustment by means of boundary perturbation

Discretization of the cavity with finite mesh size in the MAFIA simulations will
inevitably shift the frequency of the cavity away from the design value. Initial calculation
of the CEBAF cavity shows that the resonant frequency of the fundamental mode
is 1487.15 MHz which is 10 MHz lower than the designed value of 1497 MHz. It is
preferable to adjust the resonant frequency to be as close as possible to 1497 MHz, as
this allows beam dynamics codes to use one frequency for the capture, the buncher, and
the cavities. In this section we will use the formulae developed in Sec. 2.1 to study the
tuning of the frequency in MAFIA simulation. Let us estimate the frequency change
when the boundary of the cavity is perturbed by pushing a small part of the wall in
or out. Let the cavity wall be superconducting and J = 0 inside the cavity. Let the
wall be pushed into the cavity volume by a small amount. In the region between the
original wall and the perturbed one, E and H will be zero. This is equivalent to having
a surface current causing the discontinuity in the tangential component of H. A surface
integral term — [(n x H)-E,da néeds to be added to the right hand side of Eqgs. (2-19)

and (2-20); that is

—/(an)-Eada’ = —/(ana)-Eada’/H-Hadv

—/n~(Ea xHa)da'/H-Hadv

- (. (Vx B - B, - (V x Ho))d [ H - Hodo

-ka/H-Hadv/(Hg — EDdv' (2-21)
where o’ and v’ are the small surface and the corresponding volume of perturbation.
Combine (2-21) with (2-20) we have

—u? + K = k2 / (H? - E})dv' (2 - 22)

or

w? = w? (1 + /(Hf - Ef)dv’) (2 -23)
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This formula indicates that the frequency of the cavity will increase if the wall is pushed
in Aat where the magnetic field is strong or is pulled out at where the electric field is
strong. The initial calculation shows that for the fundamental mode the electric field
is strong in the pipe region of the cavity whereas the magnetic field is strong at the
top of the cells. It is preferred to adjust the top part of the cells inward to increase
the frequency, since the perturbation then is far from the beam axis and the fields in
the axis region are not perturbed. Several calculations have been made for different
cell radii. The final result has a frequency of 1495.37 MHz which is fairly close to the
designed value 1497 MHz. To obtain this frequency, the radii of the cells are reduced

by about 1.8 mm.

2.3 Field distribution in multi-cell cavities

The initial calculation shows that the amplitude of the fields in the five cells of the
cavity is not the same. This deviation is due to errors in the coupling of the end cells.
In actual operation, the cavities have a field flatness of £:2.5% in the five cells.

In multi-cell cavities, the cells are coupled to each other. The coupling strengths
between the cells determine the field distribution. The inner cells of the cavity are
coupled to both the adjacent cells on each side whereas the end cells of the cavity
are each coupled to one cell on one side and a coupler on the other side. For high Q
cavities, like the CEBAF cavity, the coupler-cell coupling is much smaller than the cell-

cell coupling. Let us examine the relation between the fields strength and the coupling

| n-1 n n+l ... N

Figure 2-5: Multi-cell cavity.
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strength in multi-cell cavities [16] as shown in Fig. 2-5. Consider cell n, which is coupled
with cells (n-1) and (n+1). We arrange the cells so that the (n-1)th cell couples to the
nth cell through its §' boundary and the (n+1)th cell couples to the nth cell through
its § boundary. Let X, represent the coefficient [ E - E,dv of cell'n. Apply equation

(2-19) to the nth cell

2

d
Xnt KXo = jyERg [ (X HY) Bl Xsda

6/1.327

-k / (nx E*1). H"X,_,da (2-24)
S

Recalling that X, has an e/“* dependence, the coupled equations, in general, have the
form
Cuw?

Xn(w? —wd) + 5 (Xn-14 Xn41) =0 (2-25)

where C is the coupling strength and is a function of w. The end cells, e.g. n=0, only

couple to one of the inner cells. The coupling equation is then
Xo(w? —wd)+ —X1=0 (2 - 26)

where w is the overall frequency of the cavity, wg and wp; are the intrinsic frequencies
of the inner cells and the end cells respectively. If wg = wo;, the coupling for the inner
cells is about twice as large as that of the end cells. The coupling of the end cells can
be compensated by adjusting the intrinsic frequency wo;. Assuming that the couplings

are the same, the solutions of Egs. (2-25) and (2-26) are as follows,

x@ = cos(%ﬁ)ej“qt (2-27)
2
Ww? = “o (2-28)

? 7 14 Ccos(rg/N)
where ¢ =0,1,2,...N, with N the total number of cells. For ¢ =N, the fleld distribution
in the cavity has 7 mode pattern. The CEBAF cavity has N=4 and operates in the
7 mode. The coupling between the cells of a CEBAF cavity is an E coupling. The

coupling strength is positive; w? > wp for 7 mode.
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In the 7 mode, X, = —X,,4;. Eq. (2-25) then becomes
Xn(w? = W)+ Cw?Xpyq =0 (2-29)

Comparing with (2-26), we see if the end-cell coupling is to be the same as the inner-cell
coupling, one has

wor = 0.5 X (w? 4+ wp) (2 -30)
The intrinsic frequency of the end cell must be higher that the intrinsic frequency of
the inner cells in order to have the same coupling. The field flatness adjustment thus
becomes possible by tuning the frequency of individual cells.

The method usg& in Sec. 2.2 for tuning the overall frequency of the cavity can be
applied to the end cells. The tuning process is now more subtle. Since the coupling
between the end cell and the HOM coupler is not the same as the coupling between the
end cell and the FP coupler, the two end cells must have slightly different sizes. We
would like to make a slight change of the boundary cells to adjust the volume without
changing their material properties (vacuum to metal, for example) by slightly changing
the radius of the cavity or the position of the mesh lines. The result often comes out just
the opposite; in discretizing the cavity, the mesh on the curved boundary of the cavity
may be cut off to become vacuum or be kept as metal depending on what percentage
of the cell is within the boundary of the cavity. Slightly changing the mesh lines may
turn some of the vacuum mesh into metal or vice versa, leading to excessive volume
increment or reduction. Care must be taken and many tries were needed for the tuning.
Our final result has a £2.5% field deviation in the five cells which is about the value

achievable in accelerator operation.

2.4 The short position of the fundamental power waveguide

As stated earlier, the fundamental mode propagates in the fundamental power

waveguide. The termination of the guide is not arbitrary, and we need to find the
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position where E field is minimum so that the waveguide can be terminated by a metal
boundary. The position of minimal E field is called the short position. To find this
position, we will start with the input impedance of the cavity, then couple the cavity
impedance to a terminated waveguide impedance. We will find the frequency change of
the system as a function of the termination position of the waveguide, from which the

short position will be determined.

2.4.1 The input impedance of the cavity

Consider a cavity attached to a waveguide. § is the plane where the open circuit
boundary is applied to get the normal modes E, and H,. The $’ plane is chosen far
enough up the waveguide from the cavity so that only propagating modes exist. On
5" we will add a perturbation H. We will calculate the E field distribution under this
perturbation in the cavity and the waveguide. We will take the ratio of the E and the
H fields on §’ to get the input impedance of the cavity.

E, and the perturbation H on the S’ plane can be expanded in terms of the waveg-

uide mode E;, and H;,

Ea = ZvanEtn (2 - 31)
n
H=>inZ1,Hn (2-32)
n

where v, and %, are coeflicients; v,,, is independent of time while 4, varies as ejm, the
time dependence of H, Z;, is the characteristic impedance of the waveguide which is
defined as Z1,H;n = k X Eyy; k here is the propagating vector pointing into the cavity.
The unit vector of S’ points outward. We have n x H = Y n tnEin. The second integral

in (2-19) can be evaluated as

/(an)-Eada = /gZinZln(antn)-Eada
s’ 15

= // Z inEyp - EvamEtmda
n m
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D inYan (2-33)

For a superconducting hollow cavity, Eq. (2-19) yields

_ _ N _ inUgn/€Wq
" R (-2 .
J Wq w

The transverse E field on §’ is

;(/E-Eada>E

2| Tin | X Sl | B,
(&%)

E,

m a ]

We w

> ViEin (2-35)
n

For the nth mode
(Et)n = VnEtn
(Ht)n . inzlnth
The impedance for the nth mode Z, is

o = (Ht)n =3

_ _§ Yanvem /€wa
FEET

kx (B _ Va
In

Wa w

= _sz nm (2'36)

in m
where Z,, can be interpreted as the coupling impedance between mode n and mode m,
tm Znm as the voltage contributed from mode m to mode n. The total voltage of mode n
takes the summation over all of the waveguide modes. Eq. (2-36) gives the impedance
looking into the cavity. The impedance looking out of the cavity is the negative of Z,
since k now is pointing outward, which leads ton x H = -}, i, E;.
Assume that only the dominant mode propagates in the waveguide and define

1/Qerta1 = v21/€wsZo1, where Zo; is the characteristic impedance of the guide for
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its dominant mode at the resonant frequency w,. The impedance has only the Zi,

term, which is

l ert,a
Zn=Zn=Z01Z—{UQ—t’wi—
i)

Qest,a1 is @ measure of coupling of the ath mode to the output through the dominant

(2 - 37)

mode of the guide. If v, is large, the coupling is strong, and Qext a1 is small.

2.4.2 The short position of the coupler

Let us now connect a terminated waveguide to the open surface S’ of the cavity.

The length of the guide is d. The impedance looking into the guide is
Zguide = jZo1 tan2mwd/ A, (2 - 38)

where A is the guide wavelength. This impedance must be the negative of Z;; of (2-37)

tn2i'd-—2 1/Qexta1 (2_39)
(&%)
or
= 2801 E 1/Qerf al —n/\g (2 - 40)
“(5-%)

This gives a relation between d and w (or Ay). The curves determined by Eq. (2-40) are
illustrated in Fig. 2-6. Far from the resonant frequency, the term associated with the
summation over a in Eq. (2-40) is small, d = nA,/2, this gives the part of the curves
close to the dashed lines. As the frequency goes through a resonant frequency, the
dominant term in the summation, Q ezt o/(w/ws — w,/w), goes to infinity and changes
sign; d increases by A;/2, and the curve crosses from one of the straight lines (nA,;/2) to
the next ((n+1)A;/2). A resonance occurs at approximately d = (n+1/2)A;/2. In the
case of the cavity on resonance, the electric field at the short position forms a standing

wave minimum. The field in the waveguide is, in general, much smaller than the field
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Figure 2-6: Frequency of the cavity vs. the short position d

in the cavity; a change of the short position has the least effect on the frequency. This
corresponds to the vertical part of the curve. As the short moves farther away from
the resonant position, the cavity is driven off resonance, and the field in the guide is
comparably large. A change of the short position dramatically changes the frequency,
which is shown as the straight pa,r;c of the curves that coincide with d = nA;/2. In such

case, the cavity is detuned.

2.4.3 The tuning curve of the CEBAF cavity

The tuning curves of the CEBAF cavity are obtained by running MAFIA at different
coupler lengths. Five low frequency modes are shown in Fig. 2-7. The center curve
corresponds to a resonant frequency of about 1497 MHz, which is the operating mode
of the CEBAF cavity. The distance in the figure is measured from the axis of the
cavity. The cavity is detuned for this mode if the short is placed at a distance of about
14 cm. The T Eyo waveguide wavelength for 1497 MHz is 29.93 cm. Based on the above

analysis, the short position for the cavity on resonance is at d = 21.5 cm.
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Figure 2-7: Tuning curve of the CEBAF cavity.
2.5 Numerical tuning of the coupling strength of the FP coupler

The coupling between the cavity and the waveguide determines the power flow as
well as the field strength in the coupler region. The coupling strength is important in
cavity steering studies. The finite mesh used in the simulation changes the coupling
between the end cell and the FP coupler. To match the experimental condition of
5 MV/m gradient and 500 Watt ir;put power (low beam current), the coupling must be
‘ adjusted. The tuning of the coupling strength can be accomplished by adjusting the
stub position of the FP coupler.

The coupling is characterized by the external Q..¢, which is defined as the ratio of
the energy stored in the cavity and the power flow in the coupler. For our purpose,
Qest is not needed to be calculated, instead, we only need to know the ratio of the
amplitude of the field in the waveguide and the field in the cavity. The FP waveguide
is a rectangular structure. The dimension of the guide is (a=13.44cm X 5=2.502cm).
The cutoff frequency is wy = mc/a = 27 x 1.12 x 10°. Assuming that the traveling wave

in the waveguide is TE1g mode. From [17], the power flow in the waveguide is

3@ ) [ e

where for TE mode ¢ = H, = Hgcos(rz/a)e’***=3%t, Integrate over the waveguide
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surface A we have

bH} 2\ /2
P:%(i)(l_<ﬂ>) (2_42)
w w
The relations
*1 W k
Ht': —Z—ZOXEt Z='CT Zok—z‘ (2'—'43)
lead to
1 W)
Hy = z:Eto

where Zy = 376.8 is the impedance of the vacuum and k = w/c is the wave number.

The power flow in terms of the amplitude of the electric field of the traveling wave is

abE2 wy \ 2 1/
P=-ﬁ<l—<:)) (2—44)

Evaluate P for the parameters given above we have
P = 1.4943 x 10%E% (2 - 45)

where Ep is in MV/m. For P = 500 Watt, Ey = 1.8292 x 10~2 MV/m. MAFIA output
gives the amplitude of the standing wave Eytang. Thus Egang = 2F: = 3.6584 x 102
MV/m. In the cavity, to achieve a average gradient of 5 MV /m, the maximum amplitude

in the center of the cells is E, = 1.99 MV/m. The ratio of these two field is

Lotand _ 4 935y 10-2 (2 - 46)

E.

The stub position of the FP coupler determines this ratio. The numerical result of
this ratio versus stub position is shown in Fig. 2-8a. The stub position is measured
from the axis. Shown in Fig. 2-8b is the maximum of the E, component on the axis
in the coupler region. The coupling strength has a minimum at about 11.5 cm. The
coupling gets stronger if we move the stub both ways away from this point. There are
two positions which have the right coupling. From the point view of cavity steering,

it is preferable to place the stub farther away from the axis, as seen from Fig. 2-8b.
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Figure 2-8: The coupling of the FP coupler vs. the stub position.

There is, however, another important factor need to be considered. The cavity has a
few modes that have frequencies lower than the fundamental mode frequency as shown
in Fig. 2-7 (only two are shown). These modes can be coupled out only through the FP
coupler since the HOM coupler has higher cutoff frequency. Higher coupling strength is
required for these modes. This can be obtained by placing the stub closer to the axis,
as indicated in the figure. It is es’éimated that strong lower modes would cause greater
damage to the beam than the cavity steering. It is therefore preferable to choose the
stub position to be 10.96 cm. This choice more efficiently extracts the lower modes out

of the cavity, even though the cavity steering is stronger.

2.6 Field distribution in the cavity

As the parameters of the cavity and the coupler are determined in the previous

sections, the field of the cavity is evaluated. MAFIA solves the eigenvalue problem
(VI+EHE =0 (2 - 47)

It first finds the eigenvalues {k;} (the frequencies), and then finds the eigenvector E.

The frequency of the fundamental mode obtained from MAFIA for the CEBAF cavity
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is 1495.38 MHz. The accuracy of the numerical calculation is as the follows

Frequency — 1.0x 107°
(V-D=0) — 1.2x107%
(VXVxE=E) — 13x10°°

(V-B=0) — 45x107%

Since there are modes that are close to each other, there is contamination among the
eigenvectors. The contamination factor for our calculation is 2 x 10~3. This factor
determines the contamination of the actual vector under the worst assumption. The

contamination is reasonably small. The overall accuracy of the simulation is good.

2.6.1 Multipole-field distributions, 3-D field expansion

Since the structure of the couplers is so irregular, we expect that the fields have
multipole components. The multipole fields can be studied by 3-D field expansion. In
a resonant cavity, the E and B fields satisfy the wave equation

(V2 +#?) B =0 (2 - 48)
B

where k = w/c is the wave number. Assuming the fields have an e*7¢:* dependence,

Eq. (2-48) becomes

(vi-@-m) | B0 oo (2-49)
B(n,4,2)

where Vﬁ_ is the transverse Laplace operator.

TM modes:

For TM modes, the full E and B fields can be determined by E,(r,6,z2), which

satisfies

(Vi - (¢ = K"))Ex(r,0,2)=0 (2-50)
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Let L = 75 cm be the total length of the cavity; z = 0 be the center of the cavity.

E,(r,0,£L/2) = 0 be the boundary condition. The general solution of (2-50) is

E, = IL.(n.7) (cos((n : z)(Af'm sin(mf) + BE | cos(m#))

+5in(Gn - 2)(CE,, sin(m8) + DE,, cos(mé))) (2-51)

where {, = (2n — 1)7/L, n2 = (2 — (2r/))? > 0, I.(nar) are the modified Bessel
functions of the first kind. For 5% < 0, 7, = /[ 72 | and Lx(n.7) is replace by Jp,(7.7),
the Bessel function of the first kind. The E; and H, are determined by the transverse

derivatives of E,(r,6,2)

E; = #j C”2VJ_EZ(T,€,;:) (2-52)
/"
CB_L = ﬁZOXEJ_ (2-53)
Cn

With the + signs correspond to e*7¢:*| we have

(£7)cos(Cnz) = —sin((nz) (2-54)

(£7)sin(¢nz) = cos((n2) (2-55)
and the B field is 7/2 phase ahead of the E field

o~ (wt+n/2) _ —je_jwt (2-56)

The 3-D expansion of other field components are obtained. The following is a summary

of the fields for the T'M modes.

E; = In(mr) (cos(Gn - 2)(AE m sin(m8) + BE,, cos(m8))

+sin(Gn - 2)(CE,, sin(mé) + DE,, cos(mé))) (2-57)
E, = %%gﬂ (sin(Ga - 2)(AZ,,, sin(mb) + BE,, cos(mé))

~ c08((n - 2)(CE,,, sin(m8) + D, cos(m#))) (2-58)
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an m("]n ) ( (C’n z)(A cos(mt?) - Bf:m Sin(mg))

3
= 08(Gn - 2)(C i cos(m) = DE,, sin(m4))) (2-59)
I (7 :
—%M (cos((n . z)(Af,m cos(m@) — Bf,,.n sin(m#))
+ sin(¢y, - z)(Cfm cos(m@) — Df,m sin(mG))) (2-60)
E%—f%:—h—r) (cos(cn . z)(Af’m sin(m) + BF,, cos(mf))
+sin(¢, - 2)(CE am Sin(m8) + Df,m cos(mG))) (2-61)

For TE modes, H, satisfies the same equation as the F, field in the TM modes.

The 3-D expansion of the H field is calculated the same way as the E field in the 7/

modes. The transverse E field in the TF modes can be calculated from B :

E, = —(£)zo x (¢B.) (2 - 62)

A summary of the 3-D expansion.of the fields of the TE mode is listed as follows.

¢ By

Eq

I (nnr) (cos(Cn . z)(A m sin(mé) + Bn m cos(mf))

+sin({n z)(C' m sin(m8) + Dn m cos(m()))) (2-63)

) (o - 2) (A2 in(m) + BE cos(m)

— 08(¢n + 2)(Cm sin(mé) + DE,., cos(m#))) (2-64)

an m(’?n"‘) (Sln(Cn z)(  m cOs(mé) — Bf'm sin(m8))
n: r

— cos((n * z)(C’,ﬁm cos(m#@) — ng sin(mB))) (2-65)
—5721—72-7(:217‘—) (cos({n : z)(Af,m cos(m8) — B,}f’m sin(m#@))
+sin(¢n - 2)(CE,, cos(m8) — DE | sin(m@))) (2-66)

& G001 (cog(c, . £)(AB,, sin(m) + BE,, cos(md)
cn,  dr

+ sin((p - z)(C’f,m sin(mé) + Df,m cos(m0))) (2-67)
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It is found that the fundamental mode is a mixed mode. It has both TM and TE
components instead of only the TM component, which is the case of without couplers.
The m is the index of the angular distribution. The m = 0 terms are cylindrically sym-
metric, the m = 1 terms have dipole symmetry, and the m = 2 ternis have quadrupole
symmetry. The n is the index of the Fourier transform in the z direction, which de-
termines the multipole distributions along the z axis. Individual multipole fields are
obtained by summing over index n for fixed m.

The sampling points of the fields for the Fourier transform are defined on the r =
0.5 cm cylinder. The number of points is 291 in the z direction and 80 in the angular
direction. The total number of terms for the z transform is 34, and the total number

of terms for the angular transform is 5.

2.6.2 TFields of mode m=0

The m=0 mode is the acceleration mode. It has only the E,, E. and By components.
The distribution of fields at 7 = 0.5 cm are shown in Fig. 2-9 The field is normalized
to 1 MeV energy gain. The E, field has essentially the same strength in all of the five
cells, as can be seen from the figure; the flatness of the E, fields in the five cells is about

+2.5%.

2.6.3 Dipole fields, m=1

The dipole fields are the fields of the m=1 mode. As shown in Fig. 2-10, the dipole
fields are localized in the HOM and the FP coupler regions. Both the transverse and the
longitudinal components of the fields have dipole moments. For the transverse fields,
the non-zero components in the HOM coupler region are E;, E,, B, and B,. These
fields give both z and y deflections to the charged particles. In the FP coupler region,

there are only non-zero E, and By flelds. E, and B, vanish because the coupler is
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Figure 2-9: Fields of mode m=0.

symmetric about the y = 0 plane. The E; and B, fields give only z deflections, and
¢+ B is larger than E . The steering effect in the z direction is therefore to be stronger
than that in the y direction. The dipole strength of B, is small. The dipole strength
of E, is comparable to the dipole strength of E,. The effect of this dipole E, field is to
generate energy spread as the particles are accelerated at different azimuthal positions.
Comparing the strength and the extent of the field region with the m=0 mode, this

effect is small and can be ignored.
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Figure 2-10: Fields of mode m=1.
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Figure 2-11: Fields of mode m=2.

2.6.4 Quadrupole fields, m=2

The quadrupole fields are related to the m=2 mode. Fig. 2-11 shows the quadrupole
strength of the E and B flelds at (r = 0.5 cm,§ = 0). The quadrupole effects are
mainly contributed from the B, fields. The strength of ¢ - Bs in the figure represents
the strength of the normal quadrupole and ¢ - B, represents the skew quadrupole. The
source of the normal quadrupole is located mainly in the FP coupler region while the
source of the skew quadrupole is located purely in the HOM coupler region. This is
anticipated since the FP coupler has one dimension symmetry, while the HOM coupler

has none.

2.6.5 Fields of higher-order modes, m>2

The fields of higher-order modes, m>2, are small. Shown in Fig. 2-12 are the
sextupole fields (m=3). These fields are much smaller then the dipole and quadrupole
fields. The fields of m=4 or higher are also small. They can be ignored. In the cavity

steering studies in the following chapters, we will only keep the terms up to m=2.
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Chapter 3
The effects of the Multipole Fields on Beam Dynamics

In the previous chapter, we studied the multipole field distributions of standing
waves in the cavity. The actual fields vary as e=/“!. As a charged particle traverses the
cavity, its trajectory will be pushed and bent by these fields as result of acceleration and
steering. The strength of these effects depends on both the initial RF phase of the fields
when the particle enters and the velocity of the particle. If the velocity of the particle v
is less than the phase velocity of the RF field, which is the speed of light (c) in our case,
there will be a phase slippage while the particle is traversing the cavity. The acceleration
will be different due to this slippage, and the phase of maximum acceleration for particles
with different energies will be different. The steering will be affected by the slippage
the same way. Moreover, the transverse force is the combination of eE, and evBs. For
m = 0 modes, E, and cBg have the same amplitude throughout the cavity. For v = ¢,
the transverse force from the E and the B terms totally cancel. For v # ¢, the remnant
of the cancellation is finite, and the force is radial and cylindrically symmetric and is
sensitive to v. This force produces the so-called azimuthal focusing. For the multipoles
(m=1,2), the fields are well localized. The amplitudes of E; and cB, differ by a large
amount. There are transverse forces either for v = ¢ or v # ¢ and the forces are not
as sensitive to the phase slippage and the velocity of the particle as the m=0 mode. In
this chapter, we present a quantitative study of the effects of the multipole fields on the

beam dynamics.

37
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3.1 Transverse momentum change due to the multipole fields

The transverse force experienced by a particle traversing an RF field is
F
f = ” —E_L+(VXB)_L , (3-—68)

i s, v v and v, & v. For cases where H, is small, as in
Usually in accelerator beams, v; << dv, ~v. F here H 1,

the CEBAF cavity for example, Eq. (3-68) reduces to
f:E_L+'UZOXB_L (3—69)

Consider only the part which is related to e’é»*, For TM modes

E, = C VLE (3-70)
- ¢
ik
H, = P R TS X V.FE, 3-71
* Zo(k* - )ZO * (3-71)
and for TE mode
H, = I6n V.H 3-72
L = 767——5 141z (' )
) — Sn
i Zok
EJ. = —E%—_%?ZOXV_LHz (3-73)
n

We have the transverse force

f = EC V.E, +%zoxzoxvﬁ

JZok
k - Cn

= I Cn (Cn - kﬂ:) V.E,

kz__f (Crbv = Zok) 20 X VL H, (3-74)

T8 2o x VLH, + kJC"“Z 2o X YV, H,

+
The momentum change for mode m due to this force is
1
APm_L=-5;/dZF (8- 175)

We can evaluate the momentum change by substituting the E, and H, given in the

previous chapter, Eqs. (2-50, 2-63). For the purpose of a general analysis of the steering
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effect in this section, we will, instead, use a more general expression of the longitudinal
field. We will extend the expansion period to infinity (L — o). The spectrum of G
then becomes continuous ({,). The summation over 7 is replaced by an integral. The
§ dependence of the expansion is unchanged. Considering that the time dependence
of the fields is e¢»=7*t and assuming that the energy of the particle is high (3 ~ 1),

integrating Eq. (3-75) over ¢ and (, from —o0 to 400 leads to
je .
APmJ_ = —;‘VJ_EZ(T, 9, m) (3 = :'6_)

Only the TM mode contributes to the transverse kick. The general form of E, for mode

m with wave number (, is

[=<] o0
E.(r,0,2,(,) = Z A Jm(1e) cos(mB)e?$=* + Z B Jom (1:7) sin(m8)e?$=* (3 = 77)

m=0 m=0
2 +
where 77 + (7 = k? = %5, Ju(n,7) = = (222_7‘) is the Bessel function.
¢ z—o
We have
- e 1)“(2¢ + m) < > “7 ptbmer :
AP, = Z A+ m) m)! 9 i (Am cos(m8) + B, sin(mé))rg

£ 204+m
+]6 2 ‘e'(‘ei-)m)' < > + T2[+Tn—1(‘Am Sin(me) _ Bm cos(m&))eu(3.78)

To first order in »

- _le
AP, = w(

77rA1 X0+ TIrBl

% (ex0 + yyo) +

2 2

A B -
+77’4 2 (20 - yyo) + "’4 2 ) (3-79)
Now it is clear that the m = 0 (Ap) term is cylindrically symmetric which causes
azimuthal focusing, the m = 1 (A4; and B;) terms are the dipole moments which result

in steering in the z and y planes, and the m = 2 (A; and B;) terms are the quadrupole

and the skew quadrupole moments which produce both focusing and z —y coupling. The
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normal quadrupole is related to cos(26) and the skew quadrupole is related to sin(26)
in the F, expansion.

Since n? = k? - (2 = —;“2"—‘2;7 goes to zero as vy goes to infinity, from a first glance at
Eq. (3-79) one would conclude that the transverse momentum change closely depends
on the energy of the particle. This is not the case for high energy particles. In the case
of small 7, J;m(7,7) is proportional to n™. From the multipole studies in the previous
chapter, the field has finite value for each of the modes m = 0,1,2. This suggests that
N Ap and 7" By, is independent of 4. So the dipole and quadrupole terms in AP
become finite constants for large v while the azimuthal focusing varies as :}lf

The above results were obtained under the assumption that the trajectory of the
particle is a straight line, which is equivalent to a thin lens approximapion. This is true
for the dipole and the quadrupoles terms since the fields of these modes are well localized
in the coupler regions. For the m = 0 mode, there is a thick lens effect and a more
accurate description of the cavity focusing can be obtained by taking into account the

variation of the particle trajectory[20, 21]. For TM and m = 0 mode, Eqs. (2-57)-(2-61)

to first order in r are

E,(r,2z,t) = E,(z)cos(wt+ ¢g) (3-80)
E.(r,z,t) = _%dE;jz) cos(wt + ¢o) (3-81)
By(r,z,t) = —%EZ(Z) sin(wt + ¢o) (3-82)

where the sinusoidal time relation is included and ¢q is the phase offset of the particle
relative to the phase of maximum acceleration. All of the fields are in terms of the

longitudinal field E,(z). The radial momentum change due to these fields is

ar)=e [ (-T2EE oot 4 o) + 2D o) sinut + o))
(3 - 83)

Let G,(z) = eE,(z)/mc?, and integrate the first term on the right hand side by parts.



We have at position z

YB(2) = (=00, (~20) = p T Gis) cos(wt(z) + o)
+ / oo : [;52)0( ") cos(wil2') + go ) d='
-/ w F(LE;‘[;)QWGZ(/) cos? (wt(x') + o) dz
- / 267;‘(’:(;2 (Z)G(z’)sin(wt(z')+¢o)dz' (3-84)
Since r/(z) = 1 ;j)g: j , at high energies, we have
()-r(a)+ ~a)~- /27(:(;;(2 (') cos(wi(2') + @0 )d2' (3 -85)

where G,(z) = 0 for z < a is assumed. Substituting 7(z) into Eq. (3-84), to the second

order of 7 we have for the final momentum of the particle after traversing the cavity

I Toy — I,
1) = (e (o) (14 22 4 T2 o)
—r(a) <I1_1 n I; - 1123 + I14) (3-86)
. v v
where
In = 2/ ) cos wt( )+¢o)dz'

Inp = 1 /_m (G’,(z') cos(wt(z’) + ¢0) /:,o G, (Z") cos (wt(z") + d)o) dz") dz’'
I3 = %[_o:o(z’— a)G2(2') cos? (wt(z') + ¢o)dz’

I, = l/m G%(2') cos? (wt(z') +<;i>o)dz'
4 J-c0

o= g (G’(z')ws(“’t(z’) + o) /_
h - %/oo (GZ(ZI) cos? (wt(z’)+¢0 /2’ Gz(z”) Cos(wt(z'/)+¢o)dz/l> dz’'

W

Ly = ——/ G.(7) sm(wt(z')—{-%)dz

Gg(z'i) cos? (wt(z") + ¢0> dz”) dz'

2c
Terms Io;, Iog and Iz are the higher-order terms of the adiabatic damping. Terms I1;,

L2, I3 and I;4 are related te the azimuthal focusing. For high energy particles, the
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dominate term for the azimuthal focusing is I;;. It is positive for all phase offsets. Thus
the field is focusing for all phases, and the focusing is proportional to % Rewrite [3; in

the following form

% (cos(2¢>o) /_ ;°° E(2)cos*(wz/c)dz + sin®(do) /_ :° Ef(z)d'z> , (3 - 87)

which shows that the amplitude of the focusing is modulated by the phase offset (¢o)
with a double frequency. If the energy is low, the second order terms becomes important.

Those terms are not always positive, and defocusing may exist for some RF phases.

3.2 Particle tracking

Numerical integrations were performed to study the beam dynamics in the super-
conducting cavities. To evaluate the RF fields in the cavity for the particle tracking, the
original MAFIA output can be used to calculate the 3-D fields by means of interpolation.
Alternatively, the Fourier expansions developed in chapter 2 can be used. Since the 3-D
interpolation involves fewer mathematical manipulations than the Fourier expansions,
execution will be faster for the first choice.

In the modeling, only the fields close to the axis are included to save computer
memory. The mesh in this region is uniform in both the z and y planes. The mesh size
is 4 mm. The fields of the mesh points with indices -5 to 4 in the z and the y directions
and 1 to 197 in the z direction are included. This mesh covers a physical region of -2.0
to 1.6 cm in the z and y axes and -37.5 to 37.5 in the z axis. Since the fields are not
all defined on the mesh points (Fig. 3-13), the actual region covered by the modeling in

the z and the y direction is -1.6 to 1.6 cm.

3.2.1 Subroutine for evaluating the fields

Subroutine CAVFLD is written for the field evaluations. It contains five 10x 10x 197

arrays to store the five 3-D field components, namely E;, E,, E,, B; and By, of the
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Figure 3-13: The fields defined at mesh point (I,J,K).

MAFIA output. B, is small. The transverse velocity v, is small, and v x B, is
negligible.

The IMSL subroutine Q3DVL is used for the 3-D interpolations. The interpolation
function used in Q3DVL is a 3-D quadratic function, and 2 3 x 3 x 3 g-rid lattice is used
for the interpolation.

There more than 300 identical cavities in the CEBAF accelerator. These cavities
have different orientations in terms of the direction and the location of their FP power
couplers. Two parameters, the polarity and the position of the FP coupler, are defined
in the code to specify the orientations of the cavities. The polarity of a cavity is defined
as positive “+” if direction of the FP coupler is oriented such that the power is fed
into the cavity from the positive z direction and it is “-” if the power is fed in from
the negative z direction. The position of the FP coupler is called downstream if the
FP coupler is at the downstream end of the cavity and it is called upstream if the FP
coupler is at the upstream end of the cavity. The MAFIA modeling is for the cavity
with positive polarity and downstream FP coupler. The fields of other cavities can be
obtained in terms of coordinate transforms.

In a cavity-pair, the first cavity has a downstream FP coupler and the second cavity
has a upstream coupler (the FP couplers are in the middle of the two cavities). The

two cavities have the same polarities. The cavity-pair has a rotational symmetry about
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the z axis (1809).

A cryomodule contains four cavity-pairs. The first and the fourth cavity-pairs have
the same polarities (negative) and the two cavity-pairs in the middle have positive
polarities. The cavity-pairs with different polarities have rotational symmetry about
the z axis (180°).

The fields transform as vectors under rotations. In the code, the field point (z,v, z)
in the lab coordinate is transformed into the local coordinate system used in MAFIA.
The fields are calculated in the MAFIA coordinate and then are transformed back to

the lab system for particle tracking simulations.

3.2.2 Codes for beam dynamics

Two codes are used to study the beam dynamics in the cavity. CAVFOURIER is
written for studying the effects of a single cavity. It performs Fourier transforms to
decompose the transverse momentum change into multipoles. PARMELA is modified
to include the CEBAF cavity subroutines. It is used to study the effects of multi-cavities
in a beam line. CBFCAV3DIMP is the beam dynamics routine for both CAVFOURIER

and PARMELA. It numerically integrates the Lorentz force

F = e(E(z,y,2) sih(wt(z) + ¢o) + v x B(z,y, z) cos(wt(2) + ¢o)) (3 - 88)
2=37.5 dz
AP = / LT (3 - 89)

z

where ¢g is the initial phase of the RF field and #(2) = /

!
Z d i d
—£—d? is the time elapsed
~37.50(2)

in the cavity. The momentum of the particle is accumulated. At the end of the cavity,
the longitudinal momentum change determines the acceleration of the cavity and the

transverse momentum change determines the steering,.

CAVFOURIER
The purpose of this code is to get the coeficients of Eq. (3-79). From these co-

efficients, the dipole strength and the focal length of the azimuthal focusing and the



quadrupoles can be obtained. Rewrite Eq. (3-79) in the component form

AP, = az+ bz + cpy (3-90)

AP, = ay+by+cyz (3-91)

In this expression, the focusing coefficient is %(bJc + b,) and the quadrupole coefficient
is %(bI ~ by). The skew quadrupole coefficients are ¢, and ¢, and they must be equal.
The z and y in Egs. (3-90,3-91) are defined as the coordinate at the entrance of the
cavity.

A number of particles are initiated uniformly on a circle of radius a at z = —-37.5.
The initial transverse momenta of the particles are zero. The momenta changes calcu-
lated at the end of the cavity AP, and AP, are only functions of the azimuthal angle

6. The coefficients are obtained by the following integrals

1 2T 1 27

2. = oL /o AP,df ay = gh /0 AP,df
1 s 1 2

be = L /0 APycos(8)df by =z /0 AP, sin(6)d6
1 27 1 2r

e = 'a'f/o AP, sin(6)do Cy = W/o AP, cos(8)df

Modified PARMELA

PARMELA[18] is a versatile multi-particle code in which a beam, represented by
a collection of particles, may be transformed through a linac and/or transport system
specified by the user. It was originally developed by Don Swenson{19] at MURA in 1963.
It has been modified by various users to deal with their special elements. PARMELA
was modified to include subroutines dealing with special CEBAF elements such as CE-
BAF capture section and CEBAF buncher. Later on, 3-D CEBAF cavity subroutines
CBFCAV3DIMP and CAVFLD were added to the CEBAF version PARMELA by the

author. The new version PARMELA is capable of simulating the entire CEBAF beam
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line. PARMELA works as a ray-tracing program. For simpler elements, it uses the
transport matrix to map the coordinates of the particles. For complicated elements like
CEBAF cavities, numerical integration is used. PARMELA can perform space charge

simulations, emittance and betatron function calculations, etc.

3.3 Beam dynamics in the CEBAF cavity

Before investigating the beam dynamics in the cavity, we need to address one prob-
lem that was left unanswered in chapter 2. In section 2.6 we mentioned that there are
mutual contaminations among the adjacent modes. If there is no contamination, the
eigenvalue (or the frequency) and the eigenvectors (or the fields) satisfy the Maxwell's
equations with optimally small deviation. The contamination among the modes induces
inconsistency among the fields and the frequency. The frequency and the fields will no
longer match well to Maxwell’s equations. Even though the error caused by the con-
tamination is expected to be small since the contamination index (2 x 10~3) is small,
the effect of the inconsistency ma,yh cause some problems in beam dynamics simulations.
Since the fields are contaminated, in principle, one can correct the fields to minimize
the error induced to the Maxwell’s equations, but it is impractical. On the other hand,
one can also modify the frequency to match the fields so that the Maxwell’s equations
can be satisfied with minimum error.

A good place to look at this effect of the mismatched frequency is the azimuthal
focusing. At high energies, the azimuthal focusing goes to zero. To first order of 7, the B
field is proportional to the E field and the frequency. If the frequency is inconsistent with
the fields, the balance between the forces from the E and the B fields will be destroyed.
The azimuthal focusing for very high energy particles will have finite strength instead
of zero as predicted from the analytical analysis. The results of the azimuthal focusing

with the contaminated fields and frequency is shown in Fig. 3-14, the solid line is for



0.0008

Focusing strength (MeV/c/cm)
S o o o
§ g 8 8 8

i 8

5

3
-399 00 399 798 119.7 159.6 199.5 239.4 279.3 319.2
Phase of the cavity (deg), 136.25=crest

Figure 3-14: Azimuthal focusing for E=1 and 10 GeV with original frequency and fields
from MAFIA.

energy 10 GeV and the dashed line is for 1 GeV. There is no %,— relation between this two
curves. However, the small difference between the curves suggests that the azimuthal
focusing at these energies is small. Thus the finite focusing for 10 GeV is mainly due to
the frequency error.

To first order of 7, the fields that satisfy the Maxwell’s equations have the form of

Eqs. (3-80)-(3-82). We have at high energies

AP, .¢c = /oo (_Zd_EZM cos(wyt + 6) + TwlﬁE (z,wy) sin(w;t + 5)) s
. 2 dz ﬁ
A
= = 3-92
: (392

If a different frequency w is used and the amplitudes of the fields are kept the same, we

have

AP, -c

© dE

I rdE,(z,w) rwf : ) dz
= / < 2 —dz—-— cos(wt + 6) + ?Ez(zawl) Sln(wt + 6) ,H

+/ w)TE 2(2,w1) sin(wt + 6)dz

+ (wq — w)r

5 5 E, sin(6) (3-93)

where E, is the maximum energy gain in one cavity. It is shown that the error induced in
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the momentum linearly depends on the difference of the frequency. The sine dependence
on the RF phase offset is also shown.
The maximum energy gain in Fig. 3-14 is 2.5 MeV. The amplitude of the AP devi-

ation is 0.46 x 1073 MeV/c/cm.

AF = cAP

_WE9=L66MHZ (3-94)

The optimal frequency for the CEBAF cavity is, 1495.38+1.756, 1497.1 MHz. With
application of this frequency to code CAVFOURIER, the result for the azimuthal fo-
cusing for 10 GeV is shown by the dotted line in Fig. 3-14. The focusing strength is

zero through out 360° of RF phase.

3.3.1 The effects of the cylindrical symmetric fields (m=0)

Acceleration
The m=0 mode is the acceleration mode. The energy change of the particle for a

given momentum change AP is

2P,AP + AP?

(7m0c)2 1) (3-93)

AFE = 7m0c2(J 1+

where P, is the initial momentum. The energy gain of the low energy particle depends
on its initial energy, and relativity is certainly a factor. Another factor is due to the
velocity of the particle being slower then the phase velocity of the RF wave, which is
the speed of light. The particle is not accelerated at a fixed RF phase. For example,
a particle initially accelerated on crest will be shifted off crest while going through the
cavity and be less accelerated. For high energy particles, the energy gain AE = APc
is independent of initial energy. Fig. 3-15 shows the energy gain of the particles with
different initial energies as functions of the initial phase of the cavity. The gradient
of the cavity is 5 MV/m. The effective length of the cavity is 0.5 m. The maximum

acceleration for a high energy particle is 2.5 MeV. The maximum acceleration for low
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Figure 3-15: Energy gain vs. initial RF phase for different initial energies. Gradi-
ent=5 MV/m. From the left to the right: Ey =0.5, 1.0, 1.5, 5.0 and 103 MeV.

energy particles is smaller due to the phase slippage. For initial energy of 0.5 MeV, the
energy gain is 2.17 MeV. The maximum acceleration RF phase, crest phase, is different
for different initial energies. For example, the crest phase for 100 MeV is 136.3°, 10 MeV
is 135.6%, 5 MeV is 133.8° and 0.5 MeV is 64.5°. The acceleration curve is symmetric if
the initial energy is high and asymmetric if the initial energy is low. A 5 MeV electron
is already quite relativistic, and the acceleration curve is almost the same as that of the

103 MeV electrons.

Azimuthal focusing

The strength of the azimuthal focusing in terms of the transverse momentum change
for initbia.l ejlergies of 1000, 100, 40, 20, 10 MeV are shown in Fig. 3-16a and those for
5 MeV QWS MeV and 0.5 MeV are shown in Fig. 3-16b. Positive strength corresponds
to defocusing and negative strength corresponds to focusing. The diamond markers
indicate the phases of the maximum acceleration. The gradient of the cavity for these
simulations is 5.0 MV/m. At high energies, 100, 40, 20 MeV, the curves clearly show
the % dependence and the double frequency modulation. At 10 MeV and 5 MeV, the

curves begin to show asymmetric focusing about the crest phase. Higher-order terms

of Eq. (3-86) become important at low energies. At energies higher than 5 MeV, it is
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Figure 3-16: The strength of azimuthal focusing vs. the initial RF phase for different
initial energies. Gradient=5 MV/m.

Table 3-1: The focal length of azimuthal focusing.

Initial energy (MeV) | f (m)
0.5 -4.46
2.5 -4.50

5 -10.71
10 -31.17
100 -2213.82

focusing at all phases. At low energies, 3 MeV, 2.5 MeV and 0.5 MeV, there are phases
that have defocusing forces. Knowing the output energy of the particle E..; in MeV,

one can get the focal length

Eout
Focusing strength

f(em) = (3-196)

Table 3-1 shows the focal lengths on the crest phase for electrons with different initial
energies. The azimuthal focusing is independent of the polarity (+z) and the position

(upstream FPC or downstream FPC) of the couplers.

3.3.2 Cavity steering, the effects of the m=1 fields

The m=1 mode is the mode of cavity steering. The effect of this mode is to steer the

beam off the designed beam centroid. The CAVFOURIER results of the 2 component
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of the steering for energies of 1 GeV, 100 MeV, 40 MeV, 206 MeV and 10 MeV are shown
in Fig. 3-17a and for energies of 5 MeV, 3 MeV, 2.5 MeV and 0.5 MeV are shown in
Fig. 3-17b. The results for the y component are shown in Figs. 3-18(a,b). In these
simulations, the FP coupler is downstream, the power is fed in from the negative
direction, and the gradient is 5.0 MV/m. The phase relation of the dipole strength
depends on the polarity and the position of the FP coupler. If the polarity of a cavity
is changed from negative to positive, the corresponding curve of the dipole strength
can be obtained by multiplying “-1” to the curve. If the position of the FP coupler is
changed from downstream to upstream, the dipole curve can be obtained by reflecting
the curve about the crest phase and multiplying the curve by “-1” (since there is 180°
phase difference in the fields).

As shown in Figs. 3-17a and 3-18a, at high energies, the dipole strength is indepen-
dent of energy. At low energies (Figs. 3-17b and 3-18b), the dipole strengths become
energy dependent. The amplitude of the dipole steering in the z plane is about five
times larger than in the y plane. The phase relation of the dipoles are determined by
the RF phases of the couplers. The maximum z steering is about 60° ahead of crest
phase and the maximum y steering is about 130° ahead of the crest.

We can make an equivalence between the strength of cavity steering with the strength
of a dipole magnet. For a given momentum change AP, the equivalent dipole strength

of the cavity steering is calculated as

AP(GeV/c)

0.2998 (3-97)

/ Bd{(Tesla -m) =

Table 3-2 lists the strengths of the dipole steering in term of the equivalent strength of

dipole magnets at some selected energies.
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Figure 3-17: The strength of cavity steering in the z plane vs. the initial RF phase for
different initial energies. Gradient=5 MV/m.
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Figure 3-18: The strength of cavity steering in the y plane vs. the initial RF phase for
different initial energies. Gradient=5 MV/m.

3.3.3 Quadrupoles, the effects of the m=2 fields

The m=2 mode has normal and skew quadrupole components. The effect of the
normal quadrupole is to focus. The effect of the skew quadrupole is to rotate the
beam, which causes z — y coupling. The CAVFOURIER results for the strengths of
the normal and the skew quadrupoles are shown in Figs. 3-19 and 3-20 respectively.
The maximum strength of the normal quadrupole is about five times smaller then the
maximum strength of the dipole. The strength of the skew is about half of the strength
of the normal quadrupole. For the normal quadrupole, a positive strength means de-

focusing in the z plane. The phase dependence of the skew quadrupole is the same as



Table 3-2: Equivalent strength of dipole magnet.

Initial energy | z plane, [ Bd{ | y plane, [ Bd¢
(MeV) (Tesla-m) (Tesla-m)

0.5 1.17x10~° 4.67x1077
2.5 2.27x107° -5.50x107°

5 2.40x107° -5.50x107°

10 2.46x107° -5.34x107°
1000 2.46x107° -4.90x10°°%

Table 3-3: Equivalent strength of quadrupole magnet.

Initial energy | normal quad, d(f Bdf)/dr | skew quad, d(f Bdf)/dr
(MeV) (Tesla:m)/cm (Tesla'm)/cm

0.5 1.17x107° -1.00x 107

2.5 3.00x10-® -4,27x107°

5 3.57x10°® -4.24x107°

10 3.94x107°° -4,04x107°

1000 4,.17x107° -3.67x107°

that of the y dipole. They both are solely due to the fields of the HOM coupler. The
phase dependence of the normal quadrupole is close to that of the z dipole, but the
whole curve is shifted to the left by about 10°. The normal quadrupole is affected by
both HOM and FP couplers, and the contribution from the FP coupler is dominant.
Similarly, we can make an equivalence between the strength of the quadrupole mo-
ment to the gradient of a quadrupole magnet. For a given momentum change AP, the

equivalent quadrupole gradient is

d(/ Bdt) AP(GeV/c/cm)
— gy (Tesla- m/em) = —5008

(3 - 98)
We show in Table 3-3 the strengths of the quadrupole fields in terms of the equivalent
strengths of quadrupole magnets at different energies

The phase relation of the quadrupole strength depends only on the position of the

FP coupler. The curves shown in Figs. 3-19 and 3-20 are for the case with a downstream
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initial energies. Gradient=5 MV /m.
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Figure 3-20: The strength of skew quadrupole vs. the initial RF phase for different
initial energies. Gradient=5 MV/m.

FP coupler. If the FP coupler is at the upstream of the cavity, the curve for the normal
quadrupole can be obtained by reflecting the curve in Fig. 3-19 about the crest phase
and multiplying the curve by “-1”, while the curve for the skew quadrupole can be

obtained by simply reflecting the curve in Fig. 3-20 about the crest phase.



Chapter 4

Experimental Measurement of the Cavity Steering Effects

The multipole fields of a cavity act on the beam in different ways. The dipole field
gives the beam, as a whole, a transverse momentum offset. As the beam propagates
down the beam line, it will drift off the reference orbit. The magnitude of the steering
is a function of the RF phase. It can be measured by measuring the change of the
beam position at some distance down stream from the cavity as the RF phase of the
cavity is changed. The focusing fields of the cavity change the beta,tro'n functions of the
beam line and cause z-y coupling. They do not steer the beam as long as the beam
is on axis. If the beam has an offset from the cavity axis, the focusing force will bend
the beam toward or away from the axis depending on whether the force is focusing or
defocusing. The strength of the focusing can be determined by measuring the change
of the relative position of two initially parallel beams as the cavity is turned on and
off. Experiments were performed on the CEBAF accelerator to measure the multipole
effects of the cavities. Comparison between numerical simulation and the experimental
results are presented. Misalignments of cavities are also a source of cavity steering. This
steering has different phase relation than the multipoles. It can be extracted from the
experimental data by use of the phase relations. Thus, cavity misalignment can also be
studied by measuring cavity steering. The evaluation of misalignments is presented in

the later part of this chapter.
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4.1 Experimental measurement of dipole steering

Cavity steering was measured on the CEBAF 45 MeV injector. A sketch of the in-
jector is shown in Fig. 4-21. The injector starts with a 100 keV gun, followed by chopper
and buncher sections. The beam is accelerated up to 0.5 MeV by a.capture section. A
1/4-cryomodule, which contains two superconducting cavities, accelerates the beam to
5 MeV. The beam is transported to two cryomodules through a beam line consisting of
several quadrupoles. Each of the cryomodules comprises eight superconducting cavities,
or four identical cavity pairs with different fundamental power coupler orientations. The
nominal gradient of all cavities is 5 MV/m; the total energy of a particle coming out
of the second cryomodule is 45 MeV. There are quadrupoles at the entrance and the
exit of each cryomodules; the beam proceeds downstream to the north linac through
a quadrupole telescope and an injection chicane. At the location of each quad, there
are a pair of small dipoles, called correctors, which are oriented in the z and in the y
directions respectively, a viewscreen and/or a BPM. The correctors are used to steer
the orbit of the beam centroid. The viewscreens and/or BPMs are used to monitor
the beam. The quadrupoles in the injector section (below 45 MeV) of the accelerator
were not used since the cavity focusing is strong enough to control beam size. They
are generally used for beam centering only. The center of the quadrupoles define the
center of the beam line. One set of upstream correctors is used for beam centering; if
the beam is in the center of the quadrupole, changing the quadrupole excitation does
not change the beam position downstream. If the beam is not centered, the upstream
correctors must be adjusted until the beam is centered. There are three kinds of beam
monitors that can be used to measure the beam position: viewscreens, harps and elec-
tronic Beam Position Monitors (BPM). The “Instamatic” program uses viewscreens to
measure beam position. This software uses a video camera to take a picture of the beam

spot on the screen. Digitized data are analyzed and the beam position is found. The
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accuracy of Instamatic is about a half millimeter [23]. The harp is a device made up
of two or three thin wires. The profile of the beam is measured by pulling the harp
traversing the beam. The signal is fitted by a gaussian curve, and the beam position is
then obtained. The diameter of the wires is about 50 4, and the accuracy of the harp is
about the diameter of the wires. The harp is good to measure relative positions, but it
was not calibrated for absolute position measurement at the time of these experiments
were carried out. The BPMs were not functional at the time these experiments were
performed. Instamatic and harps were therefore used. The energy of the beam and the

gradient of the cavity were measured by use of a 45 MeV spectrometer.

GUN UNIT CRYOMODULE1  CRYOMODULE 2 BEAM MONITOR

= —— ot —, "

Figure 4-21: The CEBAF 45 MeV injector.

Cavity steering kicks the beam off the reference orbit; the strength of the kick is a
function of the RF phase. The beam positions downstream from the cavity are measured
in these experiments. Given the distance between the kicker and the beam position
monitor, the position deviations can be converted to the steering angles. Comparisons

then can be made with numerical calculations.

4.1.1 System setup

The seventh cavity in the second cryomodule was used for the cavity steering study.
The beam used in the experiment was pulsed and low current. The beam size was
required to be small, and any 60 Hz noise should be suppressed. To measure dipole
steering, it is important to place the beam on the beam axis. Otherwise the effects of
higher-order multipoles will come in. To minimize the noise generated prior to the cavity

being measured, a moderate energy is preferred. The cavities in the two cryomodules
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run at low gradient of about 1.5 MV/m except for steering cavity, which runs at a
maximum gradient of about 5 MV/m. The initial energy of the beam at the entrance
of the steering cavity is about 20 MeV.

The energy of the beam is measured by the 45 MeV spectrometer. The crest phase
of the cavities are found by finding the maximum energy of the beam while adjusting
the RF phase. The gradient of the steering cavity is measured by measuring the energy
difference between the energies with the cavity on crest and 180° off crest. The effective
length of the cavity is 0.5 m, and thus the gradient equals to the energy difference.
Since the cavity steering varies with the RF phase, in order to have an accurate en-
ergy measurement, the beam should be centered at all times at the exit of the second
cryomodule by use of the upstream correctors while the phase of the cavity is changed.
The spectrometer is turned off after the energy and gradient measurements. Cavities
are phased on crest. Beam is steered straight to the center of the beam monitor, which
is about 17 m downstream from the cavity, where the beam position is measured. The
RF phase of the steering cavity is then changed and the beam position is measured using
the beam monitors. During these measurements, all of the parameters on the beam line

except the RF phase of the steering cavity are kept fixed.

4.1.2 Experimental results on cavity steering

Two sets of data were taken. The RF phase § of the steering cavity was scanned
from -90° to 90° relative to the crest phase with a step size of 10°. The first set of data
was measured by Instamatic. Fig. 4-22a shows the beam position as a function of the
RF phase. The initial beam energy for this measurement is 18.42 MeV. The gradient
of the steering cavity is 5.26 MV/m. Each data point was measured three times. The
deviation between these measurements is about +0.2 mm. Shown in the figures are the
averaged displacement relative to the beam position of the crest phase. The uncertainty

of the position measurement is about 0.5 mm. The uncertainty of RF phase is about
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20, which, in terms of position uncertainty, is 0.36 mm in the z plane and 0.05 mm in
the y plane. The total uncertainty on the position measurement is 0.6 mm and 0.5 mm
in the z and y planes respectively.

The second set of data was measured by harp, which is shown. in Fig. 4-22b. The
initial energy for this measurement is 17.28 MeV. The gradient is 5.26 MV /m. The harp
has a accuracy of about 42 p in position measurement for a point-like beam. If the beam
is finite and the distribution is not a standard gaussian distribution, the mean center of
the beam found by the gaussian fitting may deviate from the weighted center of the beam
(the beam centroid in our definition). This deviation depends on the distribution of the
particles and is in this case smaller than 0.5 mm since the beam is close to a gaussian
distribution. The RF phase deviation is the same as in the previous experiment. The
uncertainty in position measurement is comparable to that using Ins-ta.matic.

It is worth pointing out that the phase offset convention on the CEBAF accelerator
is different from the numerical simulation. On the machine, the phase relation is cos(¢p—
$0); it is cos(¢ + ¢o) in the numerical code.

The measurement error estimated above does not include the error due to the in-
stability of the machine. We have observed, during the experiment, the instability of
the beam, which can be seen in Fig. 4-22b. This error could not be quantified. These
experiments were carried out on the old injector, and the new injector is expected to

have better performance.

4.1.3 Error corrections

There are errors caused by the cavity misalignment, the correctors, and the earth’s
magnetic field. The earth’s field can be compensated by the corrector fields. The rem-
nant fields of the correctors steer the beam with strength which is inversely proportional
to the momentum of the particle. As the phase of the cavity is changed, the momentum

of the particle is also changed. The steering of the residual field is symmetric about
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the crest phase. There are two types of cavity misalignments that contribute to cavity
stéering, with different phase dependences. The tilt misalignment of the cavity projects
a fraction of the axial E, component of the cavity to the transverse plane. The steering
from this transverse field has the same RF phase dependence as the.acceleration, which
is symmetric about the crest phase. The axial-offset misalignment causes the beam to
be steered by forces of the azimuthal focusing and quadrupole fields. The azimuthal
focusing is approximately symmetric about the crest phase at energies around 20 MeV.
The phase dependence of the quadrupole steering is close to the dipole steering.

The symmetric parts of the error can be eliminated by symmetrizing the measured
data about the crest phase. Notice that the maximum coupler kicks are about 58° off
the crest in the z plane and 48° in the y plane. The coupler steering has the form
of approximately cos(6 + ¢o), where ¢g is the phase offset. Symmefrizing cancels the
symmetric part and leaves the net contribution from the couplers.

The asymmetric errors due to axial-offsets in the cavity misalignment can not be
eliminated by doing the symmetrizing. We can, however, estimate their magnitudes.
The maximum misalignment of the cavity is of the order of 1 mm. According to Figs. 3-
17, 3-18, 3-19 and 3-20, the maximum error induced by the 1 mm misalignment is about
4 x 10~% MeV/c. This error induces relative errors to the dipole steering measurement
in the z and the y planes of about £2% and £10% respectively.

The symmetrized results of Fig. 4-22 are converted into transverse momentum by

the following formula

AP(6) = (Eo + 0.5G0 cos(6)) % (4 - 99)

where D is the z or y displacement and L is the distance from the cavity to the beam-
position detector. L=18.42 for Fig. 4-22a (viewscreen) and L=17.28 for Fig. 4-22b
(harp). The results after the error correction are shown in Fig. 4-23. The uncertainty

in momentum in these figures is 0.7 x 10~3 MeV. Also shown for comparison in the
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figures are the PARMELA results. The experimental results agree with the numerical

modelling.

4.2 Experimental measurement of focusing effects
4.2.1 System setup

The focusing effects, which include the azimuthal focusing, normal quad, and the
skew quad, were measured on the north linac of the CEBAF accelerator [25]. Two
cavities were used in this experiment. With all of the cavities off in the linac, a 42 MeV
beam was centered ;along the beam line. Two beam orbit correctors upstream of the
linac were used to create a pair of parallel orbits separated by 10 mm in the z plane. The
cavities were turned on with different RF phase settings and the beam spots measured
at the beam monitor 34 meters downstream. The beam position was measured by a
Beam Position Monitor. Since the dipole steering is insensitive to the beam position,
the relative changes of these beams at the beam monitor exhibit the effects of the cavity
focusing. A schematic drawing of the system is shown in Fig. 4-24.

As the cavities are connected head-to-head in a cavity pair, the focusing effects
add or cancel depending on the phase relation of the cavities. At an energy of about
40 MeV, the azimuthal force is focusing at all phases. The normal quadrupoles cancel if
the cavities are both in maximum acceleration or deceleration mode, and they add if the
two have opposite phases (maximum acceleration and deceleration). The total normal
quad is positive for the second case if the first cavity is accelerating and is negative if
the first cavity is decelerating (a positive normal quad defocuses in the z plane). The
skew quadrupoles add if the cavities are both in maximum acceleration or deceleration
mode, and cancel if the cavities have opposite phases. By measuring the cavity focusing

at different cavity settings, the individual component can be singled out by use of the

phase relations.



Table 4-4: Experimental data of cavity focusing.

Cavities off Cavities on

Azg (mm) | Ay (mm) | Az (mm) | Ay (mm)
Accel-Accel | 10.5 0.0 8.95 -1.24
Decel-Accel | 10.29 0.0 6.67 0.14
Accel-Decel | 10.29 0.0 7.97 0.24
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The energy of the beam out of the injector was measured by the 45 MeV spectrome-
ter. The gradients of the two cavities were obtained from the control system read-backs.
The phases of the cavities were set by the autophasing scheme. The uncertainty of the

gradient calibration is about 5% and about 10~20 degrees in the crest phase.

4.2.2 [Experimental results on cavity focusing

The cavities were powered to 5 MV/m. The control system read-backs of the gra-
dients are GSET=5 MV/m and GMES=4.969 MV/m and 5.007 MV/m respectively
for the two cavities. GSET is the set value and GMES is the measured value. The
initial beam energy is 42 MeV. The cavities were arranged in Acceleration-Acceleration,
Deceleration-Acceleration, and Acceleration-Deceleration modes. Data taken for each
of these three settings are shown in Table 4-4. In the Accel-Accel mode, the nor-
mal quadrupoles cancel. The change in Az is solely due to the azimuthal focusing.
The change in Ay is due to the skew quad coupling. Converted into the transverse
momentum, we have for the azimuthal focusing at 45 MeV for one cavity F=1.07 x
1073 MeV/c/cm and the skew quadrupole S=-0.86x10~2 MeV/c/cm.

In the Decel-Accel mode, the normal quadrupoles add and are focusing in the z
plane. The change in Az is a combined result of the azimuthal focusing and the normal
quad focusing. The total transverse kick is AP = 2.2x107* MeV/c/cm. The azimuthal
focusing is in this case approximately the same as in the previous one. The strength of

the normal quad for one cavity is Q=1.17 X 103 MeV/c/cm. The skew quadrupoles
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Table 4-5: Results of the numerical simulation and the experimental measurements of
the cavity focusing at 42 MeV.

Numerical simulation | Experimental measurement

(1073 MeV/c/cm) (1073 MeV/c/cm)

Azimuthal focusing | -1.08 -1.07
Normal quadrupole | 1.25 1.17
Skew quadrupole -1.15 -0.86

cancel in this setting as expected.

In the Accel-Decel mode, the normal quadrupoles add and are defocusing in the
z plane. The azimilthal force is focusing. At about 42 MeV, the amplitudes of the
azimuthal focusing and the normal quad are comparable but with different signs. The
cancellation between them should hold Az at the beam monitor position approximately
the same as before the cavities were turned on. The data in Table 4-4 do not show
this. Compared with the Accel-Accel case, the norm quad is shown focusing. This
is contrary to the result of Decel-Accel and is contrary to the numerical simulation.
Even though the multipoles are functions of phase, a 10 degree phase offset from the
crest phase would not change the sign of the normal quad. In the Accel-Decel mode,
cancelling exists between the azimuthal focusing and the normal quad. Az measured
at the beam monitor should not be smaller than in the Accel-Accel case. The cause
of this inconsistency is not known. Further investigations are planned. Despite the
inconsistency in the normal quad focusing in this set of data, the data for the skew
components show cancellation as expected.

The cavity azimuthal focusing and quadrupole (normal and skew) strengths were
calculated from the experimental data given in Table 4-4. Since the data for the Accel-
Decel mode are questionable, this set was not used in the calculation. Table 4-5 shows
the results of numerical simulation of the focusing effects of the cavity at initial energy

of 42 MeV and the experimental results. The experimental results for the azimuthal
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focusing and the normal quad agree with the numerical simulation to within 7%. The
skew quad agrees to within 25%.

The uncertainty of the position measurement is approximately 0.15 mm. This cor-
responds to a transverse momentum of 0.18 x 10~3 MeV/c/cm. The +10° RF phase
uncertainty induces errors to the multipoles are AF = +2.5%, AQ = +34%, and
AS = £19%. The uncertainties of the measurements are §F = 17%, 6Q = 38%, and
65 = 25%. The discrepancy between the experimental results and the numerical simula-
tion is within the accuracy of the measurement. Admittedly, one set of the experimental
data appears spurious. Unfortunately, the experimental run was limited by programatic

constraints so no further experimental data available.

4.3 Cavity Misalignment Evaluations

The misalignments of the cavity can be measured by measuring the cavity steering
versus the RF phase. The impact of either tilt or offset misalignments on the beam is the
same, that is, to steer the beam c;ff axis. The offset-misalignment steers the beam via
the cavity focusing and it is small as long as the offset is small. The tilt-misalignment
projects the axial acceleration field onto the transverse plane. The steering from this
transverse field is significant when the tilt angle reaches the order of milli-radians.
The steering is proportional to the tilt angle and is a function of the RF phase. We
will evaluate, in the following sections, the tilt misalignment of the cavities from the
data presented in section 4.1.2. We will refer hereafter to the tilt-misalignment as the
misalignment.

The steering angle of the misalignment along has the following form

_ 0.5aGpcos(¢)
§(¢) = Eo + 0.5Go cos(¢)

(4 - 100)

where Ep is the initial energy, Gy is the gradient, ¢ is the RF phase (¢ = 0 corre-

sponds to maximum acceleration, or on crest), and ¢« is the misalignment of the cavity.
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€(¢) is symmetric about the crest phase. Knowing £(¢#) at the crest phase, the cavity

misalignment is then obtained as

_ Fy+0.5Gy
T 0.5Gy

£0) (4 - 101)

Things become more complicated in the CEBAF 5-cell cavity where the coupler
flelds also steer the beam. In this case, the measured data are the combined effects of
cavity misalignment and coupler steering. If both had the same RF phase dependence,
one would not be able to isolate the effect of the misalignment. However, numerical sim-
ulation and experimental measurement demonstrate that the coupler steering is about
58% off crest. This phase difference enables us to separate the misalignment steering
from the coupler steering.

Coupler-steering is well localized. The angle of coupler steering is, at moderately

high energy, approximately

_ Docos(¢ + ¢o)
(4) = o+ 0.5Go cos(9) (4 -102)

where ¢y is the phase offset of the coupler steering, and Dy is the dipole strength of the
steering. Let (@) be the experimental result of the cavity steering. The contribution

from the misalignment is

Do cos(¢ + ¢o)
Ep 4+ 0.5G cos(¢)

£(¢) = ¥(¢) - (4 - 103)

Eq. (4-103) shows the ideal case for finding £. In reality, the numerical simulation
has a small discrepancy from the experimental result, and Eq. (4-103) does not give a
purely symmetric {(¢). Careful adjustment is needed to find the symmetric part of .
Based on experience with the numeric modelling of the cavity, the discrepancy is likely
be the result of errors in the boundary condition applied to the FP coupler. MAFIA
calculations show that the strength of the coupler fields is semsitive to the boundary

condition applied to the open side of the coupler, while the phase dependence of the
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coupler fields is not as sensitive. In Fig. 4-25 are shown the two curves of the dipole
strengths with different coupler lengths, or short positions. The maximum strength
defers by an amount of 30% due to the different coupling strengths for different shorts.
The phases are within a 2° deviation. The phase relation is well defined because of the
dimension of the coupler in the z direction is small. The numerical simulation has good
accuracy on the RF phase dependence of the steering, even if the boundary condition is
not appropriately imposed on the open end of coupler. Since the numerical result agrees
with experiment to better than 30%, the phase deviation of the numerical simulation
should be much smaller than 2°. The discrepancy between the numerical and the
experimental results is mainly due to the boundary condition error. The error induced
by the boundary error mainly affects the amplitude of the steering. This justifies scaling

the numerical values in Eq. (4-103) to make the difference £(¢) a symmetric function of

é.

4.3.1 Misalignment of the seventh cavity in the second cryomodule of the injector

The misalignment of the seventh cavity in the second cryomodule of the injector is
evaluated from the experimental data shown in Fig. 4-22. Since the data presented in
the figures are the positions of the beam relative to the position of the crest phase, the
calculated £(¢) will have a vertical offset, but this offset does not affect the misalignment
calculation. Since there is no steering due to the cavity misalignment at RF phases
+90° away from the crest phase, the offset can be determined and the £ (¢) curve can be
corrected. The symmetric {(¢) functions are obtained by scaling the numerical data in
Eq. (4-103) by a factor of 1.123 for Fig. 4-22a and 1.047 for Fig. 4-22b. The results are
shown in Fig. 4-26. The curves are fitted with cosine curves, shown in dashed lines. The

misalignment angles calculated for the two measurements are 1.65 mrad and 1.93 mrad

respectively.



4.3.2 Errors in the misalignment evaluation

There are several uncertainties in the experimental measurements which may cause
errors in the evaluation of the misalignment.

Instamatic measurement of the beam position has an error of about 0.5 mm. This
contributes to a misalignment error of about 0.2 mrad.

The phasing of the cavity by use of the 45 MeV spectrometer has an uncertainty of
about £2°. Let A¢ be the phase error in the experimental measurement. The actual

cavity steering (o(¢) and the experimental result of the steering ;(¢) have the following

form
Docos(¢ + ¢o)
Go(?) Eq + 0.5Go cos(¢) (4-104)
(i(¢) Dacgel§ s o & 56) (4-105)

Ey +0.5Ggcos(¢ + Ad)

The scaling method used to find the symmetric £ in the previous section requires

s - Co(~90°) ¢1(=90°)

s (o(90°) ¢1(90%)

The scaling factor can be obtained as

_sin(¢o + A¢) B

The error in the misalignment calculation is directly related to the difference {o(¢) —s-

(1(¢) and it is
_ Dg cos(¢) sin(A¢) B
G(#) = o 6ol9) =~y 8.5@0 oe(3)) o) (4 - 107)

which has the same form as the steering angle of the misalignment. The equivalent

misalignment due to this error is

_ Ey+0.5G, _ _ _ Dosin(Ag) -
Aa = _—0—5@0_-((1(0) -8 CO(O)) . 0.5Go sin(¢0) (4 108)
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At the gradient of 5 MV /m, the maximum dipole strength Dy is 0.0139 MeV /c. For
Ad =29 Ac is about 0.22 mrad.

The beam offset in the cavity cannot be determined within to 1 mm. If the particle
is not on the axis of the cavity, the effects of the fields of the higher-order components
of the cavity are included in the experimental data (¢). The transverse momentum

impulse to the beam from the deflection in the z plane can be written as

AP(¢) = D(¢) + F(¢)z + Q(¢)z + S(8)y (4 - 109)

where D, F, @, and S are coefficients of the dipole, azimuthal focusing, quadrupole,
and the skew quadrupole components, and they are independent of energy if the energy
is high enough save for F, which varies as % The maximum of D, D,,,., is about
an order of magnitude larger then the maximum values of the remé,ining coefficients.
To be exact, if z and y are in centimeters, Dy, is about 5 times larger than Qaz, 8
times larger than Sy, and, for E = 20MeV, 8.5 times larger than the maximum and
minimum difference of F as shown in Figs. 3-16, 3-17, 3-19, and 3-20 in chapter 3. If
the beam is off axis, the quadrupole fields act the same way as the dipole fields. The
only difference is that the steering in the quadrupole is proportional to the offset. If
the RF phase dependence is the same as the dipole, the offset of the beam will only
cause error in the magnitude of the dipole steering and it will not introduce any error
to the calculation of the misalignment. As the numerical simulation indicates that
there is a —11° phase shift, the mechanism discussed above introduces error to the
evaluated misalignment. Even though the phase shift is large, the error is small since
the steering effect is smaller for the quadrupoles. The maximum quadrupole kick is
2.8 x 1073z MeV/c. From Eq. (4-108), Aa = 0.25z mrad. For £ = 0.1 cm, the error is
0.03 mrad.

The azimuthal focusing F(¢) is approximately symmetric about the crest phase at

20 MeV; Fiqr occurs at the crest phase and Fin;, occurs at £90° off crest. Its phase
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relation is similar to the misalignment steering. The difference of F,qp and Fi,;, induces
an error which, at 20 MeV, is Fqz — Fiim = 1.35x 10732 MeV/c. The error is therefore
in general Emﬂ(‘)‘fggmﬂ = 0.54z mrad. For z = 0.1 cm, the error is 0.05 mrad.

The normal quadrupole and the azimuthal focusing terms are correlated. For the
case of a downstream FP coupler and power fed from the negative z direction, the
misalignment contributions of these two terms add. The total effect of the normal
quadrupole and the azimuthal focusing for z = 0.1 cm is 0.08 mrad.

The skew quadrupole steering is due to the y displacement of the beam. The phase
dependence of §(¢) is very different from D(¢). To estimate the maximum effect of the
skew quadrupole, we assume that this contribution is symmetric about the crest phase
with a maximum Spez of 1.7 x 107y MeV/c. The induced misalignment error is about
0.7y mrad. For y = 0.1 cm, the error is 0.07 mrad.

The total uncertainty on the misalignment calculation is about +0.32 mrad.

The correctors used to center the beam are not well calibrated. The strengths of the
correctors were not well known Z;.t the time of this measurement. Non-zero correctors
cause problems in the evaluation of the misalignment. The kicks from these correctors
depend on the momentum of the particles and are symmetric about the crest phase.
They are not separable from misalignment effects. The misalignment estimated in
section 4.3.1 must include the effects of errors in the correctors.

As a rough estimate of the corrector contribution to the misalignment, we noticed
that the beam was initially offset at the location of the viewscreen by about -5.5 mm
in the z axis when on crest. This offset was set to prevent the beam from moving off
the view screen while the RF phase is scanned. Noting that the coupler steering makes
about a 7 mm offset at a distance of about 17 meters at crest phase, the corrector is
estimated to have a strength of 12 mm, in terms of beam offset. The energy of the beam

drops by 10% as the phase is changed from the crest to zero acceleration. The deviation
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of the corrector steering is equivalent to a cavity misalignment of 0.5 mrad, and it is
the same sign as the misalignment obtained in section 4.3.1. The misalignment given

in section 4.3.1 may therefore have been over estimated by about one half milli-radian.

4.3.3 Conclusions

Numerical simulation of cavity steering and focusing agree with the experimental
results. This confirms that numerical modelling of the CEBAF 5-cell cavity is a valid
representation of the actual cavity. The misalignment of the cavity estimated is within
the assembly specification of the cavities in the cryomodule — a couple of milli-radians
(1.65 £ 0.32 — 0.5 mrad) for the cryomodules built for the injector prior to upgrade.

The above studies are based on a limited amount of experimental data available on
cavity steering and focusing. Further experiments have been plannéd to measure the
cavity steering and misalignment of selected cavities in the CEBAF north linac. The
correctors will be calibrated and higher-resolution beam monitors will be used for the

position measurements; this will improve the accuracy of the calculated misalignments.
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Chapter 5
Beam Dynamics in the CEBAF Linacs

In chapter 3 we studied particle beam dynamics in a single cavity. In this chapter, we
will study beam dynamics of a bunch of particles in the CEBAF linacs, which consist of a
train of superconducting cavities and optical elements such as quadrupoles and dipoles.
The bunch is finite in both the transverse and the longitudinal directions. Individual
particles experience different RF fields since the fields are functions of position and the
RF phase. To study the collective motion of the particles we observe their dynamics
in phase space and study their “trajectories” in term of 8 functions. Each particle at
any point along the beam line is represented by a point in the six-dimensional phase
space with coordinates (z, pg, ¥, py, £, 6). Liouville’s theorem states that under the
influence of conservative forces, the density of the particles stays constant in this phase
space. Often our interests are the phase sub-spaces of the transverse planes. The six-
dimensional phase space is projected into two-dimension phase sub-spaces-namely (z,
Pz) (Y, Py). The emittance of the beam is defined as the area of the phase sub-space
divided by m. The emittances defined in the (z, p;) and (v, py) planes are called
normalized emittances (¢,). As a convention, in calculating the normalized emittance,
Pyz' is used instead of the momentum (B here is v/c). An alternative definition of the
emittance is in the (z, z’) and (y, y’) planes. The emittances defined in these planes are
called geometric or unnormalized emittances (€,n). Since 2’ = p,/p, and ¥’ = p,/p.,
the unnormalized emittance damps as 1/7. In this chapter, we will use the normalized
emittance unless otherwise specified. The 8 functions (not to be confused with v/c)

are the properties of the beam lines. In the storage rings, they are uniquely defined.
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In transport lines, the 8 functions are defined by both the lattice and the initial beam
conditions. The motion of the particles in a bunch are confined within an envelope
defined by v/eu.0.

The emittances and the 8 functions may be perturbed by multipéle fields of the cav-
ities. In “uncoupled” cases, the emittances in the (z, pz) and (y, p,) planes are constant
through out the beam line. In the case of having “cross-plane coupling”, the emittances
are 1o long conserved. There are two kinds of coupling in the CEBAF cavities. Dipole
steering, which couples the longitudinal to the transverse due to the finite longitudinal
spread of the beam, creates a head-tail effect. The particles at different longitudinal
positions experience different transverse steering, and the projected emittance increases.
Head-tail emittance degradation is proportional to the bunch length. The skew compo-
nent of the cavity fields, on the other hand, generates z — y coupling. Particles offset on
one axis are steered by the skew fields in the direction of the other axis, which increases
the projected emittance. It is clear that the skew coupling emittance growth depends
on the transverse dimension of the beam. The normal cavity quadrupole field and the
cavity azimuthal focusing provide extra focusing to the beam, and do not degrade the
emittance. These effects can be compensated by adjusting the strength of the lattice
elements.

The emittance is a very important parameter of the beam. The emittance specifi-
cation for the CEBAF accelerator is 0.1 cm-mrad rms at 4.045 GeV. Since cross-plane
coupling and cavity focusing exist, we wish to know the emittance growth due to the
couplings as well as the impact of the cavity focusing on the lattice functions in the
CEBAF linacs. The numerical simulations in this chapter are performed by use of the

modified version of PARMELA.



5.1 Head-tail effects

During normal operation, the phase offset of the dipole steering from the crest phase
generates differential kicks within the bunch with the strength of 2.14x10~* MeV/c/degree
in the z plane and 3 x 105 MeV/c/degree in the y plane. The differential movement
of the head relative to the tail of the bunch results in an effective emittance growth.

In a cavity-pair, the dipole steering to the center of the bunch cancels in the z
direction and adds in the y direction while the head-tail effect adds in the z direction

and cancels in the y direction. This is illustrated in Fig. 5-27. Expressing the transfer
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Figure 5-27: Differential steering of a bunched beam in cavities with different FP coupler
locations. a) Downstream FP coupler; b) Upstream FP coupler. Gradient=5 MV/m.

function of the cavity in terms of a matrix [27], we have in the (z, p;, £) space

1 a 0
= -1 - 110
M 7 l « (5 )
0 0 1

where
_cL , Eo+ AE + cp,(L)
=" Bren

AE
and o = 2.14X107%x %Q MeV/c/degree in the z plane and 3x10~% x %Q MeV/c/degree




=1
o0

in the y plane. For a cavity-pair
1-—- a
7{‘ ar+a;  aym

= . = -1 _1 _a -
M1,2 =M  -M; = 7?1‘ 72- 1 7;‘ a] + a9 (5 111)
0 0 1
The emittance growth due to the head-tail effect is approximately

2
[
Ae = 2—£’;(a§(a1 + a2)? + 02 (a1 + a2)} (e + @2)?) (5 -112)

where o7 is the rms bunch length.
In a cryomodule, the cavity-pairs with different FP coupler polarities have opposite
head-tail differential steering, and they tend to cancel. Under the thin lens approxima-

tion (for example at high energies), the transfer matrix of one cryomodule is

1 0 0
M= —23}7 1 So (5 - 113)
0 0 1
where, under nominal operation,
Zai = a1+a2—aé—a4—a5—a6+a7+ag
2.14 x 107*
= ——5—(G1 +Gy—-G3—G4—-Gs5—Gg+Gr+ Gg) (5-114)
in the z plane and
Zai = op—o—oa3tas—ostoagtar—ag
3x107°

(61~ G2~ G5+ G4~ Gs+Gs + Gr - Gs)  (5-115)

in the y plane. The head-tail effect at high energies depends only on the uniformness of
the gradient of the cavities. If the weighted average, Eqs. (5-114) and (5-115), is small,
the head-tail effect may be negligible. If the cavities in the cryomodule are not powered
uniformly, the head-tail related emittance growth may occur. Should this happen, it
is suggested to adjust the gradients of the cavities to reduce the quantities in Egs. (5-
114) and (5-115). At low energies, the cavities should be treated as thick lenses, and the

cavity focusing reduces the cancellation of the head-tail effects between the cavity-pairs.



5.2 Skew coupling

The skew fields of the cavity couple the z motion of the particle to the y motion
and vise versa. A particle with offset of y in the y direction in the skew fields with skew
strength of § will get 2 momentum gain of Ap, = Sy or Az’ = %ﬁ in the z direction.

The unnormalized rms emittance, defined as

€in = V<22 >< 22> — < zg! >2 (5 -116)

becomes

2 s : 2 2
€laun = €0,un + ; <oz ><o05>

S 2
\/efz),un + (;) fx,Oey,Oﬂa:,By ] (5-117)

The = — y coupling effect on the emittance is sensitive to the betatron functions in the
cavity.

During normal operation, the skew component does not depend on the polarity of
the FP couplers. The skew strength has the same sign all the way through the whole
linac. However, they do not always add. The collective effect of the skew coupling in
multiple cavities not only depends on the 8 functions, but also on the betatron phase

advance of the lattice, which is defined as
¢—/lds (5 - 118)
J B
The focal length of the skew, which is approximately

where p is the momentum of the particle in MeV/c and f is in meters, is in general large
in the CEBAF linacs. For example at 45 MeV, the focal length is about 400 meters.

Observing an individual particle which under goes betatron oscillations along the beam
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line, the trajectory without skew perturbation is

u ( \/g(cos(z,b) + ag sin(y)) VBB sin(¥) ) up

E cos - e12] sin COS — asin
D )= Ligtans) |[pleons) - asn(v)

! /

u Ug

(5 - 120)
If the wavelength of the betatron oscillation is smaller than the focal length of the skew
fields, the skew kick on one axis due to the offset on the other axis changes sign when
the phase advance exceeds 90°, and the accumulated skew effect begins to cancel. This
is expected in the first pass of the north linac where the phase advance is strong, which
is 60° per cryomodule or 120° per FODO period. In the higher energy passes, the phase
advances are small. The skew effects generally add up.
To higher order, head-tail effect also couples to the z and y planes. This coupling

is small. The 3-D cavity modeling in PARMELA takes account of all these effects.

5.3 Beam optics in the injector

The injector starts with a 100 keV DC electron gun. The chopper, buncher and
the capture sections segment the beam into bunches and accelerate it to 500 keV. The
bunches are in the order of 1° RF phase long. The cryounit, which consists of two
superconducting cavities, accelerates the beam up to 5 MeV. Through a transport line
about 13 meters in length, the beam enters two full cryomodules, each of which consists
of 8 superconducting cavities. The beam is accelerated to 45 MeV. It is then transported
through a quadrupole telescope and an injection chicane to the entrance of the north
lin4c, about 64 meters downstream.

The cryounit consists of two cavities, each of which has its own power supply system
for operational flexibility. They are connected to each other on their FP coupler side
with a 9.393 cm niobium adapter. The distance between the nearest end-cells of the
cavities is 25 cm, which is one and a quarter of wave lengths. The two fundamental

couplers have the same orientation. This configuration cancels the z dipole steering
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when the cavities are in maximum acceleration, but enhances the head-tail effect. The
head-tail effect is strong in the unit since there is no local sources to provide local
cancellation of the head-tail effect generated by the cavity-pair.

The cryomodule consists of four cavity-pairs or cryounits. The separation between
the cavity-pairs is 1.911 meters from center to center. The two end cavity-pairs have
the same polarity; both have power fed in from the negative z direction. The power to
the two middle cavity-pairs is fed in from the positive z direction. This feed geometry
is arranged so as to reduce the emittance degradation from the head-tail effect [26].

Our simulation starts from the entrance of the cryounit, which is the first supercon-
ducting unit in the beam line. The beam energy at this point is 500 keV. The design

beam parameters are

Br=24385m o, =—7.659
B,=31391m a,=-12.152

The electron gun produces a normalized rms emittance of 0.018 cm- mrad which is more
than five times smaller than the specification at the end of the linac. The full, 40,, bunch
length is 1.69. The RF phase of the first superconducting cavity of the cryounit is set
back by 7.5° from the crest phase of 84.023%, to adjust the transverse focusing, so that
the beam requires no downstream quadrupole matching. This feature has been observed
in the experiments [11]. This backphasing also provides some bunching power to the
beam. At the entrance of the cryomodule, the bunch length was shrunk to 0.9°.

The B functions and the normalized emittances in the injector are shown in Fig. 5-28.
It is shown that the emittances in both planes grow by more than 70% in the cryounit.
In the cryounit, the head-tail effects of the two cavities add. The fact that the geometric
emittance is large at 2.5 MeV reduces the effect of head-tail emittance growth. At the

location of the two FP couplers, p = 2.5 MeV/c, B; = 43.7 meters, oy = —7.48, the 40
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uncoupled geometric emittance is ¢4 = 0.0144 cm-mrad. The maximum z’ in the phase

1 2
g/ =4/ Q(ﬁi’) = 0.43 mrad (5-121)
z

For a 1.5° bunch, the total 6z’ due to the head-tail effect at p=2.5MeVis

space is

1.25 x 107Gy + 2.14 x 1074G,

Az = 1.
z 5 x 33

= 0.20mrad (5-122)

which produces about 24% of emittance growth.

Since the beam in the cryounit is large, 1 cm full width, the skew effect is ex-
pected to be strong: The skew strength in the first cavity at 7.5° backphasing is about
0.0005 MeV/c/cm and it is -0.0015 MeV/c/cm in the second cavity. The average 3
functions are ;=43 m and $,=58 m in the cryounit. The output energy is 5 MeV.
From Egq. (5-117), the emittance growth due to the skew coupling is approximately 41%.

The B functions are small in the cryomodules which results in weak skew coupling
and large phase advance. These two factors reduce the accumulated skew coupling. The
head-tail effects also undergo canc.ellation amoung the cavity-pairs in the modules. The
emittance growth in the two cryomodules is small, about 13% in both planes.

If the design injection betatron envelope function values are not provided at the
entrance of the cryounit, the 8 functions in the injector will be changed. The skew-
coupling emittance growth, which is sensitive to the 8 functions will change as well.
Since the azimuthal focusing of the cavity depends linearly on, and is sensitive to,
the RF phase in the vicinity of crest at 500 keV (Fig. 3-16), some of the mismatch
may be corrected by adjusting the RF phase of the first cavity in the cryounit. Since
the azimuthal focusing focuses in both planes, the correctable mismatch must also be
symmetric. Asymmetric mismatches can be corrected by employing the quadrupoles
downstream from the cryounit, which are normally turned off due to the strong focusing
of the cavity. Here we examine the cases with symmetrically mismatched beams and

the corrections of the emittance growth by changing the RF phase of the cavity.
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The first two examples are of mismatches of initial as, assuming the initial 3s are
matched. It is shown that for an initially less divergent beam with azo = —3.8, Qyo =
—6.1, the emittances grow in the two cryomodules by a factor of 3.5, (Fig. 5-294(3)).
The § functions in the first cryomodule are large, (Fig. 5-29a(i)). Skew coupling is
strong in the first cryomodule. To reduce the 8 functions in the first cryomodule, more
backphasing is needed. Fig. 5-29a(it) and 5-29b(i¢) show the corrected results by phasing
the cavity at 73.023% which is backphased 11° from the crest phase of 84.023°. The
p functions and the emittances are improved. Figs. 5-30a(i) and 5-30b(i) show the 43
functions and the emittances for another case of mismatched beam with azo = —11,
ay,0 = —17. The emittance growth in the two cryomodules in this case is small, however,
the B, function is large at the exit of the second cryomodule. By adjus’ping the RF phase
of the cavity to 78.523%, 5.5° backphased, the 3, function is reduced. The 4 functions
and the emittances with the new RF phase are shown in Figs. 5-30a(ii) and 5-306().

For a beam initially mismatched with smaller § functions, 8,0 = 12.385 m, By =
16.391, the emittances grow in thé two cryomodules by a factor of 2, Fig 5-316(¢). The
cavity focusing is shown not large enough in this case, which results in large 8 functions
in the cryomodules. Fig. 5-31a(¢). The RF phase of the cavity can be adjusted to get
more focusing. At an RF phase of 80.023°, which is backphased 4° from the crest phase
of 84.023°% the B functions and the normalized emittances are obtained as shown in
Figs. 5-31a(4¢) and 5-31b(i7). The § functions are smaller in the cryomodules and the
emittance growth is reduced.

For a beam initially mismatched with larger 8s, 8,0 = 36.385 m, 8,0 = 45.391, the
focusing in the cryounit is strong. The waist forms too early and the beam enters the
cryomodule with a strong divergence. The § functions in the cryomodule drop down
more slowly than in the nominal case. The emittance growth is strong, as shown in

Figs. 5-32a(7) and 5-32b(7). The emittances grow in the two cryomodules by a factor of
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2.4. Reducing the focusing of the cavity by phasing it at 74.523%which is backphased
9.5% from the crest phase of 84.023°, the new [ functions and the emittances are shown
in Figs. 5-32a(¢7) and 5-32b(¢¢). The emittance growth in the two cryomodules is reduced
to nearly zero.

Experiments [28] have shown that the geometric emittance at 45 MeV is five times
smaller than that at 5 MeV instead of nine times smaller as would be expected from the
adiabatic damping, which indicates a 100% emittance increment in the two cryomodules.
This is explainable by the mismatched condition of the beam or by the inappropriate
phasing of the first cavity in the cryounit.

To correct the.emittance growth due to the asymmetric mismatch of the beam,
quadrupoles may be needed to provide proper 8 functions in the cryomodules. We will

not address this circumstance here.

5.4 Beam optics in the north linac

The linac system at CEBAF consists of two linac segments, each capable of sup-
plying a nominal energy gain of 400 MeV, in which up to five beams are accelerated
simultaneously. Each linac segment consists of 20 cryomodules. Each cryomodule can
supply an acceleration of 20 MeV. Between the cryomodules are room temperature re-
gions 1.3 m in length, each of which contains a set of orbit correcting elements, beam
monitors, and a quadrupole. The quadrupoles form a FODO focusing lattice. A FODO
period consists of two cryomodule sections. The phase advance in a period is 120° for
the first pass. The 445 MeV beam from the first pass of the north linac segment is
bent 180° by the east arc and injected to the south linac where the beam gets another
400 MeV energy increment. The beam is again transported to the north linac through
the west arc. The beam is accelerated through five turns in this race-track accelerator.
The final energy of the beam is 4.045 GeV. The north and the south linacs are basically

the same. In this section, we will study the beam optics of the five passes in the north



linac only.

The linac segments contain only full cryomodules, which provide certain cancellation
for the head-tail effects. The bunch length in the linac is also small, less than 1°, or
0.5 mm. The head-tail effects are therefore expected to be small. The accumulated
effect of skew coupling depends on the § functions and the phase advance along the
beam line. Since the quadrupoles have fixed strength, the 8 functions and the phase
advances are different for each pass because the energy of the beam is increased for
each successive pass. Different cross-plane couplings are therefore expected in different

passes.
First pass

The injection energy for the first pass is 45 MeV. The initial beam parameters are

Br=4127TTm az=0

By =2977 m ay, =0

The quadrupole strength to form the FODO lattice with 60° phase advance for each

cryomodule is K, = 1.20913 with K, defined as

_ Bo/a _ OB/07[T/m]
K, = Boy 0.2998 PIGeV/d (5 —123)
The gradient of the quadrupoles is then
%1; = 333.556 K;p G/cm (5 —124)

where P is the momentum of the particle in GeV/c. The first quadrupole in the linac
is focusing in the z plane.

Without the effect of the acceleration, the quadrupoles with strengths given by
Eq. (5-124) form a FODO lattice. The presence of acceleration changes the situation.

The acceleration damps the transverse divergence of the particles by the factor of the
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ratio of E;, and E,,;. The quadrupole steering is also damped by the same amount.

The effective quadrupole strength in the FODO lattice thus becomes

Ein
q
Eout

Koefect = K (5 - 125)

This damping is strong in the low energy accelerating sections. Use of uniform strength
quadrupoles in the accelerating structure will, in general, not yield the designed FODO
lattice.

There are exceptions if the accelerating fields are RF fields. The azimuthal focusing
of the RF fields may compensate the damped focusing of the quadrupoles. In the first
cryomodule of the north linac, the energy increases from 45 MeV to 65 MeV. The
effective strength of the first quadrupole is 45/65=0.69 times of the physical value,
which is 30% lower than the required. At 45 MeV, the cavity azimuthal focusing has a
equivalent of quadrupole strength of 4.17x10~2 G-m/cm for one cavity. The integrated
focal strength of a cryomodule is 0.334 G-m/cm. The strength of the first quadrupole
in terms of field gradient at 45 MeV is 18.15 G/cm. The integrated strength of half
the length (7.5 cm) of the quadrupole is 1.36 G-m/cm. The cavity focusing in the first
cryomodule is 25% of the strength of the first quadrupole. This is nearly the amount
of focusing needed to compensate the damping. The quadrupole fields of the cavity
also contribute certain focusing. Given the compensation of the damped quadrupole
strength by the focusing provided by the cryomodule, the FODO lattice for the CEBAF
linac actually works almost nominally without any modifications. The 8 functions of the
first pass with the uniform K, FODO lattice in the north linac is shown in Fig. 5-33a.
The normalized emittance in the linac is shown in Fig. 5-33b. There is no significant
emittance growth. This is because of the cancellation resulting from the large betatron
phase advance. In the first pass, the phase advance is 120° per period, which is quite
high (Fig. 5-34). From Eq. (5-120), as the phase increases by 90°, some of the particles

will move from one side of the axis to the other side. The skew effects on these particles
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begin to cancel.

To demonstrate the damping effect of the acceleration, we calculated the B functions
with the cavity focusing turned off, dotted line in Fig. 5-35. The 8 function becomes
large. By increasing the strength of the first quadrupole strength by 30%, the § function
is recovered to the designed FODO lattice function, solid line in Fig. 5-35.

The skew effect does not pose any problem for the first pass beam as long as it is
matched to the linac. If the beam is not matched, the 8 functions will become larger in
some portions of the beam line, which will increase the skew coupling and reduce the
cancellation. We présent here several cases of mismatches to show their impact on the
emittance growth.

For an initially diverging beam with e, = ,0 = —1, the emittance shown in
Fig. 5-36 increases by about 40%. The peaks in the 3 functions generate stronger z — y
coupling. The residual cancellation contributes to the emittance growth. A similar
situation is found for an initially converging beam. Fig. 5-37 shows the results of an
initially converging beam with ;0 = ay0 = +1. The emittance growth for this case is
about 39%.

Figs. 5-38 and 5-39 show the cases of mismatched 3 functions. The 8 functions and
the emittance growths in these two cases show relatively less sensitivity to the initial
values of 80 and By compared to the cases of mismatched as. It appears important
to form waists in both the z and y planes at the center of the first quadrupole to reduce

the £ — y coupling in the first pass north linac.

Higher passes

The beam is accelerated five times in both the north and the south linacs. The
initial energies of the higher passes at the entrance of the north linac are 845 MeV,
1645 MeV, 2445 MeV and 3245 MeV respectively. The beam envelope initial conditions

for these beams are 8; = 8, = 80 m, a; = a, = 0 for 845 MeV and 8, = 8, = 100 m,
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a; = ay = 0 for all other energies.

The FODO lattice was designed for the first pass beam to have 120° phase advance
per period. As the energy gets higher and higher, the quadrupole focusing and the cavity
focusing get smaller and smaller. The 3 functions for theses passes will not resemble
. that of the first pass. The betatron oscillation is not as strong and the phase advance
will be small. The skew coupling will add.

The 3 functions and the normalized emittances of these four passes are shown in
Figs. 5-40-5-43. The emittances in these four passes grow in the range of 25-38%. For
the 845 MeV beam, the emittance rolls up and reaches a maximum at about 110 m and
then falls down to a minimum at 160 m and then up again. For the 1645 MeV beam,
the emittance has a maximum at 160 m. For the 2445 MeV and 3245 MeV beams,
there is no cancellation of the skew couplings. These effects are due to the variation in
phase advances, Fig. 5-44, amoung the four passes. The phase advance for the 845 MeV
beam through the full linac is over 200°. When the phase becomes more than 90°, skew
cancellation begins. When the phase advance is over 180°, the addition again overtakes
the cancellation. For the 1645 MeV pass, skew coupling has a turning point at the 90°
phase advance. For higher energy passes, the phase advances are less than 90°. The
emittance grows without cancellation.

The emittance growth for mismatched beams was also studied. For the higher energy
passes, the results are similar. We present here the results for the 845 MeV beam, which
are shown in Fig. 5-45. For an initially diverging beam, the z — y coupling is stronger
than in the nominal case. The emittances grow by a factor of 2.28 for oy 9 = a0 = —1.
For an initially converging beam, the emittance growth is small. With a; g = ayo = +1,
the emittance growth is nearly zero.

Emittance growth due to the 8 function mismatch is smaller in comparison to the

o mismatched cases. The emittances with £50% mismatched 8 functions grow only
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about 38% as shown in Fig. 5-45.
Remarks

In ideal cases, beam envelopes are matched to the linac lattice. The emittance
growth in the north linac for the first pass is then nearly zero, and is 25-38% for the
higher energy passes. The total emittance growth in the whole machine depends on
the phase advance in the arcs and the linacs. A rough estimation gives a factor of two
emittance degredation. Since the initial emittance of the beam is several times smaller
than the specified final emittance, the diluted emittance remains within tolerances.

If the beams are mismatched, the emittance in each pass depends on the mismatch
conditions. It is shown in the simulation that the emittances are more sensitive to a
mismatches than B mismatches. In the first pass, an o mismatch on either side of the
waist results in emittance growth. It is important for the beam to form a waist at
the center of the first quadrupole. In the higher energy passes, the emittance growth
is larger for divergent beams and it is smaller for convergent beams. As far as the
emittance growth is concerned, convergent beams are preferable to divergent beams.

Should skew coupling becomes a problem in meeting the final emittance specification,
there are various corrections. Inserting skew quadrupoles in the beam line is certainly
a cure. Appropriately changing the beam matching is also a way of reducing coupling

in the higher passes of the linac.

5.5 Beam dynamics in the IR FEL linac

The IR FEL driver linac [29] consists of one full cryomodule, led and followed by
quadrupole doublets. The quadrupoles are not activated. The transverse motion of
the beam is controlled solely by the cavity focusing. The quadrupoles are included to
provide additional operational flexibility. The injection energy is 10 MeV. The gradient

of the cavities in the cryomodule is 7.75 MV/m. The linac provides a 30 MeV energy
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gain. The 40 MeV beam is transported through a 180° recirculation arc to the beam
matching section which produces waists in the center of the wiggler with Bzy =0.74m
and azy = 0.

The injection conditions to the linac are as the following

Bzy = 5m

Ozy = 0
The following beam parameters are used in the simulation [30]

0; = 05mm or o;=1.6ps
0. = 3x1072

€norm = 17 cm -mrad

The B functions and the emittances in the FEL linac are shown in Fig. 5-46. The
emittance growth in the linac is about 60%. The emittance growth is mostly due to the
skew coupling. The head-tail effects are small.

Beam dynamics for mismatched cases have been studied. For the cases of mismatches
in B functions (Figs. 5-47 and 5-48), one can still get small 8 functions in the wiggler
region. The emittance growth shows a small increment for smaller initial 8s and a
slight decrement for larger initial #s. For cases of mismatches in as (Figs. 5-49 and
5-50), the perturbation on 8 functions is more noticeable. Emittance growth for the
initially diverging beam is huge. Emittance growth for the initially converging beam is
slightly larger than the nominal case. The most unfavorable mismatch condition is a
divergent beam.

To reduce the 60% emittance growth in the linac, a skew quadrupole can be used
to cancel the skew effects of the cavities. To have effective cancellation, the skew

quadrupole should be placed at the entrance of the linac, where the beam energy is
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low and the § functions are large. The skew strength for a single cavity is

G.cm
cm

The skews add up in the eight cavities. The total skew strength of the linac is

G.cm
cm

S[{nac = _32.32 (5 - 127)

Since the 3., functions in front of the linac are larger than the average Bz, functions in
the linac, the skew quadrupole strength needed to correct the cavity skew effects will be
slightly smaller than Sjing.. For a 15 cm long quadrupole, numerical simulation shows
that a strength of 1.857 G/cm is required. In Fig. 5-51 are shown the corrected results.

The emittance growth is reduced to less than 10%.
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Figure 5-28: Betatron functions in the injector. Bz
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Figure 5-30: Betatron function with mismatched as, ayo = —5.1, a,0 = -8.1. (i)
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Figure 5-31: Betatron function with mismatched fs, 8,0 = 12.385, 8,0 = 16.391. (i)
mismatched; (ii) after correction by adjusting the RF phase of the first cavity in the
cryounit to 80.023°.
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Figure 5-32: Betatron functions with mismatched fs, Bzo = 36.385, B, 0 = 45.391. (i)
mismatched; (ii) after correction by adjusting the RF phase of the first cavity in the

cryounit to 74.523°.
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Figure 5-33: Betatron functions in the first pass of the north linac. B;0=41.277 m;
ﬂy'o=2.977 m. Qg0 = Qyo =0.0.



—
(%]
(=3

8

Phase advance in the linac, 1(deg)

W -
o

’
L 1 1 1

1

0 1 1 1
0 2000 4000 6000 8000 10(000)12000 14000 16000 18000 20000
Z (cm)
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0 — TR i L 1 M 1
0 2000 4000 6000 8000 ZO(OOO 12000 14000 16000 18000 20000
cm)
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Solid line: no cavity focusing, the strength of the first quad increased by 30%.



96

1 & 0015 - 4

€y (cm-mrad)

001 - 4

0.005 - 4

. L g i« 3 r . y
f L . f 1 L L 2 n 00 L L 2 L s L L s .
0 2000 4000 6000 8000 éo(OOO)lZODO 14000 16000 18000 20000 0 2000 4000 6000 8000 %0(000 12000 14000 16000 18000 20000
cm . cm)

(a) (b)

Figure 5-36: Betatron functions in the first pass of the north linac with mismatched as.
Qg0 = 0yo =-1. The emittance grows by 40%.
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Figure 5-37: Betatron functions in the first pass of the north linac with mismatched as.
Qz,0 = 0y0 =+1. The emittance grows by 39%.



4y I

mrad)

ey (cm:

i ) s L

(a)

0 2000 4000 6000 8000%0(000)12000”0001600018000200@)
cm,

4000 6000 8000 éo(ooc;uooo 14000 16000 18000 20000
cm,

(b)

Figure 5-38: Betatron functions in the first pass of the north linac with mismatched Bs.
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Figure 5-39: Betatron functions in the first pass of the north linac with mismatched 3s.

ﬁz'o =30 m, ﬂy,o =2 m.



98

120 T T T T T T T T T 0.03 T T T T T T T
100 0.025 | b
80 0.02 - E
€ i
o 60 £ 0015k 1
. <
g z
-
40 0.0t p E
20 0.005 E
€
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Z(cm) Z (cm)
(a) (b)

Figure 5-40: Betatron functions in the second pass of the north linac with Bzo = Byo =
80 m, az,0 = ayo =0. The emittance grows by 25%.
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Figure 5-41: Betatron functions in the third pass of the north linac with Bro = Byo =
100 m, az,0 = ayo =0. The emittance grows by 30%.
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Figure 5-42: Betatron functions in the fourth pass of the north linac with Bz0
100 m, oz 0 = ayo =0. The emittances grow by 38%.
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Figure 5-47: Betatron functions for mismatched S functions. Bo .z, = 6 m; agz,y = 0;

Bunch length ¢, = 0.5 mm.
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Figure 5-51: PARMELA simulation of the FEL linac. Skew quadrupole is used to
correct the skew effects of the cavities. The emittance growth is reduced to 10%. Initial

parameters: By zy = 5 m; agzy = 0; Bunch length o, = 0.5 mm.



Chapter 6
Wakefield calculations for v, v, < ¢

When a bunch of charged particles traverses a discontinuity in an accelerator, elec-
tromagnetic fields are excited. These fields are called wakefields, and are functions of
space and time. The wakefields in turn interact with the particles and may cause insta-
bility, energy spread, emittance growth, etc. The wakefields can be considered a linear
response of the system to an external excitation produced by the beam current. In
general, the response can be expressed in terms of Green’s functions. However, in most
cases it is sufficient to consider the average effect of the accelerator structure: an energy
loss and a transverse change in the momentum that a particle experiences when passing
through the structure. Wake fugctions describe such average effects in an accelerator
structure. They are functions of both the charge distribution in the bunch and the
parameters of the beam environment.

Two kinds of wake functions are often mentioned in the literature, the longitudinal
and the transverse. The longitudinal wake function wy is defined as the energy loss AE;

of a test particle of charge e, that follows, at a distance s, a source particle of unit

charge ¢ = 1.
AE; = equ(s) (6 —128)
1 [t
wi(s,r) = —/ dzv - E(r,2,1) li=(249)/v (6 —129)
qv J-co

The transverse wake function is defined as the integrated transverse kick caused by the
transverse component of the radiated field.

00

1 7/t
wis,m)= > / dz(E+v x B), (2:1,1) limzr)/o (6 — 130)

107
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The Fourier transform of the wake function is called the impedance. The impedances .
corresponding to Eq. (6-129) and (6-130) are

1 rtoo .
Zi(w,r) = —/ dsw(s,r)elws/v

-0

1 oo .
- - / d2E,,(z,r)e i/ (6-131)

-0

i fre »
Z(w,r) = -—;/ dsw, (s,r)elvs/v
-0

j o[t .
2 dz(E, +v x B), e /w/v (6-132)
The wake functions and the impedances are the same quantities expressed in different
domains. The wake function is the wakefield effect expressed in the time domain and
the impedance is the wakefield effect expressed in the frequence domain. Either of them
can be used to study beam-cavity interactions.

In the high frequency regime, which corresponds to short distance wake functions
in the time domain, the impedance can be analytically calculated (31, 32, 33]. In
analytical approaches, the problems addressed assume that both the velocities of the
source particle v, and the test particle v; equal the velocity of light. By matching the
fields at the beam pipe radius [31], an integral equation is obtained for the longitudinal
electric component of the fields at the beam pipe radius. The kernel for the equation is

approximated at high frequency. Under the causality condition, the integral equation

becomes the Volterra equation of the first kind, which has the form
z
| K@ - 0iwy = o) (6 - 133)

This can be solved analytically for some cases, and the solution for the coupling impedance
can be found.

There are cases where the velocities of the source and test particles are not the speed
of light. For the CEBAF FEL linac, the injection energy is 10 MeV, 8 = v/c=0.9987.

Similarly, the injection energy to the first cryomodule of the CEBAF nuclear physics
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injector is 5 MeV, 8 = v/c¢=0.9948. In these cases the field propagates significantly
faster than the charge, and the causality condition cannot be applied. The integral
equation obtained from the field matching has the form of the Fredholm equation of the
first kind

[ K@)y = o(2) (6 - 134

This kind of equation is ill conditioned. The solution is, in general, not unique.

To study the high frequency behavior of the impedance, efforts have been made to
find a particular cavity that has simple kernels such that the integral equation can be
solved analytically. ;‘So far, no answer had been found. Part of the reason is that the
spectrum of the resonant frequency of a cavity has only a lower limit. No simple kernel
can be found without making some approximation in evaluating the kernel.

In this chapter we will explore the properties of the wakefields for (v,, v;:) < ¢. The
Maxwell’s equations are discretized and solved in the time domain. There are codes that
are written for this purpose, such.as TBCI [12] and ABCI [34], which are being widely
used. These codes deal properly with the cases of v, = v; = ¢. An infinitely long beam
pipe is simulated by applying a simple open boundary condition, which assumes that
the phase velocity of the outgoing waves is ¢. TBCI has the option of v, = v; < ¢, but
no open beam pipe is allowed in such a case. To address the problems of v, # v; # ¢,
several issues need to be dealt with. At first, a proper open boundary condition should
be used for v < ¢. The phase velocities of the propagating modes in the beam pipe are
in general neither ¢ nor the velocity of the particle. Even for one frequency, different
modes have different longitudinal wave numbers. To accommodate the requirement
of propagating the wakes of different phase velocities, we will apply the Lindman [40]
boundary condition to the open beam pipe. The reflection coefficients at the open
boundary can be reduced to less than 1% over a wide range of frequencies and incident

angles. Secondly, the slippage between the source particle and the test particle should
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be included for the cases with v, # v;. Thirdly, since the integration for calculating the
wake function can only be carried out at the beam pipe radius, the radial dependence
must be found in order to calculate the wake functions at other radial positions. We
will discuss the general scaling of the wake function for vy, v; < ¢ and the conditions for
using the ultrarelativistic approximations. In the process of calculating the wakefields
with very short bunches, we found that the Yee algorithm used in TBCI and ABCI is
no longer appropriate. Unphysical results were obtained with the conventional choice of
mesh/{bunch rms) ratio of 1/5. We found that the truncation error of the Yee algorithm
is frequency dependent. A fourth-order FD-TD algorithm was developed to reduce the
truncation error, and the program TBCI was modified for evaluating the wakefields of

vs # vy and of very short bunches.

6.1 Lindman boundary condition

Consider the two-dimensional wave equation in the (z, y) plane

9* d* 1 9 B
(—3?4“8—3/—2—6—28?).4:0 (6_130)

The finite-difference form of Eq. (6-135) is :
A2 A2 A2
L 4L = |A=0 6 —136
(Dﬁ * DI cr? ( )

with forward-difference A defined as A;A(z) = A(z + Az) — A(z), Dz, D, the mesh

spacing and 7 the time step. This difference equation has plane wave solutions of the

form

Aim = Ael(FztDz+kymDy—wir) (6 —137)

at point (¢4, m, ¢), where w, k; and k, satisfy the dispersion relation

2
1 et \? 1 eT 1
in2(= ={ =—) sin%(= — in2(= — 138
sin (Qwr) (Dz) sin (2k,Dz) + (Dy> sin (2kyDy) (6 )

If this plane wave impinges on a fixed boundary at z = zy, the additional function

required to satisfy the boundary condition must have the same frequency w and same
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wave number &, along the boundary. Only waves with k; = —k_ can be used to satisfy
the boundary condition.

We want to construct a boundary condition that is a linear operation and is satisfied
by all outgoing waves with values of w, k;, and &, consistent with the dispersion relation,

such that the outgoing waves are absorbed. Consider the boundary condition

. I .
AS AL, + EchAzEtA}’m =0 (6 — 139)

where X is forward sum defined as EzAj,m = Ai’,m + A +em- Consider A}ivm to be a
solution of the wave equation which consists of a left-going wave with amplitude  and

a right-going wave with amplitude R
Azm — (Le-jk,,eD: + Rejk,w,) i (kymDy~wir) (6 — 140)

Eq. (6-139) becomes

Le~ik=(t+1/2)Dz ————;CG; _T_ gg Reik=(441/2)D= (6 —141)
1
p. tan(zwr)
where Go = ZF . In the limit of 7, Dz, Dy — 0, Gg = w/ck,. For a initially
tan(-z-lchz)

right-going wave, with the choice of I = +1 and G = Gy, the reflected left-going wave is
zero, which is the case of the open boundary on the right-hand side beam pipe. Likewise
with I = —1 and G = G, the reflected right-going wave of the left-going incident wave
is zero, which is the case of the open boundary on the left-hand side.

From Eq. (6-138) and under the limit of 7, D;, D, — 0

22 -1/2
Go = w/ck, = (1 - -—23) (6 — 142)
w

An approximation for Gg in the time domain (which is stable in time) is

) an(er/Dy)A(AZ/AD)
Go=1+4 2,7 ﬂn<cr/3y>2(yaz/23>

n-1

(6 — 143)
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where a, and j, are to be determined. Substituting Eq. (6-143) into Eq. (6-139), we

have the following expression for the boundary condition

A AL+ T AT A = -1 S Bi+1/2
15z Ap 1 + R L EZ ek (6-144)
n=1
Af A7 i % i N
(ﬁ—ﬂnD—g) it = an prAe e (6-145)

If h;’m = 0, the boundary conditions reduce to one-dimension boundary conditions,

which are

A}l = Aln  right - going wave (6-146)
AP = Ajpym  left — going wave (6-147)

The h;‘hms are the correction functions to the one-dimensional boundary condition
and are functions of the fields on the boundary at the previous time step. These quan-
tities should be evaluated first. The difference equation (6-144) can then be solved to
calculate the boundary values of the waves. The solutions for the difference equations

(6-144) and (6-145) are as the follows:

1) Left-hand side boundary. (¢: the boundary mesh, £+ 1: the inner boundary mesh).

: 1 : CcT B
A —r (QA},m -(1+17 F)Ali‘ll,m
le= =i z
D,
CT . . N "
+(1- ID—)(A;,,_Lm — Ay ) —2Icr Z H;f,,&ﬂ) (6-148)
z n=1
where I = -1,

2) Right-hand side boundary. (£+ 1: the boundary mesh, £: the inner boundary mesh).

. 1 0 cT :
A, = Y (2A§+1,m -(1-r E;)Aﬁnl
D

z

N
-(1+ I%":)(Ajﬂ,m = Aj)—2IeT > H:;j;,t/’*’) (6-149)

n=1
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where I = +1. The Hy p, defined as hp /2D, has the same form for both left and

right boundary conditions

2.2
; 1— i— c'T P
HBR = 2l - B+ 7 a] (ﬁnﬂn.;/"‘
y »
Qn { - , ‘e )
+—2D.7: (Ap1m + A}ﬁ,m - Ay — Al,r:)) (6-150)

The optimized o,s and f,s up to N = 3 are

(0.3264, 0.1272, 0.0309)

R
i

»
Il

(0.7375, 0.98384, 0.9996472)

The reflection coefficients with these a,s and §,s are less than 0.01 for a wide range of
incident angles, which correspond to different wave numbers in the y direction, from 0°
to 89°.

Comparisons are made between the Lindman boundary condition and the one-
dimension boundary condition used in the original TBCI. The fields are assumed prop-

agating in a beam pipe of radius a = 0.035 m. The plane wave has the following form
A(r, z) = Jy(kyr)ed(Fz2=2m51) (6 — 151)

We have two test cases. The first case a) is for f = 20 GHz, kra is the 4th zero of
J1, mesh size=0.1 mm, 3 time steps for one space mesh. The field is initiated on the
inner boundary mesh and propagates outward. Fig. 6-52a presents the fields on the
boundary after propagating 350 time steps. The second case b) is for f = 50 GHz; k.a
is the 11th zero of J1, and Fig. 6-52b shows the result after propagating 220 time steps.
The Lindman boundary condition has much better accuracy than the one-dimensional
boundary condition. The accuracy of the one-dimensional boundary is a function of
the phase velocity and is time dependent. The Lindman condition has over all good

accuracy.
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6.2 Radial dependence of the wake function

Even though the particle-cavity interaction only happens within the cavity region,
the fields generated with frequencies higher than the cutoff frequency will propagate in
the beam pipe. The integral for calculating the wake function should be carried out
from —oo to 400, which is not practical in numerical simulations. Since the fields satisfy
the Maxwell’ equations, the integral at different radial positions are related, and we can
integrate the fields at the beam pipe radius where the fields are non-zero only within the
open gap of the cavity. The integral thus only needs to be carried out in the gap region.
The wake functions 4at other radii can be found by finding their radial dependence. The
derivations of the functional dependence of the wake functions presented here assumes
that the trajectories of the particles be straight lines.

The longitudinal component of the radiated E field satisfies the wave equation
(V1- (G = k)E(r, ¢,2,1) = 0 (6 - 152)
The general expression of E,(r, ¢, 2,t) in the cylindrical coordinate system is

T +o0 . . .
E(rézt)= 3 / ddC, A(Cey ) Grm(kpr)e~it i gimé (6 _153)

m==c0 YV ™
where
ko= 2
[
o= J@-m
Gm(ker) =
Inlksr), i (2—k2<O0

I, and J,, are the modified Bessel function and the Bessel function of the first kind,

respectively. The longitudinal wake function of the mth mode at (v, ¢, s = vt — 2) is

400 : : .
wl,m(ra¢73) = v/ dtdw‘iCZA(Cz)w)Gm(kr"')e—]wt-’-Jc:ze)mtbIt:(z+s)/v
-0

+o0 w .
= 27r/ d(,uA(‘—:-,(.‘.1)17,,(1c,,'r)e"7"(3”""S (6-154)
-0



with

k=g = 2= — (6 — 155)
At the pipe radius r = a
400 w cw .
wim(a, ¢,s) = 27r/ de(;,w)Im(kra)e'JF’ede’ (6 — 156)
-0
Fourier transforming Eq. (6-156), we have

w too
4 imé _ _..__/ el 5 ds! 6 — 157
(v o (27) vl (kea) wie, ¢, 8)e’ > ds ( 57)
Substituting Eq. (6-157) into Eq. (6-154) we have the wake function at radius r

1 +oo +oo w ’
W m (T, @, 8) = ﬁﬂ-—/ ds'wim(a, ¢, s ’)/ I (kr r; eI 5 (=) g0 (6 — 158)

It is clear now that the wake function at radius r is a weighted average of the wake
function on the pipe radius. The weight function has finite width. In order to calculate
the wake function at radius r up to a distance s, the wake integrated at the pipe radius

should be some distance farther than s. The profile of the weight function which is

defined as
~§) = L/MI mkrT) =i (es)
lem(‘y,a’ T,S S) - 21r,v _ m(k a) dw
r
o0 Im(‘]“) s
7 [t - .

determines the effective region for the averaging. It is independent of the bunch length
and is a function of r/a and a/v only. The weight function for mode m = 0 for
B: = 0.9948, and @ = 1.74 cm is shown in Fig. 6-53a, and the widths at half amplitude
as functions of r/a and a/v are shown in Fig. 6-53b. The weight function has Gaussian-
like profile. The area under the curve is unity. The halfwidth for a given r/a is linear in
a/7y. At the ultrarelativistic limit, a/y — 0, the weight function becomes é(s — &), and

the wake function for mode m = 0 is independent of radial position of the test particle.
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From the Panofsky-Wenzel [41] theorem, the transverse wake function is related to

the longitudinal one as follows
v s N
wJ.(T7 ¢a S) = —;V_L'LUI(T', (}S,S) e —/ V_LU)](T, ¢7 z )dZ (6 - 160)
-0 )
We have
m s 400
Wr (7, B, 8) = __r_./ dz’/ ds'wim(a, ¢, s YWam(y,a,7,2' —s')  (6-161)
-0 -0

'm s / too ! 1 ! 7
Wy, m(T, @, 8) = —17/00 dz / ds'wim(a, ¢, 8 \Wyi m(y,a,7,2" = s")  (6-162)
- -00

with
T T
+oo I’m(q_) r Im+1(q_) (2=
Wom(ran =) = 2 [ g Tal 4 0G| g (o
2m(7,8,7,2 = 8) el q Tot) +ma =) e v (6-163)

At the ultrarelativistic limit, the Bessel functions in the weight functions are reduced

to r
Im(qz)—(r>m (6 — 164)
In(g) ~ \a
and the wake functions are (
+o00
wi(r,¢,8) = E r™uym(a,s) cos(mde) (6-165)
__+°° a
wy(r,,8) = — Y mr"“l/ u,m(a, 2')dz' cos(me) (6-166)
m=—co -
400 s
wg(r, d,8) = Z mrm_I/ u,m(a, z')d2' sin(me) (6-167)

m=—o0

where u;m(a,s) is the amplitude of the longitudinal wake function integrated at the
beam pipe radius and u,(a,s) = wim(a,@,s)/a™ cos(me). At the ultrarelativistic
limit, the longitudinal wake function is independent of » for m = 0 and scales as ™ for

other modes whereas the transverse wake functions scale as ™1,

6.3 Numerical algorithm for solving Maxwell’s equations in the time-domain
Numerical method uses typically finite-difference algorithm to solve the Maxwell’s

equations in the time-domain (FT-TD). In principle, it can deal with any complicated
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structure. The limitations of using this method are the computer memory and the CPT
time. There are numerous computer codes that calculate wakefields. TBCI and ABCI
are two codes that are widely used. The linear finite-difference algorithm is used in these
codes. The linear algorithm, often referred as the Yee algorithm, was first proposed
by Kane S. Yee in 1966 in 3-D Cartesian coordinates. It is the standard field solver of
Maxwell’s equations in the time-domain and has been widely used in numerical modeling
of electromagnetic wave (microwave) interactions with arbitrary structures and beam-
cavity interactions. The algorithm is reduced to 2% dimensions in TBCI and ABCI
to deal with the problems in the cylindrically symmetric structures by projecting the
fields to the -z plane. The Yee algorithm discretizes both space and time into meshes.
The continuous Maxwell’s equations are replaced by finite-difference equations. The
field distributions are represented by the field values assigned to the mesh points. The
derivatives in the Maxwell’s equations are replaced by the centered differences. Linear
interpolation of the fields is used, and the algorithm has second order accuracy. The
algorithm can usually give very good results by choosing appropriate mesh size and
time step size. In the application of modeling microwave structures, good accuracy
can be obtained by having the mesh size one tenth of Ay, [39]. In the application
of wakefields calculations, good accuracy can be obtained by having the mesh size one
fifth of o, where ¢ is the rms bunch length of the driving particles, assuming a gaussian
distribution. There are, however, instability problems due to the finite time-stepping in
the iterative calculation of the fields. The stability of the time-stepping can be ensured

by having the size of the time step satisfying the inequality

1 1 )-1/2

1
At <
= (Am2 + Ay? * Az?

Problems arise when the fields have high frequency components. These were encoun-

tered in the wakefields evaluations of the CEBAF 5-cell cavities. The CEBAF beam has
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a very short bunch length. The spectrum of the current carried by the bunch contains
very high frequency components. The wake functions calculated by use of TBCI and
ABCI have unphysical oscillations even if the mesh size is one fifth of the rms bunch
length.

It is found in this chapter that these unphysical oscillations are due to the accuracy
of the Yee algorithm and are frequency-dependent. Even though the accuracy problem
can be overcome by reducing the mesh size, the number of mesh points will increase
so dramatically that it is not practical for large structures since the number of mesh
points would be too large to be handled even by modern computers. In this chapter, we
developed a fourth-order finite-difference formalism in a cylindrical coordinate system.
These formulae have accuracy to the fourth order.

Before entering into the discussion of developing the fourth-order finite-difference
formulae, let us first go through the Yee algorithm in a cylindrical coordinate system,

and then discuss the problems encountered in calculating wake functions by using TBCI.

6.3.1 Yee algorithm in 2%-D cylindrical coordinate system

The Yee FD-TD algorithm was developed in 1966 in a 3-D Cartesian coordinate
system for solving scattering problems of microwaves by obstacles. In this section, we
present the FD-TD formulae in a cylindrical coordinate system used in TBCI. These
formulae are intended to calculate the fields excited by a driving current flowing parallel
to the axis of the microwave structure, e.g. cavities. The formulae are equally good
for wave propagation in cylindrically symmetric structures by replacing the driving
current by driving boundary conditions. The fields are decomposed into multipoles
in the cylindrical coordinate. For each (multipole) mode, the ¢ dependence of the
fields is known (cos(m@) or sin(m¢)). Thus the fields are treated analytically in the ¢
coordinate. In the r — z plane, the computation domain is discretized into meshes and

the E and H fields are discretized and assigned to the meshes. The equations governing



119

the relation of these fields are the Maxwell’s equations

OE 1 J

5 = ngH—g (6-168)

0H 1

W = -.;L_QVXE , (6-169)

vV-E=2 (6-170)
€0

V-H = 0 (6-171)

Assuming the bunch of the charged particles has a line distribution A,(s), where s is
the distance from the center of the bunch, with velocity of B¢ moving in the z direction

and off axis by a, the current density carried by the bunch can be expressed as

_ Beds(2 — Bet) te

I(r,¢,2,t) = - > 1+160 cos(m@)é(r — a)zg (6 —172)

where §go = 1 and fom = 0 for m # 0. The electromagnetic fields excited by the mth

component of the current have the following sinusoidal azimuthal dependence

Er(r,gb,z,.t) - E,(m)(r,z,t)cos(m¢)

Ey(r, 9, 2,1) Eim)(r, 2,t) sin(mg)

E,(r,¢,2,t) = Eﬁ’")(r, z,t) cos(mg)

He(r,¢,2,t) = H(r,2,1)sin(mg) (6-173)

Hy(r,,z,1) Him)(r,z,t) cos(me)

Hy(r,¢,2,t) = H™(r,2,t)sin(me)

Eﬁm)(r, z,1), Egm)(r, z,1), £"‘)(r, z,t), ,(m)(r, z,1), Hém)(r,z,t), and Hz(m)(r,z,t) are
the magnitudes of the mth mode and are defined in the 2-dimensional 7 — z plane and
are separable from any other modes since the sinusoidal functions are orthogonal. The
problem is then reduced to 2-dimensional and can be evaluated mode by mode. From
now on the superscript m will be omitted and we will refer these 2-dimensional quantities
as the fields. The full fields are obtained by multiplying the sinusoidal functions cos(¢)

or sin(¢) to the 2-D fields.
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The fields are discretized in the r—z plane. The components of the fields are replaced
by their nodal values assigned to the finite number of grid points as shown in Fig. 6-54,
with J the total number of mesh points in the z direction. The arrangement of the E and
H fields in Fig. 6-54 provides a natural geometry which fulfills the centered-difference
analog to the space derivatives of the curl equations of the Maxwell’s equations (6-168-
6-171). The flelds are also discretized in time ¢. The centered-difference analog to the
time derivatives are obtained by evaluating the H fields a half time step ahead of the
evaluation of the E fields. The centered-difference scheme has accuracy to the second
order. This is demenstrated in the following. The E fields at time (n £ 1/2)At are

expressed by the fields at nAt by use of the Taylor expansion

OE™ (At\ 10°E™ [At\? ,
Bt = o (F) e () towd e
e o OE" (At\  19°E" (At\? ;
E*-1/2 = R —-——at—(—2-) EW (?> +O(At3) (6-175)
Thus,
n+1/2 _ pn-1/2 n
£ B _0F ni oy (6 - 176)

At ot
and the truncation error is of the second order.
Let the H fields be evaluated at times nAt and the E fields at times (n + 1/2)At,

n =1, 2, 3.... The solutions of the Maxwell’s equations are

At

B = - Sy Ee (6-177)
EMt3/2 = prtl/z g gv x HH! ?J”H (6-178)
0 0

Take the E4 component at node k as an example.

1 n+1
nt3/2 _  pnt1/z , A 0HM _0H;
E¢,k = E¢,k & PR ( 9z ar Iat node k
+1/2 , At i
= Epitt+ vy (B2, - H7P + H7P - HPEY) O (6-179)

Let Zo = i/ = 1}6’ M= % denotes the number of time steps for particles to
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proceed through one space step,

En+3/2 En+1/2+Mi'06_ (H:-]':J Hn+1 +Hn+1 H::—ll) (6— 180)

Similarly, the equations for other components of the E and H fields can be obtained.

The following is a summary of the difference equations

HYY = HPY - A% (E"*‘“ E;tE - %E::” 2) (6-181)
mE = m (RN e Ep) e
HTP = HP, - ML;% (zE;”,;i/f (i - 1)E”+1/"’ + En+1/2) (6-183)
E:z-ah _ En+1/2+ ]ff_?@ <Hg:lt11 _ ng + QleﬂZch) ' (6-184)
E;’tsm _ En+1/2+MZ—OE(H 1o HM M - H-;tk-f-_ll) (6-185)
R A = PP D P W P

The current has only the 2 component. From Eq. (6-168), the source term needs to be
added to Eq. (6-186) on the right hand side at the radial position of the bunch. The

current density should be the averaged density in the mesh within which the field is

defined.

a) Source on axis

If the current is on the axis, the current density is the total current divided by the

area 7r(—2—)2 The source term for Eq. (6-186) is

At - 4/\n+1
D o e -1
€ d eMnrAR (6= 1)
b) Source off axis
If the current if off axis, the current density is
+AR/2 -
o 1 [etAR/ _ Bedg(z = Bet) (6 — 188)

Sl dr =
AR Jo-aR)2 AR*(i - 1)(1 + Som)
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The source term for Eq. (6-186) is
At ; Aot
€ eMr(i— )AR(I+ bom)

(6 — 189)

where AR = Az,

In the applications of wakefield calculations, the fields are initially set to zero, E1/2 =
0, H® = 0, J° = 0. The total electromagnetic fields can be calculated iteratively
over these difference equations through the leapfrog process set forth by the centered-

difference in the time axis.

6.3.2 Wakefield calculations with TBCI and ABCI

TBCI and ABCI are two computer codes being widely used in the accelerator com-
munity to calculate wakefields of various accelerator components as the charged particle
traverses them. The Yee algorithm is employed in both codes to calculate the wakefields
excited by the current. Usually, we are interested in the accumulated effects, called wake
functions, that the fields act on a charge trailing the source particle by a distance s.

The longitudinal and transverse wake functions are defined as

(o o]
iy =1 / dtv - E(z,1, ) smurs (6-190)
qJ-x
1 o0
wils,r) = - / dz(E+ v X B) |smutes (6-191)

where ¢ is the charge of the source particles and r is the offset of the test particle.
TBCI and ABCI give results as wake functions. These two codes can usually give good
results. In this section, we will discuss some problems of the Yee algorithm in wakefield
calculations. First, we’ll present the problem we have had in calculating the wakefields
of the CEBAF 5-cell cavity. Then, the behavior of the wakefields as functions of bunch

and mesh parameters are studied for a simple pillbox cavity.

6.3.2.1 Problems in calculating wakefields of the CEBAF 5-cell cavity

The cross section of CEBAF 5-cell cavity is as shown in Fig. 6-55. The higher-order-
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mode coupler and the fundamental-power coupler can not be included since the bunch
length of CEBAF beam is so small that the number of meshes used to discretize the 3-D
structure would be so large that the problem cannot be handled even by large computers.
The omission of these couplers retains the cylindrical symmetry of the structure so that
TBCI can be used. The 5-cells of the cavity are close to elliptical with major axis about
9.4 cm and minor axis of about 5 cm (total width 10 cm). The two ends of the cavity
are connected to 3.5 cm beam pipes. The 3.5 cm beam pipes are connected to 1.74 cm
beam pipes and the 1.74 cm beam pipes are terminated at certain position where open
boundary conditions are placed to simulate infinite long beam pipe conditions.

The mesh size should be much smaller than the rms bunch length ¢ so that the
mesh would have good frequency resolution. The ratio of the rms bunch length and
the mesh size is suggested in [36] to be at least of the order of five. The code can only
handle uniform meshes, same mesh size in both » and 2. In our calculation, the rms
bunch length is 0.5 mm. The mesh size is 0.1 mm. The number of total mesh points is
about 7.5 million. The number of ;cime steps in one spatial mesh step is MT = 3, which
is required by the numerical stability. The beam is on the axis. The wake is integrated
at the beam pipe radius [36]. Fig. 6-56 shows the longitudinal wake function of mode
m = 0. The dashed line is the charge distribution. The wake function obtained has
strong oscillations. These oscillations are unphysical since the strength is stronger than
the wake function in the bunch region. The same result is obtained with M = 4, which

confirms that the problem is not due to the instability of the time stepping.

6.3.2.2 Wakefields for different bunch and cavity parameters

The wake function calculation of the CEBAF 5-cell cavity for short bunch beams
have unphysical results. However, there are no such problems for longer bunches, for
example millimeter or centimeter bunches. This suggests that the error is related to

the bunch length or, in other words, the frequency of the fields. To have a better
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understanding of the problem, we studied the wakefields of a simple pillbox cavity. The
pillbox cavity is shown in Fig. 6-57. We performed four test runs. The first two runs
confirmed that the problem was due to the truncation error of the algorithm. The third
run was to study the dependence of the errors on the bunch length for fixed cavity
structure and o/mesh ratio. The fourth run was to study the scaling of the errors with

the frequency.
1. Wakefields for o = 0.5 mm and ¢/mesh =5

The cavity dimensions in this run are as follows: r, =2 cm, 7, = 6 cm, 7. = 3 cm,
L =14 cm and d = 1 cm. The bunch length ¢ = 0.5 mm. The mesh size is one fifth
of 0. The number of time steps for one mesh step MT is 3. The result is shown in

Fig. 6-58. Similar to the wake functions of the CEBAF cavity, oscillations are observed.

2. Wakefields for ¢ = 0.5 mm and ¢/mesh =7.5

To verify that the oscillation in Fig. 6-58 is errors, the ratio o/mesh is changed to
7.5 in this run. Other parameters stay the same. The result is shown in Fig. 6-59. The
magnitude of oscillation in this run is reduced. Notice that for fixed structure and beam
parameters, the error diminishes as the ratio ¢/mesh increases while the frequency of
the oscillation stays the same. This excludes the possibility that the error is contributed
by a resonance between the grid frequency inherent in the finite-difference algorithm and
the frequency excited by the bunch. The oscillation is cause by a numerical truncation
error. One might expect that the truncation error is totally controlled by the small
quantity Az/A. The next example shows that the truncation error depends on both the

Az/A and the frequency.
3. Wakefields for ¢ = 2.5 mm and o/mesh=5

In this run, the cavity structure is the same as in the previous two runs. The bunch
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length is ¢ = 2.5 mm, and o/mesh=5. The result is shown in Fig. 6-60. The wake
function for a 2.5 mm bunch does not show any oscillation. The truncation error is
small in this case.

For a gaussian bunch

’2
A(s) = e (6 - 192)
2ro

and the frequency spectrum has a gaussian profile

w202
P(w) = \/—;_;e"?" (6 — 193)

The gaussian bunch excites wakefields with different strength for different frequencies.
There is a rolloff frequency wg, for example the frequency which has a magnitude of 1 %
in the spectrum, beyond which the excitation of the fields is negligible. The frequency
wr is proportional to 1/0. If 0/Az is the same, say 5, for different bunch lengths (os),
frequencies with the same w/wg for different os will have the same Az/A ratio. The
truncation errors for these frequencies in these runs should be the same. But this is not
the case as seen in the previous éwo examples. What makes the difference is that the
frequency content in the wakefields in these runs are different. The frequency profile of
a gaussian bunch tells us that a shorter bunch has more higher frequency components.
The shorter the bunch, the higher the frequency contained in the spectrum. That the
truncation error for the 0.5 mm bunch is larger than that for the 2.5 mm bunch suggests

that the truncation error depends on frequency.
4. Scale everything in run 1 by 5

To check the frequency dependence of the truncation error, we scale the parameters
in the first run by five. Now the cavity is five times bigger. The bunch is five times
longer, 0 = 2.5 mm. The ratio o/mesh remains 5. The result is shown in Fig. 6-61.
The wake function of this run has the same structure as the one shown in Fig. 6-58

except the scaling factor of five, the same factor as the cavity is scaled. This shows that
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the frequency dependence of the wake functions is linear. As we scale the cavity, the
frequency of each mode is also scaled by the same factor. From mode analysis (37, 38],
the wake function for resonant frequency w, is

Wr2

R,w,
cos(
c

W (z) = ) | (6 — 194)

where R, and @ are the shunt impedance and the quality factor, respectively, and they
depend only on the structure. The strength of the wake function for a given mode is
proportional to its frequency. The same scaling factor is observed for the numerical

error. The conclusion is that the numerical error has a linear frequency dependence.

6.3.3 Fourth-order FD-TD algorithm

We have seen that the truncation error imposes seriously problems in the calculation
of wake functions of short bunches. In principle, the problem can be solved by use of
fine meshes. But it is often impractical due to limitations in computer power. In this
section, we will, extending J. Fang’s work [42], derive a fourth-order FD-TD algorithm
in the cylindrical symmetric coordinate system. The same Yee lattice is used to define
the fields. Fourth-order accuracy is accomplished by including up to the third order

derivatives of the fields in the Taylor expansion.

6.3.3.1 Fourth-order FD-TD algorithm in a cylindrical coordinate system

Expanding the E and the H fields to third order in time, we have
SHMZ A 93H"1/?

n+l _ n 5 -
H™ = H'+ At 2T 5 +0(A%) (6-195)
n+1 3 a3pn+l
gt o g2 g 0 0BT ATTET s (6-196)

at ' 24 a8
Replacing the time derivatives in Eqgs. (6-195,6-196) by the curl operators defined by

the Maxwell’s equations, we have

3.2
H = H" - ét_v % En+1/2 _ At’c V X VZEn+1/2
Ho 2440
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At3c? 9 ‘ .
= 2(V x I™/2) 4 o(AF) (6-197)
En+3/2 . En+1/2 + gv % Hnt! + AQ; c? V x V2nt!
0
At 3 21n+1
—EJ"“ ek -2%5 <c2V « v x gnt _ 2 ;t ) + O(At®) (6-198)

The first order derivatives involved in the curl operators are evaluated to the fourth-

order finite-difference as

0H, k412 _ Hopy1 — Hope AZ? 03Hz,k+1/2
0z Az 24 90

+0(AzY) (6 — 199)

By using the above equations, the FD-TD formula to the fourth-order accuracy are

obtained as the follows:

Hn+1 = HI- Yo <En+1/2 gtz _ ™ En+1/2>

.k dk+1 : z,k
AP Y (1 PEFH?
24 MB (Mﬁ)2 82
AZ%Y, EnH/z) _ m_SEn+1/2 + m9*EpT/?
24(Mﬁ)3 2dr 3 r o 8z
19 (9 0B\ m2oE;) 6-200
rdz (87’ (T or ) 2 8z (6-200)
n Y, n 2 n41/2 n 2
H +1 = Hg,k - M_(‘,)B (Ez,-l*c.l/ - E::.i{fz + Er,:+{ - E’r,zl/ )
Az Yo 03E;7'+1/2 1 53E;r}+1/2
24 MB\ T or° "( - (Mﬁ)2) 823
AZYy (1 8% [ QEMUE\  m?oErtl/?
" 24(MPB)3 \ 1 8207 (r or ) T 0z
8 /18 , QENTL/? , 0 Ent1/2 G ET+1/2
(e (r = — —(=z a =k -201
or (r or (r or )) + ™5, ( r? > ordz* (6-201)
n n Yo 2 . . ntl/2
H +1 = 2k T ]4%‘2‘ (ZEZ,-;;:-/JZ ( )En+1/2 +m E +1/ )
Az },0 ] a n+1/2
24 M,Brar ( E )
_APK za_z(ré_’f?ﬂ> Rt b "““)
24(MB)> \r or? or ror\ r
82 n+1/2

10 E; m 9 6E;‘+1/2)
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(6-202)

3 2 pn+1/2
_T_sEgH/? 1 28}3,_)

L P
n+3/2 n+1/2 . 2 n 2m
EME = gy —M% (Hé,’;ll - Hif + mH;‘L’1>
A Z, . 1\ oH;T!
24 MB (MB)?)  87°
A% (10 () ey, Y
24(MB)* \ r or or T T 9z

1 32 (7. aH;&I) m2 3HZ+1)

+

+

7 0z0r or 2 9z (6-203)
+3/2 +1/2 . Zo n n
Bl = Eppfe o (Hnfl, - E 4 B - HOPL)
,+Az3 Zo (°HT ( 1 )831{;‘“
24 MB\ 3 (MB2) ™ 8z°
AZ3Z, (1 &? (311,"“) m?2 9HM  §P gt

24(Mﬂ)3 r 820r " or rt 0z 0rdz?
/1290 aH:“'H . 0 H:'H
5 (55 (75 + i (5 )) (6-204)

g3z _ gtz | Zo (2i—1 nt1_ 20-8 ppig m H"*l)

77 AU Ty S S vy R e R

+

24(MB)? r
19 O*H;Y'\ mo /gt
?EF(T 822 )"r_?b_r<r'79r_>

m 62 11
T 027 )

AZSZQ 1 62 ( 0H£+1) m2 9 <H;1+1)
24(MBRE\ror2\" " ar ) 7 or

(6-205)

3
m
+-;:,,—I1T,"'*'1 -
The current term, Eq. (6-187) or Eq. (6-189), needs to be added to Eq. (6-215). The
extra source terms for the higher-order corrections are
a) For the E field
A3

= |2 Jrtl _
Sieg (chVx

oI\ AZ(z—Bet) (AtaJmH! .

ot - 24(Mﬂ0')2 e Or .
mA2*(z — Bet) (At n+1>

24r(MBo)* €0 d 8
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A2 [At1 0, 8JnH
~24(MB)? (E?E(’T)) 29 (6-206)

m?Az? (AtJn+1) =
24r2( M B)*

AZ? (z - ,Bct) 1
24(Mo)? (l_ ol ><€0J+> 70

+

+

b) For the H field

Atdc? 9 _ & Az%Be(z - fet) [ At
Z (v x Jnt1/2) 0 ( n+1/2>
25 (V% ) 24r(M B )? d i
€Az e(z ~ Bet) At gJnti/2
- 24001 50) o ¢o (6-207)

where o is the rms bunch length. %oé'] has the form of Eq. (6-187) or Eq. (6-189). The
partial derivatives %% are defined half mesh off the radial position a. Since the average

quantities are used in the difference equations, the partial derivatives have the following

forms
oJ J . _ a+AR/2
Srlmetanp =F5z with J= / J8(a - r)dr/AR (6 — 208)

The second order derivative —-5—(1' ) is defined at r = a, and is

16 / 0J J
w5 (5r) = 2w (6-209)

The higher-order derivatives in the fourth-order FD-TD equations should be eval-
uated at positions where the fields on the left hand side of the equations are defined.

Replacing these derivatives by the finite-differences of the nodal field values, we have

HM' = HP,- Yo (En+1/2 gtz _ M En+1/2)

Mﬂ ¢,k+1 i—1 2,k
1 Y n41/2 n+1/2 n+1/2 n+1/2
s (1~ G (B3R - B + 9B - 551D

Yo 2m ) nil/2 .
2t - 1)(E ~-F
+24(Mﬂ)3((2i_2)2 (i - &7 - B
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6.3.3.2 Frequency dependence of the higher-order terms

We anticipated in section 6.3.2 that the truncation error of the first order Yee al-
gorithm is frequency dependent. This can be investigated by studying the higher-order
terms derived in the previous section. For a given mode, assuming that the fields have
e~J“* time dependence, the higher-order terms in Eqgs. (6-197)-(6-198) have the following

form

AH FLs  _(PEr_ 2 2)0E: k2
N (Kt—) a 24;1-0 ( 923 ( 8. (k7 + 2) )<,Z5o

1.0F
_((rk,z. ) ¢ + 2k2E¢)ZO) -7 2

AE\ 63H¢, 0°H ) 2 aH k2
A(E) - 2460( 973 <823 — (b + H>¢

(0t- 1>a"’¢+2kzﬂ¢)z(,)-]

Y H (6-216)

At2 3

51 E (6-217)

Except for the phase difference, the third order derivatives respect to z can be written
as k3(E, H) and the first order derivative respect to 7 is approximately k ~(E,H). These
higher-order terms are, therefore, proportional to w(kAz)?, or, w( 2)2 (Az and Ar
are assumed equal). (Az/A)? is in general small and is usually used as a measure of
the magnitude of the contributions from the terms related. The situation here now

is different, the coefficients of (Az/A)? linearly increase with the frequency. If the
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frequency is very high, these terms may not be “small” any more.

In the first order Yee algorithm, these terms are the lowest order truncation errors
and they are frequency dependent. Consider the case of the wakefields driven by a
gaussian bunch, the profile of the frequency spectrum of such a bunch is also gaussian.
Frequencies that have lower magnitudes in the spectrum excite wakefields with lower
amplitudes. The wakefields excited by the frequencies higher than a certain frequency
will be negligibly small. Assume this cutoff frequency is the frequency with a magnitude
of 1% in the spectrum. The corresponding wave length of this frequency is A = 2¢. Let
the mesh size be one fifth of o, that is Az/A = 0.1. This is the typical number suggested
in [39] for numerical simulations of microwave propagation and in [36] for wakefield
calculations. This number has been accepted as a general rule in the discretization
of the Maxwell’s equations so that the mesh would have enough frequency resolution.
This rule works fine in the calculation of the wakefields of long bunches where the cutoff
frequency of the excitation of the wakefields is low. Gaod accuracy can be obtained with
the choice of Az = ¢/5. In the calculation of wakefields of short bunches, the fields
contain higher frequency components. The quantity w(%f may no longer be small
even if Az = 0/5 or Az/A = 0.1 is retained since it depends linearly on the frequency.
The rule of Az = 0/5 is no longer valid. This is what we have seen in the examples
studied in section 6.3.2.2. Using a smaller mash size can improve the accuracy, but
reducing the mesh size will increase the number of mesh points manyfold (for example
4-fold in the 2-D problem and 8-fold in the 3-D problems if the mesh size is halved).
Computer memory becomes a problem.

The fourth-order FD-TD algorithm derived in this chapter can reduce the truncation

error to the fourth order

w (%)4 (6 — 218)

Even though it is also linearly proportional to the frequency, the extra powers of Az/\
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would greatly reduce the magnitude of the error. If the highest frequency of the excita-

tion is not very high, the terms of the fourth order and higher of Az/A are small.

6.3.3.3 Wakefields calculated by fourth-order FD-TD algorithm

The fourth-order\ FD-TD a.lgorithn; is implemented in TBCI. The results of the wake
functions of a pillbox cavity and the CEBAF 5-cell cavity of a 0.5 mm bunch are shown
in Fig. 6-62 and Fig. 6-63 by the solid lines. The dashed lines are the results of the
second-order FD-TD algorithm. The same mesh size is used, which is o/Az=5. No
oscillations are present in the calculations with the fourth-order FD-TD algorithm, and
the errors are suppressed.

Higher-order truncation errors linearly depend on the frequency. They also ac-
cumulate with time. The longer the cavity the larger the accumulated error. The
fourth-order FD-TD algorithm reduced these errors, and the accuracy is good for calcu-
lating the wakefields of sub-mil].ime_ter bunches. If the bunch is very short, the accuracy
of the fourth-order algorithm presented in this chapter may not be good enough with
o/Az = 5. A sixth-order algorithm or smaller mesh size should be used to obtain a
good result. The fourth-order FD-TD algorithm typically takes more than six times
the CPU time than the second-order Yee algorithm. In exchange, there is no extra

computer memory required.

6.4 Wake functions for v,,v; # ¢

When the velocities of the source and the test particles are different, slippage occurs
while the particles traversing the cavity. This effect should be included in the calculation
of the wake functions which are the accumulated effects of the wakefields. In calculating
the wake functions, we integrate the wakefields in the frame of the test particle. In the
case of v; = v,, the mesh points for the wake function integration coincide with the

mesh points used for the field calculations. The integral is performed by simply adding
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the fields at the mesh points at each time step. When v; # v, where slippage exists
between the particles, linear interpolation is used to evaluate the wakefields defined at
the meshes in the frame of the test particle. The argument s in the wake function is
defined as the initial position of the test particle relative to the source particle.

The wake functions for cases of v,,v; # c are evaluated by use of the modified TBCI
for the CEBAF 5-cell cavity. The rms bunch length is 0,=3 mm. The mesh size is one
fifth of ,. The wake functions are calculated at » = 0. We want to look at the wake
functions for two different scenarios. The first scenario is v; = v, < ¢, which is the case
of low energies. The second scenario is v; # v, < ¢, which is the case where multiple
beams are accelerated in the same RF bucket.

Fig. 6-64 shows the wake functions for the cases of v; = v,. The values 8 = 0.9948
and B8 = 0.9987 correspond to beam energies of 5 MeV and 10 MeV respectively. The
wake functions integrated at the pipe radius which is 1.74 cm are quite close to the
wake function for § = 1. The wake functions on the axis calculated by applying the
average weighting have a little dh;ference from the § = 1 case. For these bunch length
and energies, the effect of v < ¢ is small.

For the cases of v, # v, as shown in Fig. 6-65, not only are amplitudes of the wake
functions different, the slippage between the source and the test particles also results in
displacement in the wake distribution. The value 8 = 0.99 corresponds to an electron
energy of 3.6 MeV. What happens when v; = 0.99¢ < v, = ¢ is that the source particle
and the wakefields propagate faster than the test particle. The test particle initially
placed ahead of the source particles is caught by the fields generated by the source
particle. So the wake function is displaced to the head side of the source bunch. For
v = ¢ > v,, the test particle behind the source particle catches up with the source
particle and a maximal wake force is accumulated. The wake function displaces to the

tail side of the source bunch. For 8 = 0.999 which corresponds to E = 11.5 MeV, the
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wake functions are close to that for 8 = 1.

6.5 The smearing effects for v < ¢

The width of the short range wake function is roughly propor'tional to the bunch
length, while the width of the weight function depends only on the energy and the
cavity structure. Thus the smearing effect is bunch length dependent. If the width of
the weight function is much smaller than the bunch length, the smearing effect will be
small, and vice versa. Fig. 6-64 shows an example of long bunches, where the smearing
effect is negligible. Fig. 6-66a shows the radial dependence of the wake functions of a
pillbox cavity (3 cm x 4 cm, pipe radius=1 cm) for a short bunch with bunch length of
0.5 mm (rms) and 3, = B; = 0.9948. The sharp peak of the wake function on the pipe
radius is flattened by the weight function at r < a. The wake functions also show the
slippage effects between the charge and the fields, which results in none zero wakefields
ahead of the bunch. Numerical verification of this effect is obtained by integrating the
wake at 7 = 0.75 cm for a long distance. Fig. 6-66b shows the results with integration
limits of 6 cm and 25 cm. The later one gives a closer result to the wake function
calculated by use of the weight function. For 8 < 1, the slippage between the particle
and the fields results in finite wake in front of the bunch.

The effective range of the weight function for » = 0, wake function on axis, is
proportional to the ratio of Ey“—. The short range wake function has a peak which has a
width that is proportional to the bunch length of the beam. The smearing effect of the
short range wake function for a given energy then depends not only on the energy (v)

of the beam, but also on the bunch length. The ratio

R:";—7 (6 - 219)

is a measure of the smearing effect. Large R implies weak smearing. The relative

difference of the peaks of the short range wake functions calculated at the pipe radius
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and on the axis of a pillbox cavity as a function of R is shown in Fig. 6-67. For R = 1.5,
the relative difference is less than 10%.

The R value of Eq.(6-219) can be used to determine whether the beam can be treated
as ultrarelativistic in the wakefield calculation. The difference of thé wake functions as
a function of R may be slightly different for different structures and bunch length. It is
shown from the numerical simulations that the difference of the peak less than 10% can
in general be obtained for R > 1.5. For cases with R > 1.5, the beam can be assumed
ultrarelativistic. For R < 1.5, smearing effect is significant, wake functions at r < a
should be ca.lcula.teéi by use of the weighted average.

The radius of the beam pipe of the CEBAF cavity is @ = 1.74 cm. For ¢,=3 mm,
the beam can be treated as being ultrarelativistic for v > 8.7 or E > 4.5 MeV. While
for 0, = 0.5 mm, the beam can be treated as being ultrarelativistic for ¥ > 52 or
E > 26.5 MeV.

To conclude, the algorithm developed in this chapter can be used to calculate wake-
fields of beams with 8 < 1 as long as the trajectory of the beam is approximately a

straight line. The effects of slippage between the beams and between the beam and the

fields are important in the cases of low energies and short bunches. The R value defined

in Eq. (6-219) is a measure of the smearing effect on the wakefields of non-relativistic

beam. The particle can only be assumed ultrarelativitic for cases with large R.
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Figure 6-52: Comparison of the Lindman boundary condition with the one-dimension
boundary condition used in original TBCI. Solid line: analytical; dashed line: lind-
man; dotted line: one-dimension. a) frequency=20 GHz, nzero=4, time steps=350; b)
frequency=50 GHz, nzero=11, time steps=220.
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Chapter 7
The Effects of Wakefields and Cavity Multipole fields on a 40 MeV IR FEL Linac

When a beam passes the cavity, it is not only accelerated by the RF field of the fun-
damental mode, but also radiates energy as the form of electromagnetic fields, known
as wakeflelds, with frequencies that occupy the entire cavity eigenmode spectrum. For
a high @ cavity, these fields will ring in the cavity for a long time. These fields then act
back on the later beam bunches, and perturb their motion. Under unfavorable condi-
tions, the perturbation on the beam further enhances the wakefields. The beam cavity
interaction then leads to a possible collective instability. There two prime concerns
about the beam cavity interactions in the CEBAF linacs. The recirculating structure of
the CEBAF accelerator provides a potential mechanism for transverse multipass beam
breakup. If the beam experience a momentum kick from the cavity fields, the recircu-
lating beam will return to the cavity with a transverse displacement. On traversing the
cavity second time, additional wakefields are exited. Steady state is maintained if the
losses on the cavity walls and in the HOM coupler compensate the bunch excitation.
At a high enough current level, there will be instability. Theoretical and experimental
studies {43, 11] have shown that the threshold current for the multipass beam breakup
in the CEBAF accelerator is well above the designed current. With the HOM damping
mechanism employed in the cavity, the long-term wakefields are effectively minimized.
The long-term wakefields are not likely to be a limiting factor to the beam current at
CEBAF. As opposed to the long-term wakefield effects, another concern associated with
the wakefields is the short-term or high-frequency wakefield interactions with the beam.

Within the bunch region, the integrated form of the wakefield, called wake function,
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has a peak value and has strong variation within the bunch. For the longitudinal part
of .the wakeflelds, the forces that act upon the particles at different positions of the
bunch are different and generate energy spread. The transverse part of the wakefields
on the other hand may cause emittance degradation. The HOM damping mechanism
are not effective in minimizing the short-term wakefield effects. There are methods
of compensating the short-term wakefield effects by accelerating the beam at an RF
phase other than on the crest. For a bunch much shorter than the wave length of the
RF field, this compensation can only eliminate the linear part of the wakefields. The
strength of the wakefield is proportional to the beam current. The stiff requirement on
the energy spread and the emittance of the beams for a possible IR FEL driver at CE- -
BAF, see Sec. 5.5 for more details on the accelerator, requires a deeper understanding
of short-term wakefield effects which are the topic of this chapter. The beam dynamics
simulations in this chapter include both the effects of the multipole fields of the cavity

and the effects of the wakefields.

7.1 Momentum change due to the wakefields

The energy of the beam in the linac varies from 10 MeV to 40 MeV. The R value
defined in Eq. (6-219) for E = 10 MeV, ¢ = 0.5 mm is 0.56. The smearing effect for
this energy is strong, and the wake function at r = 0 should be calculated by use of the
weight function. The smearing effect becomes small for energies higher than 25 MeV.
The energies in the first four cavities of the FEL linac are lower than 25 MeV, so the
wake functions in these cavities should be treated separately. The energy of the beam
in the rest of the cavities in the linac is higher than 25 MeV, and the wake functions in
these cavities are approximately the same and can be treated under the ultrarelativistic
assumpﬁon.

To calculate the wakefields of a beam with bunch length of 0.5 mm in the CEBAF

cavity, 7.6 million mesh points are needed. Since the whole mesh domain is needed in
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solving the Maxwell’s equations for 8 < 1, the CPU time required’ for the wakefield
calculations would be so long that it becomes impractical. The wake functions in the
first four cavities have to be approximated by the wake functions of 8 = 1. Since the
smearing flattens the peak of the wake function, this approximation will enable us to
estimate the upper limit of the wakefield effects in these cavities.

For §# = 1, a moving window which covers the region within which the wake functions
are calculated in the bunch frame is established. Since we only need to calculate the
short-range wake function, the effective number of mesh points used in the iterations is
much smaller than the total number, and the CPU time requirement is reduced.

For § = 1, the wake functions have the form of Egs. (6-165), (6-166), and (6-167).

The net momentum change for a particle with charge e traversing the cavity is

AP(r,$,8) = S i (—mrm'l /;:o um (8')ds’ cos(me)ey

m=0

+mr™-1 / um(8')ds’ sin(me)ey

7™ U (8) cos(m¢)ez> (7-220)

This equation describes the momentum change due to the existing fields in the cavity.
The fields are generated by the source particle located at (r1, 1, z = ct). They are
proportional to the multipole strength of the source particle which is, for mode m,
Im = ¢r". In general, the momentum change of the test particle located at (rz, ¢2,
z = ct — 8) due to the fields generated by the source pafticle located at (1, ¢1, z = ct)

is

AP(r1, 72,41, ¢2,8) = ev—q 2 (T?T?_IWT,m(S) cos(m(dz — ¢1))er

m=0
_,.;n,.;"*WT’m(s) sin(m(¢z — ¢1))ey

+1 TP WE, m () cos(m(d; — ¢1))ez) (7-221)
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The longitudinal and transverse wake functions Wi,m(s) and Wy, are defined as

- um(s) _ /+°° Ez,m(TZa ¢2a Z2=ct—- .s)dz
Wim(s) = TIn = e T cos(mig =) (7-222)
Wrm = -m / Wi,m(s')ds' (7-223)

which are independent of 7; and 7. The TBCI output for the wake function is the

integrated 2 component of the electric field

400
/ Ezpm(r% $2,2=ct — s)dz
—co

The auxiliary program TBCIIMPEDANCE or WAKEPRINT oprints out Wrm and

-

Wrm.

7.2 Wake functions in the CEBAF 5-cell cavity

The CEBAF 5-cell cavity is as shown in Fig. 6-55. The rms bunch length o, of the
FEL beam is about 1.6 ps, or 0.5 mm. The full bunch length used in TBCI is +50,.
The mesh size to discretize the Maxwell’s equations is 0.1 mm. The total number of

mesh points for the 5-cell cavity is 7523295.
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Figure 7-68: Longitudinal wake function of mode m=0 in the CEBAF 5-cell cavity for
a bunch with bunch length ¢, = 0.5 mm.
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7.3 Simulations of the wakefield effects in PARMELA

A separate element, called WAKE, is added to PARMELA to accommodate the
calculation of the wakefield effects in the beam dynamics. The WAKE card is placed
next to the cavity card in the.i'nput file. The argument for the input:, includes, IWAKE,
QO0, SIGMA, NSIGMA, IELL. The IWAKE is a switch to turn the wake on (IWAKE=1)
or off (IWAKE=0). The QO is the total charge of the bunch in pC. The SIGMA is the
rms bunch length. The NSIGMA is the number of SIGMAs used in TBCI. The IELL
is the number of elements prior to WAKE where the relative positions of the particles
are evaluated.

In TBCI calculations, the particle distribution in the bunéh is a ¢ function in the
transverse plane. The actual beam size is finite. To calculate the wake generated by
such a beam, we assume that all of the charges are located in the center of the beam in

the transverse plane.

N

~Ze = Y za/N (7-224)
n=1
N

Ye = Z?/n/N (7-225)
n=1

When the wake forces are applied in the PARMELA simulations, finite beam size is
assumed. The relative positions of the particles are evaluated at the entrance of the
cavity, that is IELL=-1. The position of the particle is recorded by means of the RF
phase. Those particles with smaller RF phases arrive earlier and are in the head of the
bunch. Particles with larger RF phases correspond to the tail of the bunch. For the
CEBAF cavity with frequency of 1497 MHz, the relative position to the head of the

bunch in centimeters in the longitudinal direction is

20.026

8s=SIGMAx NSIGMA - 360

(¢o - ¢) (7 —226)

where ¢q is the RF phase at the center of the bunch. Linear interpolation is used to

evaluate the wake functions off the mesh points.
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7.4 The energy spread in the RF linac

There are two sources of energy spread in the RF linac. The sinusoidal RF field
of the ca,vity produces a variation of acceleration within the finite bunch. The energy
spread is a cosine-like function of RF phase. The variation of the 1ong.itudinal wakefields
across the bunch also produces energy spread. Unlike the RF field, the wakefield effects
depend linearly on the beam current and are independent of RF phase. The phase
relations of these two kinds of energy spread make it possible to minimize the combined
energy spread by properly phasing the RF phase of the cavity.

Let ¢o be the RF phase of the acceleration, A¢ be the phase offset of a particle, and
Gp be the gra,dient’ of the cavity. The energy spread from the RF field for the particle

for one cavity is

AERr(¢o, Ad, Go) = 0.5G0o(cos(¢o + Ag) — cos(do)) (7 - 227)

where A¢ < 0 corresponds to the head of the bunch. The energy spread due to the

wakefields, AFyqke, only depends on A¢, which is
AEwakc(A¢) . W(¢0 + A¢) - W(¢0) (7 - 228)

The wakefields of the CEBAF cavity for the bunch length of 0.5 mm are given in Figs. 7-

68 and 7-69. The total energy spread due to the RF field and the wakefield is
AE(¢0’ A¢) = AERF(¢0a A¢7 GO) + AEwakc(A¢) (7 - 229)

Assuming that the bunch has a Gaussian distribution, the rms energy spread of the

bunch is
2 1 [t 2~
e ronne(d0) = 7= [ (AE(do, Ag(s))e ¥ ds (7-230)

where o, is the rms bunch length, A¢(s) = S%B\Q,_ A = 20 cm for CEBAF cavity, and

o, = 0.5 mm.
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The energy spread, 0e rfiware(@0), is now a function of the acceleration phase ¢q
oniy. Optimal ¢,y exists for a minimum energy spread. Fig. 7-70 shows the rms energy
spread of the beam with different charges as functions of the RF phase of the cavity,
where the gradient of the cavity is Go=7.5 MV /m and the bunch length is 5,=0.5 mm.
For very low charge, the energy spread is caused solely due to the RF field. As the total
charge of the bunch increases, the wakefield effects become significant. At certain RF
phase, cancellation exists between the energy spread from the RF field and that from
the wakefields. The total energy spread at this RF phase has a minimal value. When
the total charge of the bunch becomes large, the wakefield effects become dominant.
The total energy spread increases with the bunch charge. For the IR FEL, the total
charge is Q =200 pC. The energy spread has a minimum of 4.4 x10™* MeV at ¢¢ = —1°,
which is smaller than minimum energy spread from the RF field. 'I;he energy spread
AERp(¢o = =19, Ad,Go = 7.5), AEyqke(Ad) and AE(¢o = —1°, A¢) along the bunch
for this case are shown in Fig. 7-71.

The energy spread analyzed above is related to the RF field of the cavity and the
longitudinal wakefield of the cylindrical symmetric mode (m=0). If the bunch is off
axis, the longitudinal wakefield of the dipole mode (m=1) will also cause energy spread.
However, since the dipole wakefield is proportional to 7, - r, the contribution of the
dipole mode is of higher order.

The energy spread of the beam includes the initial ‘energy spread of the beam and
the energy spread from the RF field and the wakefields. They are not correlated. The

total energy spread of the beam is then

OE = \/0125,0 il a??F+wake (7 o 231)

To study this matter more carefully, numerical simulations using PARMELA were per-
formed. The initial energy spread (og,0) at 10 MeV is 3 X 10~2 MeV. The PARMELA

simulation of the energy spread of the FEL linac at the exit of the linac as a function of
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the acceleration phase is shown in Fig. 7-72. It is shown that in order to get a relative

energy spread less than 2 x 1072 at 40 MeV, the RF phase offset of the cavity should

be within the range of (-10°, 7.59).

7.5 The emittance in the FEL linac

The multipole RF fields of the cavity and the wakefields generated by the beam are
the two sources of emittance degradation in the linac. The emittance degradation due
to the RF fields is studied in Sec. 5.5. In this section, we will include the effect of the
wakefields. The dominant mode of the wakefields that causes the emittance growth is
the dipole mode, which is similar to the head-tail effects of the cavity multipole fields.
The dipole mode of the wakefields can only be excited when the beam has an offset
from the axis of the cavity. To reduce the wakefield head-tail effect, beam centering is
important. However, the beam offset may result from some undetermined factors like
the cavity misalignment and the cavity steering of the coupler fields. The misalignment
of the cavity is within 1 mm. The beam offset from the cavity steering on the other hand
is unavoidable since there are no orbit correctors inside the cryomodule. The upper limit
of the emittance growth is estimated by assuming that the cavity is misaligned with a
maximum possible misalignment.

The steering of the dipole mode of the wakefields has the following form

AP i (ro, 7, ¢0, ¢, 8) = % (roWr,1(s) cos(é — ¢o))er — roWr,1(s) sin(é — ¢o))es)
| (7 -232)
where (70, ¢o) is the transverse position of the center of the bunch and (r, @) is the
transverse position of a particle in the bunch. The strength of the transverse wake
function linearly increase along the bunch. The result is that the tail gets kicked more,
and the projected emittance is then increased.

Assuming that the beam has a initial offset of 1 mm, the PARMELA simulations
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show (Fig. 7-73) that the emittance has little dependence on the RF phase. The emit-
tance degradation is mainly due to the cavity multipole fields. The contribution from
the wakefields is negligible. The total emittance growth in the linac is about 60%.

The wakefield effects are proportional to the total charge of the bunch. Simulations
indicate that there is no significant emittance growth for a total charge of 200 pC. The
weak wakefield effects on the emittance growth can be attributed to the large opening
of the cavity which results in low transverse wakefields. The large initial emittance is

also a factor that makes the emittance growth less noticeable.

The PARMELA simulations on the energy spread and the emittance degradation
conclude that the wakefield effects in the 40 IR FEL linac will not become a limiting
factor on the beam qualities. The 2x10~2 relative energy spread is easily achievable
within a wide range of RF phase (-10° to 7.5°). The emittance growth is dominated
by the z — y coupling of the cavity multipole fields, which can be corrected by use of a

compensation skew quadrupole placed in front of the linac (see section 5.5).
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Figure 7-69: Wake functions of mode m=1 in the CEBAF 5-cell cavity for a bunch with

bunch length of ¢, = 0.5 mm.
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Chapter 8
Conclusions

The dynamics of beams under the influence of multipole fields of the cavity and
wakefields generated by the beam have been studied.

Full three-dimensional modeling of the cavity, which includes the 5-cells and the FP
the HOM couplers, ’was established. The 3-D code MAFIA was used for this purpose.
Several steps have been taken to make the modeling better represent the real cavity:
a) the resonant frequency was tuned back to 1497 MHz by adjusting the radii of the
five cells; b) a flat field distribution in the 5-cells is obtained by slightly adjusting
the size of the two end cells; c) the short position of the fundamental mode in the
waveguide is determined from the tuning curve of the cavity so that a proper boundary
condition on the FP coupler can be applied; d) the coupling strength of the FP to
the end cell is obtained to match the forward power flow in the FP waveguide. The
3-D fields calculated by use of MAFIA are Fourier decomposed in a 3-D cylindrical
coordinate system. The multipole fields and their impact on beam dynamics were
analyzed. Experimental measurements were performed to measure the multipole fields
of the cavity, and the results agree with the numerical siﬁmlations. The misalignment of
a cavity was estimated from experimental results of the cavity steering, and the resulting
misalignment of the cavity found to be within specification.

A full 3-D modelling of the CEBAF superconducting cavity was included in the
pa,rticlg tracking program PARMELA. Numerical studies of the beam dynamics were
carried out in the CEBAF injector, linacs, and a possible FEL driver. The head-tail

and the z — y coupling effects in the cryounit of the injector were found to be strong.

157



158
A 70% emittance growth was predicted in the cryounit. The emittance growth in the
cryomodules of the injector depends strongly on the betatron matching conditions of
the beam. It was found that large emittance growth can result if the B functions in the
cryomodules are large. Emittance growth in the injector can be suppressed by changing
the focusing of the cryounit by adjusting the RF phase of the first cavity. Head-tail
effects in the CEBAF north linac are small due to the short bunch length and the
cancellation between the cavity-pairs in the cryomodules. Cancellation of the head-tail
effects relies on the gradient distribution in the cryomodules. Emittance growth due to
the z — y coupling is negligible for the first pass if the beam is well matched into the
linac. In.the higher passes, emittance growth under matched conditions are of order
of 35%. Emittance growth for unmatched cases is more sensitive to the initial as than
the initial fs. It is important to match the beam with waists for the first pass. In
the higher passes, the most unfavorable mismatch conditions are those with negative
as, i.e. initially diverging beams. Under nominal conditions, the final emittance of the
CEBAF accelerator will remain within specification. Emittance growth in a 40 MeV IR
FEL linac is about 60%, which is mainly due to z — y coupling.

The behavior of the wake functions for Vs, Uy # ¢ was investigated. This issue is
important in multipass FEL linacs and the low energy IR FEL linac. Wakefield calcu-
lations were based on code TBCI with several modifications. With the implementation
of the Lindman boundary condition, the code is capable of dealing with both v = ¢
and v < ¢ with proper open boundary conditions. In addition, the truncation errors
of the second-order YEE algorithm were found to be frequency dependent and were
important in the calculation of wakefields of short bunches. A fourth order accuracy
finite-difference algorithm was derived and was implemented in the modified TBCI to
reduce .the truncation errors. For the cases of v; # v,, the slippage between the source

and the test particles was included in the wake function integration. A radial scaling
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algorithm for the wake function was obtained in order to calculate the wake functions
inside the beam pipe. We found that the wake function at a radial position 7 is a
weighted average of the wake function calculated at the pipe radius. It was found that
the quantity that measures the smearing effect on the wake functions not only depends
on the energy of the beam but also on the bunch length and the opening of the beam
pipe. The quantity that measures the smearing effect is R = 0—51 where a is the pipe
radius. We found that the smearing effects for R > 1.5 are, in general, small enough to
be neglected. In such cases, the ultrarelativitic assumption for the beam can be used.

PARMELA simulations on the energy spread and the emittance degradation indi-
cated that the wakefield effecté in a proposed 40 IR FEL linac will not be a limiting
factor on beam quality. The 2x10~3 relative energy spread is easily achievable within a
wide range of RF phase (-10° to 7.5%). Emittance growth is dominated by z —y coupling
driven by cavity multipole fields, which can be corrected by use of one skew quadrupole

placed in front of the linac.
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