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ABSTRACT

DUAL ENERGY ELECTRON STORAGE RING COOLER DESIGN FOR
RELATIVISTIC ION BEAMS

Bhawin Dhital
Old Dominion University, 2022

Director: Dr. Geoffrey A. Krafft

Collider experiments demand small beam emittances in order to achieve high luminosity.

For light particles such as electrons, there exists a natural synchrotron radiation damping

resulting in low emittance beams at equilibrium. In the case of heavy particle beams such as

proton or ion beams, there is no significant synchrotron radiation damping effect and some

cooling mechanism is needed to get to low emittance beams. A dual energy storage ring cooler

is a novel concept proposed to cool hadron beams at higher energies. The design consists

of two rings: a low energy ring and a high energy ring connected by the energy recovering

linac (ERL) that provides the necessary energy difference. The low energy ring has an

electron cooler where the cooling interaction takes place between the electron and hadron

beams whereas electron beam going through the high energy ring undergoes synchrotron

radiation damping. In this document, we present a possible design of a dual energy storage

ring-based electron cooler for high energy proton beam cooling suitable for the Electron Ion

Collider (EIC) to be built at Brookhaven National laboratory (BNL). A special feature of

a dual energy storage ring cooler design is that the electron beam energy in the low energy

section must be tuned to match the hadron beam velocity in the cooling section, and the

electron beam energy in the high energy section is chosen to provide an adequate synchrotron

radiation damping. In addition, the ring optics design is carried out considering chromaticity

correction, dynamic aperture, momentum aperture, beam lifetime, radiation damping and

the intrabeam scattering effect. Finally, the cooling performance is simulated for 275 GeV

proton beams at the top energy of the EIC. In such a collider it is desirable to cool the

hadron beams to balance the emittance growth rates due to intra-beam scattering (IBS)

to maintain a high luminosity during the collision runs. In such a situation, a dual energy

storage ring based cooler could be a practical approach to be used for hadron beam cooling.
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CHAPTER 1

INTRODUCTION

One goal of modern high-energy particle accelerators and colliders is to achieve a higher

luminosity. Such a higher luminosity demands smaller beam emittances. For light particles

such as electrons and positrons, there exists a natural synchrotron radiation damping leading

to low emittance beams in equilibrium. However, this damping effect is negligible in the

case of heavy particle beams consisting of protons or ions. In this case, we need to apply an

external mechanism to cool the heavy particle beam in order to achieved smaller beam sizes

and ultimately higher luminosity.

An Electron-Ion Collider (EIC) is to be built at Brookhaven National Laboratory

(BNL) [1]. In such a collider to maintain a luminosity of L = 1034 cm−2 s−1 during long

collision runs, it is desirable to cool the hadron beams to balance the emittance growth rates

due to intrabeam scattering (IBS). To date, the proposed highest proton beam energy is 275

GeV and preserving the emittance long-term requires some cooling mechanism with cooling

rates that exceed the IBS growth rates.

Electron storage rings have been considered as a coolers since the late 1970s. However,

no such ring has been built for this purpose at present and thus it remains uncertain whether

strong hadron cooling is possible by this means. The concept of electron cooling of hadron

beams with strongly enhanced synchrotron radiation damping by using wigglers in a single

energy storage ring has been thoroughly studied [2, 3]. In this thesis we propose a novel

concept that greatly expands the range of applicability of storage-ring electron coolers by

significantly boosting the electron beam energy in the damping section using superconducting

radio frequency (SRF) cavities.

Any damping wigglers in the damping section enhance the synchrotron radiation emitted

eventually leading to decreased damping times. Later, our calculations will note that the

cost of using long wiggler sections is more expensive than using SRF cavities to boost the

energy in the high energy section to provide sufficient synchrotron radiation damping. This

conclusion allows us to give up the idea of the use of damping wigglers in the high energy

ring.

To cool the hadron beam in the energy range of 41-275 GeV, the required cooling electron

beam energy is in the range of 22-150 MeV. In such a low electron beam energy, the intrabeam
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scattering (IBS) effect is very strong giving very short IBS times of the order of tens of

milliseconds. Furthermore, the synchrotron radiation damping effect is very weak giving

long damping times of the order of second up to a minute. To get the balance between IBS

and radiation damping, we propose a dual energy storage ring with a high energy section to

enhance the synchrotron radiation and a low energy section for cooling.

1.1 RESEARCH GOALS AND OBJECTIVES

The main goal of this research work was to explore the possibilities inherent in a new

type of accelerator arrangement called an energy recovered loop accelerator. The idea is

to create an ion beam cooler based on a high current electron storage ring. The goal of

the dual energy storage ring project is to design an electron storage ring that provides the

best possible solution to the emittance degradation due to all heating effects in ion storage

rings and colliders. If we succeed, such a cooler will significantly improve the emittance and

lifetimes of ion beams and therefore, improve the collider performance. The proposed dual

energy storage ring cooler consists of two rings: the low energy cooler ring and the high

energy damping ring operate at markedly different energies. These two rings are connected

by an energy recovering superconducting RF structure. Initially, we proposed to make the

use of wigglers in the high energy section to enhance the synchrotron damping effect. Later

our calculations showed that for damping ring designs above around 350 MeV, it is less

costly to omit wigglers and increase the energy of the high energy ring to achieve a required

radiation damping rate. Now, instead of wigglers, our design uses SRF cavities to increase

the energy of the high energy ring to 500 MeV which provides enough damping to the electron

beam to reach the required equilibrium.

In this thesis, the following aspects of dual-energy storage ring design will be discussed:

• Design and improvement of prototype linear optics of a storage-ring electron cooler,

including beam transverse stability.

• Optimization of cooler parameters.

• Analytic estimation of intra-and-inter beam scattering and space charge effects.

• Estimation of equilibrium emittances.

• Single-particle tracking, including non-linearities, of the dual-energy ring design.

Work on HOM impedance measurements for the SRF accelerating structure and coherent

synchrotron radiation and beam break up should be carried out in future work. We have
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completed all other remaining milestones. We have derived new formulas to calculate the

equilibrium electron beam parameters in a dual energy storage ring. Now we have understood

a lot of parameters in a dual energy storage ring design including the design and stability.

A journal paper on dual-energy ring coolers summarizing our findings has been completed.

1.2 ORGANIZATION OF THE DISSERTATION

This dissertation is organized in the following way: Chapter 1 provides a brief introduc-

tion to the importance of hadron beam cooling and luminosity requirements in a collider.

Chapter 2 discusses the beam dynamics in a storage ring, starting with the basic concepts of

co-ordinate systems and phase-space coordinates. Chapter 2 also reviews the general theory

of transverse and longitudinal beam dynamics that are used in a dual energy storage ring to

study the stability criteria. Further, the basic concept on synchrotron radiation including

equilibrium energy spread and emittance in a single energy storage ring is explained in de-

tail. Chapter 3 is followed by a more detailed explanation of the electron cooling mechanism

along with a model for cooling rate. At the end of this chapter, a brief introduction of a dual

energy storage ring cooler design is presented. Chapter 4 introduces a specific dual energy

storage ring design with a detailed explanation of longitudinal and transverse stability. We

derived the equilibrium electron beam parameters in a dual energy storage ring and calculate

the damping times and IBS times in all three dimensions. Intensive numerical calculation is

carried out to study the dynamic aperture and momentum aperture in a dual energy storage

ring. Based on the momentum aperture, Touschek lifetime calculations are carried out both

in simulation and theory. Chapter 5 provides cooling forces formulas and the methods and

results of simulating electron cooling of the EIC proton beam using the JSPEC simulation

package [4]. Finally, in Chapter 6, we summarize the findings of our research and provide

a guideline for future works with some possible applications of a dual energy storage ring

beyond beam cooling.
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CHAPTER 2

THEORY OF ELECTRON STORAGE RINGS

Many facilities based on electron storage rings are used to conduct research in a wide

variety of fields. As many electron storage rings have been built, their design and performance

may be computed in great detail. Another widely known application of storage rings is to

particle colliders, where two beams moving in opposite directions collide. The design of a

dedicated electron storage ring requires significant study beyond the simple layout and linear

optics design, but we need to begin here, and then extend the usual design procedures for

storage rings to the two-energy ring case. The guiding and focusing of a charged particle

beam in a circular accelerator rely on a series of magnetic elements, separated by field-free

drift spaces, that form the accelerator lattice. Relativistic electrons in storage rings usually

radiate synchrotron radiation when the electrons go through the bending magnets (dipoles)

in the arcs.

2.1 BEAM DYNAMICS

A beam is composed of charged particles. The dynamics of a beam moving along a particle

accelerator depend on the interaction of charged particles with electromagnetic fields. The

Lorentz force acting on the particles in an electromagnetic field is given by

F = q[E + v×B], (1)

where q is the electric charge of the particle, E is the electric field, v is the particle velocity,

and B is the magnetic field. The study of evolution of particle trajectories under the influence

of Lorentz forces is called beam dynamics. A fundamental approximation of beam dynamics

relies only on linear fields and is called linear optics.

In modern accelerators, particles gain energy from time-varying electric fields, while

static magnetic fields bend and confine the beam of particles transversely. Magnets such as

dipoles and quadrupoles bend and focus or defocus the beam during beam transport and

form the basis for the linear approximation. Beyond the linear approximation, sextupole and

octupole magnets are used to correct non-linear optical aberration. Synchrotron rings are

often constructed with basic “cells” such as FODO cells, which are arrangements of focusing
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and defocusing quadrupoles that provide a net focusing to the beam. The strong focusing

concept [5] changed the way focusing arrangements are constructed for modern large particle

accelerators.

The first task for a new accelerator design is to define a reference trajectory or closed

orbit. A charged particle with ideal position, momentum, and timing follows that reference

trajectory. When the accelerator is linearly stable, all other particles in a beam will follow

trajectories close to that reference trajectory. In a circular accelerator where a particle of

electric charge q is circulating in a reference trajectory of radius ρ, a Cartesian coordinate

system (x, y, z) is defined with respect to the location of the reference particle of momentum

p0 as shown in Fig. 1.

FIG. 1: Reference Trajectory and Coordinate System.

In Fig. 1 the curved path is the reference trajectory. Nearly all particles have differences

in position, momentum, and/or time from the reference trajectory; these particles move

along paths slightly different from the reference trajectory. To describe the perturbative

motion of these particles around the reference trajectory, we define particle coordinates
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(x(s), y(s), z(s)), with respect to the ideal particle. In this frame, particle coordinates are

(x(s), px(s), y(s), py(s), z(s), pz(s)) where (px(s), py(s), pz(s)) are corresponding momentum

coordinates. The set of coordinates (x(s), px(s)) and (y(s), py(s)) describe the transverse

motion of particles whereas the (z(s), pz(s)) coordinates describe the longitudinal motion.

The independent variable s is path length along the reference trajectory. The momentum

coordinates are in general scaled to the reference momentum p0. This allows one to define

new dimensionless momentum coordinates: x′(s) ≡ px(s)/p0, y
′(s) ≡ py(s)/p0, and δ ≡

(p(s) − p0)/p0. The prime denotes differentiation with respect to the s direction. In this

dissertation, x′ and y′ are small angles, so the paraxial approximation applies. Also pz(s) ≈
p(s) so δ(s) ≈ (pz(s)−p0)/p0. The momentum deviation δ measures the fractional difference

between the momentum of the particle and the momentum of a particle with the reference

momentum p0.

Each particle within a bunch now has six coordinates, (x, x′, y, y′, z, δ), that are coordi-

nates in a six-dimensional phase space. If we neglect coupling, particle motion can be sepa-

rated into transverse (horizontal and vertical) and longitudinal dimensions. The longitudinal

dimension determines the length of a bunch, while the transverse dimensions determine the

bunch height and width. The beam phase space description is useful in dealing with the

distribution of particles. One can visualize a beam of particles at a particular time as a

“cloud” of points in six-dimensional phase space.

2.2 LINEAR EQUATION OF MOTION

During beam transport, particles undergo both transverse and longitudinal oscillations

around the reference trajectory or closed orbit. Transverse particle motion around the closed

orbit is called betatron motion. Under the assumption that the amplitude of the betatron

oscillation is small and there is no momentum deviation from the closed orbit, the transverse

equation of motion of a particle in an accelerator is given by the linearized Hills’s equation

u′′(s) +Kx,y(s)u(s) = 0, (2)

where u represents x or y for horizontal and vertical displacements relative to the ideal

trajectory, and primes once again denote differentiation with respect to s. K(s) is the

focusing function along the beamline normally arranged to be periodic such thatKx,y(s+L) =

Kx,y(s), where L is the length of the periodic structure. If we assume that there is uncoupled

motion in horizontal and vertical planes for the given dipole and quadrupole fields then

the equations of motion in the horizontal and vertical planes can be solved independently.
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There are three cases to consider: K(s) = 0, K(s) > 0 and K(s) < 0 corresponding to drift,

quadrupole focusing, and quadrupole defocusing, respectively.

For K(s) > 0 constant over a distance s, the equation of motion is similar to that of

harmonic oscillator and the solution to the Eq. (2) can be written as

u(s) = A cos
(√

Ks
)

+B sin
(√

Ks
)
,

u′(s) = −
√
KA sin

(√
Ks
)

+
√
KB cos

(√
Ks
)
,

(3)

where A and B are integration constants to be determined by applying the initial conditions

s = 0, u(s) = u0 and u′(s) = u′0. These give A = u0, B = u′0/K and Eq. (3) can be expressed

as

u(s) = u0 cos
(√

Ks
)

+
u′0
K

sin
(√

Ks
)
,

u′(s) = −u0

√
K sin

(√
Ks
)

+ u′0 cos
(√

Ks
)
.

(4)

In the matrix form, the above solutions can be expressed as(
u(s)

u′(s)

)
=

 cos
(√

Ks
)

1√
K

sin
(√

Ks
)

−
√
K sin

(√
Ks
)

cos
(√

Ks
) (u0

u′0

)
. (5)

Hence, Eq. (5) can be expressed as

U(s) = M(s|s0)U0, (6)

where U(s) =

(
u(s)

u′(s)

)
and U0 =

(
u0

u′0

)
and M(s|s0) is the transfer matrix from s0 to s

defined by

M(s|s0) =

 cos
(√

Kl
)

1√
K

sin
(√

Kl
)

−
√
K sin

(√
Kl
)

cos
(√

Kl
)  , (7)

with l = s− s0.

Likewise, for K(s) < 0, the solution to Eq. (2) takes the form(
u(s)

u′(s)

)
=

 cosh
(√
|K|s

)
1√
|K|

sinh
(√
|K|s

)
√
|K| sinh

(√
|K|s

)
cosh

(√
|K|s

)
(u0

u′0

)
(8)

and the transfer matrix from s0 to s is represented by

M(s|s0) =

 cosh
(√
|K|l

)
1√
|K|

sinh
(√
|K|l

)
√
|K| sinh

(√
|K|l

)
cosh

(√
|K|l

)
 . (9)
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The last case is with K = 0 for a field free region, i.e. a drift space. Then the transfer matrix

for a drift of length l takes the form

M(s|s0) =

(
1 l

0 1

)
. (10)

If a particle traverses a series of n beam line elements with transfer matrices

M(s1|s0), . . . ,M(sn|sn−1) starting from s0, s1, . . . sn−1, sn, then the total one turn transfer

map can be deduced by matrix multiplication of each transfer matrices for each of the ele-

ments in the following way

M(sn|s0) = M(sn|sn−1) . . .M(s2|s1)M(s1|s0). (11)

Thus the transfer matrix for any interval made up of sub-intervals is just the product of the

transfer matrices of those sub-intervals, and this procedure allows one to track the particle

motion through each accelerator element. In the thin-lens approximation with l → 0, the

transfer matrices defined by Eq. (7) and Eq. (9) for focusing and defocusing quadrupoles

reduce to

Mfocusing =

(
1 0

−1/f 1

)
,Mdefocusing =

(
1 0

1/f 1

)
, (12)

where f is the focal length defined by f ≡ liml→0 → 1/|K|l.

2.3 STABILITY CRITERIA

In a beam transport system going from a location s1 to another location s2, the matrix

can be parameterized as [
x2

x′2

]
s2

= M(s2|s1)

[
x1

x′1

]
s1

, (13)

where the 2 × 2 transfer matrix M(s2|s1) is given by [6]

M(s2|s1) =

 √
β2
β1

(cos ∆ψ + α1 sin ∆ψ)
√
β1β2 sin ∆ψ

−1+α1α2√
β1β2

sin ∆ψ + α1−α2√
β1β2

cos ∆ψ
√

β1
β2

(cos ∆ψ − α2 sin ∆ψ)

 . (14)

We generally construct an accelerator with a repetitive period comprising n elements. Thus

after one complete period we come to the starting point, i.e., s2 = s1. Under this periodic

boundary condition, let us assume β2 = β1 = β0, α2 = α1 = α0 and β0γ0 − α2
0 = 1. Hence

Eq. (14) reduces to the form

M =

(
cos ∆ψ + α0 sin ∆ψ β0 sin ∆ψ

−γ0 sin ∆ψ cos ∆ψ − α0 sin ∆ψ

)
. (15)
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Let λ1 and λ2 be the eigenvalues and X1, X2 be the corresponding eigenvectors of the matrix

M. In such repetitive structures or modular machines, M has a unit determinant, and so

the eigenvalues are the reciprocals of each other, i.e. λ1 = 1/λ2, and λ1 + λ2 = Trace (M).

To calculate the eigenvalues, we use the following eigenvalue equation

|M− λI| = λ2 − Trace (M)λ+ 1 = 0. (16)

With Trace (M) = 2 cos ∆ψ, we obtain the corresponding eigenvalues

λ1,2 = cos ∆ψ ± i sin ∆ψ = e±i∆ψ. (17)

In order to have finite eigenvalues, the betatron phase advance ∆ψ must be real, guaranteed

when | cos ∆ψ| < 1. We then obtain the general stability condition

Trace (M) < 2. (18)

In a circular machine, the above one turn transfer matrix M can be expressed in the following

form

M = I cos ∆ψ + J sin ∆ψ, (19)

where I is the unit matrix, and J is defined by

J =

(
α β

−γ −α

)
,J2 =

(
−1 0

0 −1

)
. (20)

For N transits of the accelerator1, the transfer matrix M can be expressed as

MN = (I cos ∆ψ + J sin ∆ψ)N = I cos(N∆ψ) + J sin(N∆ψ). (21)

Note that all matrix elements of the matrix M remain bounded as N increases. Furthermore,

for a real betatron phase advance ∆ψ, it is required that Eq. (18) holds. Thus Eq. (18) is a

sufficient condition for stable transverse motion in an accelerator.

Now, we define the betatron tunes Qx,y, some of the most important parameters in

circular accelerators. The betatron tunes are defined as the number of transverse oscillations

per revolution. Mathematically,

Qx,y =
∆ψ

2π
=

1

2π

∮
ds

βx,y
. (22)

During the design of the beam transport system, we have to be careful in choosing betatron

tune values (especially the fractional values) to avoid transverse resonances which may cause

particles loss.

1similar to De Moivre’s formula, (cosx+ i sinx)n = cosnx+ i sinnx.
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FIG. 2: Beam Phase Space Ellipse Characterized by the Twiss Parameters.

2.4 TRANSFORMATIONS IN PHASE SPACE

Particles in a beam can be represented by a statistical set of points in phase space. Phase

space is a 6-dimensional space where each particle in the beam is represented by a point with

coordinates (x, y, z, px, py, pz) where (x, y, z) are the position coordinates and (px, py, pz) are

the momentum coordinates. Liouville’s theorem allows one to characterize a beam of N

particles by measuring the phase space volume it occupies. In conservative Hamiltonian

systems, this volume is invariant. A good approximation for the beam shape in phase space

is an ellipse. Any ellipse can be defined by specifying its shape, size, and orientation. Hence

the particles of a beam in phase space can be represented by an ellipse called the phase space

ellipse (Fig. 2) and described in [7] by

γx2 + 2αxx′ + βx′2 = ε, (23)

where α, β, and γ are Twiss parameters or Courant-Snyder parameters. α is related to beam

tilt, β is related to beam shape and size and γ is dependent on both α and β by the relation

γ = (1 + α2)/β. ε is related to the beam size and is called the beam emittance. There are
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horizontal, vertical, and longitudinal beam emittances. Referring to Fig. 2, the phase space

area enclosed by the ellipse is ∫
ellipse

dxdx′ = πε. (24)

Now it is time to apply the area theorem for linear optics. Since all particles enclosed

by a phase ellipse stay within that ellipse, all that is needed is knowledge of initial ellipse

parameters to describe the whole particle beam distribution along the transport line. Let

the initial ellipse distribution at location s = 0 be defined by

γ0x
2
0 + 2α0x0x

′
0 + β0x

′2
0 = ε. (25)

After traversing a certain distance along the beamline, the phase space ellipse at location

s 6= 0 can be expressed in the form of Eq. (23). Now solving for x0 and x′0 and inserting

these values in Eq. (25), we get

ε = (C ′2β0 − 2S ′C ′α0 + S ′2γ0)x2 + 2(−CC ′β0 + S ′Cα0 + SC ′α0 − SS ′γ0)xx′

+ (C2β0 − 2SCα0 + S2γ0)x′2, (26)

where C and S are cosine and sine “like” solutions of the equation of motion starting at

s = 0, and C ′ and S ′ are their derivatives with respect to s. The above Eq. (26) is obtained

by the method of matrix transformation described in the previous section 2.2. Under a

general linear transformation, an ellipse at location s = 0 is transformed into another ellipse

at s 6= 0. If the total transfer matrix has determinant 1, the area of the ellipse at location

s 6= 0 after the transformation is the same as before the transformation at s = 0. In this

case, emittance remains the same, and comparing Eq. (23) and Eq. (26), we get

γ = C ′2β0 − 2S ′C ′α0 + S ′2γ0,

α = −CC ′β0 + S ′Cα0 + SC ′α0 − SS ′γ0,

β = C2β0 − 2SCα0 + S2γ0.

(27)

The resulting new phase space ellipse at location s 6= 0 has the same area πε. However,

the values of ellipse parameters change as defined by Eq. (27). It results in the new phase

space ellipse with a different shape and orientation. Hence during the beam propagation

along the beamline, the phase space continuously changes its shape and orientation, but

the area remains constant. The transformation of ellipse or Twiss parameters (both are the

same for the matched condition) in the matrix form can be represented as
β(s)

γ(s)

α(s)

 =


C2 −2CS S2

−CC ′ CS ′ + C ′S −SS ′

C ′2 −2C ′S ′ S ′2



β0

γ0

α0

 . (28)
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With the knowledge of initial values of parameters α0, β0, and γ0, beam parameters anywhere

along the beamline can be extrapolated using the above Eq. (28).

2.4.1 BEAM EMITTANCE

We have already defined one notion of the beam emittance in section 2.4 using Eq. (23).

Since emittance is defined as the area occupied by the beam of particles, it gives the average

spread of the particles in a beam phase space. Hence in uncoupled 6-dimensional beam

phase space, we define three independent two-dimensional beam emittances. Another notion

of the beam emittance, on the other hand, is as a measure of the transverse or longitudinal

temperature of the beam and depends on the characteristics of a beam [7]. When the particle

distribution is not uniform in phase space, the definition of emittance as the phase space

area may not be very appropriate. The area occupied by the fraction of the total particles

may not be perfectly equivalent to the beam emittance. In this case, we apply the statistical

point of view to define the beam emittance. For electron beams, we can generally define the

root-mean-square (RMS) emittance, εrms,x, as

εrms,x ≡
√
〈x2〉〈x′2〉 − 〈xx′〉2. (29)

For a given normalized distribution function ρ(x, x′) with
∫
ρ(x, x′)dxdx′ = 1, the moments

of the beam distribution in Eq. (29) are

〈x2〉 =

∫ ∫
x2ρ(x, x′)dxdx′

〈x′2〉 =

∫ ∫
x′2ρ(x, x′)dxdx′

〈xx′〉 =

∫ ∫
xx′ρ(x, x′)dxdx′.

(30)

The RMS emittance defined above based on statistical definition can be expressed in terms

of beam width in the following way [8]

εrms,x =
√
σ2
xσ

2
x′ − σ2

xx′ = σxσ
′
x

√
1− r2, (31)

where σx and σx′ are the rms beam size and beam divergence, σxx′ is the correlation, and r
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is the correlation coefficient. These parameters are defined by the following relations

〈x〉 =

∫
xρ(x, x′)dxdx′

〈x′〉 =

∫
x′ρ(x, x′)dxdx′

σ2
x =

∫
(x− 〈x〉)2ρ(x, x′)dxdx′

σ2
x′ =

∫
(x′ − 〈x′〉)2ρ(x, x′)dxdx′

σxx′ =

∫
(x− 〈x〉)(x′ − 〈x′〉)ρ(x, x′)dxdx′ = rσxσx′ .

(32)

Beam emittance is usually expressed in the unit of [µm] or [nm] in an electron storage

ring. The equilibrium beam emittance is determined by the combined effects of synchrotron

radiation damping and quantum excitation. The details on how the synchrotron radiation

damping and quantum excitation lead to the equilibrium emittances in an electron storage

ring will be discussed later.

As the momentum of a particle increases, the value of βγ also increases and the accelera-

tion decreases the (unnormalized) emittance ε. Since the transverse relativistic momentum is

conserved during a longitudinal acceleration, we also define the normalized beam emittance:

εn ≡ βγε, (33)

where β and γ are Lorentz relativistic factors defined by β ≡ v/c and γ ≡ 1/
√

(1− β2)

respectively. The normalized emittance is invariant during acceleration.

2.5 DISPERSION AND CHROMATICITY

There is a finite spread of momentum of particles in a beam about the reference momen-

tum p0. This spread of momenta gives rise to a dispersion in the system. For the relative

momentum deviation δ = ∆p/p0, the inhomogeneous Hill’s equations take the forms

x′′(s) +

(
1

ρ(s)2
− k(s)

)
x(s) =

1

ρ(s)

∆p

p0

y′′(s) + k(s)y(s) = 0,

(34)

where we assume that the dynamics of off-momentum particles is only affected in the hor-

izontal plane, and there is no vertical dispersion. Since δ 6= 0 is a particular case and the

particular solution is given by xp = xinh = ρ(s)δ.
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Next we solve Eq. (34) for the specific case of a uniform magnetic dipole without any

focusing incorporated (k(s) = 0). In this case the solution of Eq. (34) can be written as

x(s) = xh(s) + xinh = A cos

(
s

ρ

)
+B sin

(
s

ρ

)
+ ρ(s)δ, (35)

where xh(s) is a solution of homogeneous equation discussed in the previous section. The

integration constants A and B are determined by applying the initial conditions at s = 0

which gives

x(s = 0) = A+ ρδ = x0,

x′(s = 0) =
B

ρ
= x′0.

(36)

Let us define the dipole bending angle θ = s/ρ, then the solution in Eq. (35) can be expressed

as

x(s = L) = x0 cos θ + ρx′0 sin θ + ρδ(1− cos θ)

x′(s = L) = −x0

ρ
sin θ + x′0 cos θ + δ sin θ.

(37)

The above solution can be represented by the sum of two parts as follows

x(s) = xβ(s) + xδ(s), (38)

where xβ(s) = x0 cos θ + ρx′0 sin θ, and xδ(s) = ρδ(1− cos θ) respectively. Thus the particle

motion is the sum of betatron motion xβ(s) plus a displacement due to the energy error

xδ(s). The solution given by Eq. (37) can be represented by 3 × 3 matrix as
x(s)

x′(s)

δ

 =


cos θ ρ sin θ ρ(1− cos θ)

−1
ρ

sin θ cos θ sin θ

0 0 1



x(s0)

x′(s0)

δ

 . (39)

Since x(s) = D(s)δ, where D(s) is the dispersion function. Dividing by δ on both sides of

Eq. (39), we get 
D(s)

D′(s)

1

 =


C(s) S(s) D(s)

C ′(s) S ′(s) D′(s)

0 0 1



D(s0)

D′(s0)

1

 , (40)

where C(s) = cos θ, θ = s/ρ, S(s) = ρ sin θ, C ′(s) = − sin θ/ρ, S ′(s) = cos θ,D(s) = ρ(1 −
cos θ), and D′(s) = sin θ respectively. If we know the 3 × 3 transport matrix and the value

of the dispersion function and its derivative at the starting point s0, we can calculate the
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dispersion D(s) at any downstream location s along the beamline. This simplified dipole

calculation is presented for illustrative purposes only. When edge focusing in the dipole is

included, a slightly different 3 × 3 transport matrix is obtained [7].

The RMS beam size at a given location is then defined by considering two terms, one

from the betatron motion of the particles, and the other term from the finite momentum

spread in the beam. The horizontal beam size is defined by

σx(s) =
√
εxβx +D2

x(s)σ
2
δ , (41)

where εx is the horizontal beam emittance and σδ is the RMS relative momentum spread.

Similarly, the angular beam divergence σx′(s) is defined by

σx′(s) =
√
εxγx(s) +D′2x (s)σ2

δ , (42)

where D′x(s) is the dispersion derivative along the beamline. In a collider design, dispersion

D(s) = 0 at the interaction point to maximize luminosity. Also, we construct dispersion-free

straight sections along the beamline for RF cavities and other machine elements.

In addition to dispersion, a particle in a beam with finite momentum error δ sees a fo-

cusing strength for the quadrupoles slightly different from that of a particle at the design

momentum. Hence off-momentum particles oscillate around the design orbit at frequencies

different than a particle with the design momentum. The dependence of betatron tunes

on fractional momentum deviation is called chromaticity. The horizontal and vertical chro-

maticities ξx,y are defined by

ξx,y ≡
∆Qx,y

∆p/p
, (43)

where ∆Qx,y are the betatron tune shifts. The tune shifts ∆Qx,y are defined by the following

relation

∆Qx,y = − 1

4π

∮
βx,y(s)Kx,y(s) ds

∆p

p
, (44)

where Kx,y are quadrupole focusing strengths. Comparing Eq. (43) and Eq. (44), the horizon-

tal and vertical chromaticities in terms of beta functions and quadrupole focusing strengths

can be expressed as

ξx,y = − 1

4π

∮
βx,y(s)Kx,y(s) ds. (45)

The natural chromaticity in a storage ring depends on the lattice design and it arises solely

from lattice quadrupoles. For higher energy particles, the focusing strength becomes weaker.

In this case, betatron tune decreases, and the natural chromaticity becomes negative. For
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large values of chromaticity and momentum spread, the betatron tunes may overlap low-

order non-linear resonances, and eventually particle loss may occur [8].

We need to compensate for this chromatic aberration in a storage ring. This can be

done by using sextupole magnets, whose focusing varies linearly with momentum. Special

arrangement of sextupole families will be used to compensate the natural chromaticity.

2.6 LONGITUDINAL PARTICLE MOTION IN A STORAGE RING

Charged particle acceleration requires a nonvanishing force component in the direction

of motion. Such fields are called longitudinal accelerating fields, which impart energy to

the charged particles. The use of electrostatic high voltages to accelerate charged particles

is limited due to electric breakdown above approximately 10 million volts. In a modern

high-energy particle accelerators, radio frequency (RF) cavities resonating at microwave

frequencies are widely used to accelerate the charged particles to higher energy. In this

section, we will discuss the interaction of the longitudinal electric field with charged particles

to explain the process of particle acceleration.

2.6.1 LONGITUDINAL EQUATION OF MOTION

The concept of generating the accelerating fields in resonating RF cavities was introduced

by R. Wideroe [9]. Traveling electromagnetic waves are to fed into RF cavities, creating a

longitudinal electric field that accelerates charged particles. The rate of change of energy for

the given particle per passage through SRF cavity is

d

dt
(γmc2) = −e ~E(~x(t), t) · ~v, (46)

where ~E(x, t) is the electric field, and ~v is the velocity of the particle. For velocity of light

particles moving the the z direction, the total energy gain per passage is given by

∆(γmc2) = −e
∫ ∞
−∞

Ez(0, 0, z) sin (2πz/λRF + ψ) dz

=
eẼz (2π/λRF ) e−iψ + complexconjugate

2
,

(47)

where Ẽz is the Fourier transformation of electric field E(x, t), λRF is the RF wavelength,

and ψ is the phase of the particle passing through the cavity with respect to the crest2

2For sin function, the crest phase is 900 and for cos function, crest phase is 00. Harmonic cavity section

uses cos function to denote the crest phase.
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(maximum) phase when the field pattern is placed with even symmetry on the z axis. Let

us consider a SRF cavity of length L. The RF voltage is defined by

VC = |eẼz(2π/λRF )|. (48)

The accelerating field Eacc is defined by

Eacc =
VC
L
, (49)

and the energy gain of a particle at phase ψ is

VC sinψ. (50)

The accelerating gradient Eacc is normalized by the cavity length L and is expressed in the

unit of [MV/m].

A particle synchronized with rf phase ψ = ψs at revolution period T0 and momentum p0

is called a synchronous particle. Let the longitudinal electric field be defined by

E = E0 sin(ψrf(t) + ψs). (51)

where ψrf = hω0t is the rf phase, ω0 = β0c/R0 is the angular revolution frequency of a

reference particle, E0 is the amplitude of the electric field, β0c and R0 are respectively the

speed and the average radius of the circular orbit, h is an integer called the harmonic number,

and ψs is the phase angle for a synchronous particle with respect to the rf wave.

A synchronous particle synchronizes with the rf wave with rf frequency ωrf = hω0. Hence

synchronous particle experiences an rf voltage given by V sinψs. Then the acceleration rate

is defined by
dE

dt
=
ω0

2π
eV sinψs, (52)

where eV sinψs is the energy gain per revolution for this synchronous particle. If we consider

a non-synchronous particle then it will have rf parameters with small deviations from the

synchronous particle,

ω = ω0 + ∆ω, ψ = ψ0 + ∆ψ, θ = θs + ∆θ,

p = p0 + ∆p, E = E0 + ∆E.

The parameters ψs, θs, ω0, p0, E0 are respectively the rf phase angle, azimuthal orbital an-

gle, angular revolution frequency, momentum, and energy of a synchronous particle, and

ψ, θ, ω, p, E are the corresponding parameters for an off-momentum particle. Now the rf
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phase coordinate and azimuthal orbital angle are related by ∆ψ = ψ − ψs = −h∆θ and the

change in angular revolution frequency is defined by

∆ω =
d

dt
∆θ = −1

h

d

dt
∆ψ = −1

h

dψ

dt
. (53)

In the linear approximation, the change in angular revolution frequency is given by

∆ω = −ηω0δ, (54)

where δ is the fractional off-momentum variable defined by

δ =
∆p

p0

=
ω0

β2E

∆E

ω0

. (55)

The time variation of δ is given by

δ̇ =
ω0

2πβ2E
eV (sinψ − sinψs), (56)

where ∆E = eV (sinψ − sinψs). Now using Eq. (53), Eq. (54) and Eq. (55), the phase

equation can be written as

ψ̇ = hω0ηδ =
hω2

0η

β2E

(
∆E

ω0

)
. (57)

Similarly, using Eq. (55) and Eq. (56), we get another equation of motion for the energy

difference between synchronous and non-synchronous particles as

d

dt

(
∆E

ω0

)
=

1

2π
eV (sinψ − sinψs). (58)

The pair (ψ,∆E/ω0) are pair of conjugate phase space coordinates and hence Eq. (57) and

Eq. (58) form the “synchrotron equation of motion”.

2.6.2 EVOLUTION OF SYNCHROTRON PHASE SPACE ELLIPSE

To get the beam phase space area during the particle tracking simulation, the following

phase space mapping equations are used with phase space coordinates (ψ,∆E)

∆En+1 = ∆En + eV (sinψn − sinψs)

ψn+1 = ψn +
2πhη

β2E
∆En+1.

(59)

The quantity η/β2E depends on the acceleration rate of beam energy according to E =

E0,n+1 + eV sinψs. The factor hη/β2E is nearly constant for the low acceleration rate, and
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a closed curve can represent the beam phase space (separatrix). When the acceleration rate

is high, separatrix is not a closed curve anymore.

2.6.3 PATH LENGTH AND MOMENTUM COMPACTION

The path length of a particle in a circular machine is affected by the curved sections of

the beam transport line. The total path length is given by

L =

∫
(1 + κ(s)xD(s))ds, (60)

where xD(s) is the horizontal orbit displacement and κ(s) = 1/ρ(s) in the dipole magnet

while being zero elsewhere. With a relative momentum deviation δ = ∆p/p, and the hori-

zontal dispersion function D(s), we get xD(s) = D(s)δ. Now, Eq. (60) takes the form

L = L0 + δ

∫ s

s0

D(s)

ρ(s)
ds. (61)

The path length L0 =
∫
dz, for δ = 0 is the ideal design length of the beamline. The

deviation from the ideal path length is

∆L = L− L0 =

∫ s

s0

D(s)

ρ(s)
ds. (62)

The variation in path length is caused by different momenta of particles within a beam.

Hence this variation of the path length with momentum is determined by the momentum

compaction factor αc, defined by

αc ≡
∆L/L0

∆p/p0

=
1

L0

∮
L0

D(s)

ρ(s)
ds. (63)

For a given path length L, the travel time is given by

τ =
L

βc
, (64)

where β = v/c is the velocity of the particle. Using the logarithmic differentiation on both

sides of above Eq. (64), we get
∆τ

τ
=

∆L

L
− ∆β

β
. (65)

The first term ∆L/L is defined by the momentum compaction αc, and cp = βE which can

be differentiated to get dp/p = dβ/β + dE/E. And with dE/E = β2dp/p, we can solve for

dβ/β and we get dβ/β = (1/γ2)dp/p. Now, Eq. (65) takes the form

∆τ

τ
= −

(
1

γ2
− αc

)
dp

p
= −ηc

dp

p
, (66)



20

and the phase slip factor ηc is defined by

ηc ≡ −
(

1

γ2
− αc

)
. (67)

The momentum compaction factor characterizes a critical energy called transition energy

defined by

γt ≡
1
√
αc
. (68)

The transition energy plays a vital role in phase focusing in a storage ring. Above the

transition energy, a particle with higher energy needs a longer time for one revolution than a

particle with lower energy. There is also a particular case, when momentum compaction ηc

vanishes for γ = γtr . In this case, the revolution period becomes independent of the particle

momentum, and the storage ring would be isochronous.

2.6.4 PHASE STABILITY

In an electron storage ring, particles emit synchrotron radiation, and lose energy by a

certain average amount in each revolution. RF cavities are used to compensate for this

energy loss and to provide longitudinal focusing; particles execute longitudinal oscillations

around the synchronous phase. A synchronous particle travels along the design orbit with

reference momentum p0 with revolution period T0. A synchronous particle arrives at the rf

cavity at a constant rf phase angle ψs. The energy gained by a synchronous particle through

the rf cavity is eV0 sinψs, where V0 is the effective rf voltage. The acceleration rate is then

defined by Ė = f0eV0 sinψs, where f0 is the revolution frequency. An off-momentum particle

might see a phase slightly shifted from ψs and thus gain a different amount of energy. Hence

the arrival time and the energy gain for each particle will be different. The rate of change

of energy deviation is given by

d

dt

(
∆E

ω0

)
= eV0(sinψ − sinψs), (69)

where ∆E = E − E0 is the energy difference between non-synchronous and synchronous

particles and ψ is the rf phase for the non-synchronous particles. Similarly the equation of

motion for rf phase angle ψ is given by

d

dt
(ψ − ψs) =

ηhω2
0

β2E0

(
∆E

ω0

)
, (70)

where h is the harmonic number and η is the phase slip factor. Here, ψ and ∆E/ω0 are

conjugate phase space coordinates and Eq. (69) and Eq. (70) form the basic synchrotron
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equation of motion. The differential equation of motion for the small amplitude phase

oscillation is
d2

dt2
(ψ − ψs) =

heV0ω
2
0η cosψs

2πβ2E0

(ψ − ψs) = ω2
s (ψ − ψs), (71)

where ωs is the small-amplitude angular synchrotron frequency. The stable phase is chosen

by considering the synchrotron oscillation frequency ωs must be real and stable condition is

given by

η cosψs < 0. (72)

The angular synchrotron frequency is given by

ωs = ω0

√
heV0|η cosψs|

2πβ2E0

. (73)

The synchrotron tune Qs is defined as the number of synchrotron oscillation per revolution:

Qs ≡
ωs

ω0

√
heV0|η cosψs|

2πβ2E0

. (74)

The rf phase should be chosen depending on the particle energy being either below or above

the transition energy to satisfy the condition given by Eq. (72). For stable phase focusing,

the rf-synchronous phase should be chosen as follows

0 < ψs <
π

2
, for γ < γtr

π

2
< ψs < π, for γ > γtr.

(75)

In the electron storage ring, the particle energy is generally above the transition energy,

and rf phase is chosen as π/2 < ψs < π. Above transition energy (γ > γtr), higher energy

particles arrive at the rf later and receives more energy from the rf cavity. On the other

hand, a low energy particle arrives sooner and gains less energy from rf cavity. This process

gives rise to the phase stability of the synchrotron motion.

2.7 SYNCHROTRON RADIATION

2.7.1 RADIATION DAMPING AND QUANTUM EXCITATION

Particle dynamics is affected by the emission of synchrotron radiation in an electron

storage ring. This emission of radiation is strongly dependent on the beam energy. The

radiation is emitted in quanta of discrete energy. The photon emission time is short and
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thus the synchrotron radiation process can be considered to be as instantaneous. Emission

of photons into synchrotron radiation is a statistical process that leads towards the quantum

fluctuation of electron beam parameters in a storage ring. Finally, the equilibrium beam

parameters are achieved through the combined effect of radiation damping and quantum

excitation.

Damping of the beam phase space occurs due to average energy loss into synchrotron

radiation. Beam oscillation takes place both in transverse and longitudinal dimensions and

the transverse oscillation damps from the loss of transverse momentum with the emission of

photons. The loss in the longitudinal momentum is replenished by the rf system installed

in the storage ring. The transverse betatron oscillations and the longitudinal synchrotron

oscillation amplitudes are damped like

Ai = Ai,0e
−αit (76)

where i = x, y, z denotes the horizontal, vertical and the longitudinal dimensions respectively.

The damping decrements are defined by

αx =
Cα
C
E3
(
1− I4x

I2

)
=
Cα
C
E3Jx

αy =
Cα
C
E3
(
1− I4y

I2

)
=
Cα
C
E3Jy

αz =
Cα
C
E3
(
2 +

I4x + I4y

I2

)
=
Cα
C
E3Jz,

(77)

where Cα = crc/3(mc2)3 = 2113.1 m2/GeV3/sec, E is the beam energy, Jx, Jy, and Jz are

damping partition numbers along the horizontal, vertical, and longitudinal dimensions, and

C is the ring circumference. The radiation integrals are defined by

I1[m] =

∮
(κxDx + κyDy)ds

I2[m−1] =

∮
κ2ds

I3[m−2] =

∮
|κ|3ds

I4x[m−1] =

∮
[κ2κxDx + 2κx(kDx + k′Dy)]ds

I4y[m−1] =

∮
[κ2κyDy + 2κy(k

′Dx − kDy)]ds

I5u[m−1] =

∮
|κ|3Huds,

(78)

where k, k′ are the strengths for normal and skew quadrupoles, respectively, u = x or y, Du

are the dispersion functions, I4u are for a sector magnet, Hu(s) = βuD
′2
u + 2αuDuD

′
u + γuD

2
u
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is the invariant emittance, κu = 1/ρu denote the inverse local curvatures, and κ2 = κ2
x + κ2

y

for dipoles. The damping partition numbers Jx, Jy and Jz are defined by

Jx = 1− I4x

I2

Jy = 1− I4y

I2

Jz = 2 +
I4x + I4y

I2

.

(79)

In general, there is no vertical dispersion included in optics design and hence Jy = 1. The

sum of the damping partition numbers is an invariant quantity and

Jx + Jy + Jz = 4. (80)

This relation is called the Robinson criteria [10]. The damping constants defined in Eq. (77)

can be expressed in terms of energy loss per turn U0, beam energy E, and revolution time

T0 as

αx =
U0

2ET0

(1− ξ) =
U0

2ET0

Jx with Jx = 1− ξ

αy =
U0

2ET0

=
U0

2ET0

Jy with Jy = 1

αz =
U0

2ET0

(2 + ξ) =
U0

2ET0

Jz with Jz = 2 + ξ.

(81)

So the damping partition numbers Jx, Jy and Jz depend on the radiation integrals. The

parameter ξ at a given beam energy is related to the dispersion function, which is entirely

determined by the magnet lattice.

2.7.2 EQUILIBRIUM EMITTANCE AND ENERGY SPREAD

Following the usual textbook arguments, we derived the formula for the damped emit-

tance and energy spread in a single energy storage ring. Later, we re-derived the formula in

a dual energy storage ring case based on the single energy storage ring result. The average

change in synchrotron oscillation amplitude A is given by [7]

〈∆A2〉 = 〈A′2 − A2〉 = ε2, (82)

where ε is the energy emitted by the photon and the averaging is over the synchrotron

oscillation phase. If the emission rate for photons from a single electron is Ṅph, then a

statistical argument gives that the growth rate in amplitude is

d〈∆A2〉
dt

= Ṅph〈ε2〉. (83)
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The average on the right-hand side of Eq. (83) is over the photon emission distribution, and

Ṅph〈ε2〉 is defined by

Ṅph〈ε2〉 =
55

24
√

3
Pγεc. (84)

The average power radiated during the radiation is

〈Pγ〉 =
U0

T0

= Cγ
c

2π

E4

ρ2
, (85)

In Eq. (85), U0 is the total energy radiated in synchrotron radiation, T0 is the total revolution

time in a storage ring and Cγ = 4πre/3(mc2)3 = 8.8463 × 10−5m/GeV 3. The synchrotron

radiation power depends on the beam energy E and the bend radius ρ. The critical photon

energy εc used in Eq. (84) can be defined as

εc = ~ωc =
3~c

2(mc2)3

E3

ρ
. (86)

In equilibrium, the oscillation damping balances this growth rate, and 〈A2〉 = τzṄph〈ε2〉/2.

Now the energy distribution caused by the statistical emission of photons assumes a Gaussian

distribution with the standard root mean squared energy spread given by σ2
ε = 〈A2〉/2,

because the square of the rms energy displacement of a particle undergoing sinusoidal energy

motion is one-half of the amplitude squared. The quantity τz is the damping time in the

longitudinal dimension.

In the case of a ring with bend radiation only, the damped energy spread is given by [11]

σ2
E

E2
= Cq

γ2

(2 + ξ)

〈1/ρ3〉
〈1/ρ2〉

=
τz

4E2
Ṅph〈ε2〉, (87)

where Cq = 55~c/33
√

3mc2 = 3.84× 10−13 m for electrons, γ is the relativistic energy factor

and (2 + ξ) is the damping partition in the longitudinal dimension. Finally, substituting the

values of Ṅph〈ε2〉 and τz [12] in Eq. (87), the damped energy spread becomes

σ2
E

E2
=

τz
4E2

Ṅph〈ε2〉 =
Cq
γ2

γ7〈1/ρ3〉
[(2 + ξ)γ3〈1/ρ2〉]

. (88)

Similarly to the discussion leading to the equilibrium energy spread, we consider the

perturbation to the transverse motion caused by photon emission. Since the photon emission

will not change the particle position and direction [7], we can write

δx = 0 = δxβ +D
ε

E
→ δxβ = −D ε

E
, (89)

δx′ = 0 = δx′β +D′
ε

E
→ δx′β = −D′ ε

E
, (90)
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where D and D′ are dispersion and the derivative of dispersion respectively. This phe-

nomenon of photon emission will modify the phase-space ellipse and the variation of Courant-

Snyder invariant is given by

δa2 =
2

βx
[Dxβ + (βxD

′ − β′x
2
D)(βxx

′ − β′x
2

)x]
ε

E
+

1

βx
[D2 + (βxD

′ − β′x
2
D)2](

ε

E
)2. (91)

In Eq. (91), the first term inside the bracket will vanish due to betatron oscillation. The

average variation of the oscillation amplitude a due to the emission of photon energy ε

becomes

δ〈a2〉 = H(z)(
ε

E
)2, (92)

where H(z) = βD′2 + 2αDD′ + γD2 is the chromatic invariant of the ring [8]. To get the

variation of the oscillation amplitude per turn, we average again over all photon energies,

multiply by the total number of photons emitted per unit time, and the integration is carried

out over the whole ring

∆〈a2〉 =
1

cE2
0

∮
Ṅph〈ε2〉H(z)dz. (93)

The rate of change of this oscillation amplitude is given by

d〈∆a2〉
dt

=
1

E2
0

〈Ṅph〈ε2〉H(z)〉z, (94)

where the index z indicates averaging along the ring. Since the equilibrium is reached when

the average quantum excitation rate around the ring is equal to the damping rate. This

leads to the following condition

σ2
u

βu
=

τu

4E2
〈Ṅph〈ε2〉H(z)〉z, (95)

where σ2
u = 〈u2(z)〉 = 〈a2βu/2〉 is the standard width of a Gaussian particle distribution

with betatron function βu, where u = x, y for both horizontal and vertical dimensions. Now,

the equilibrium beam emittance of a relativistic electron in a storage ring is given by

εu =
σ2
u

βu
= Cq

γ2

Ju

〈Hu/ρ
3〉

〈1/ρ2〉
=

τu
4E2
〈Ṅph〈ε2〉H(z)〉z. (96)

Substituting the values of τx, Ṅph〈ε2〉 and Hx(z) in Eq. (96), the damped equilibrium emit-

tance in a single energy storage ring becomes

εx =
τx

4E2
〈Ṅph〈ε2〉H(z)〉z =

Cq

γ̂2

γ7〈Hx/ρ
3〉

[(1− ξ)γ3〈1/ρ2〉]
, (97)

where (1− ξ) is the horizontal damping partition number.
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CHAPTER 3

STORAGE RING BASED ELECTRON COOLER DESIGN

In this chapter we will discuss beam cooling requirements in high energy physics research

and briefly discuss different cooling methods used to cool charged particles. Then we will

further discuss the principles of electron cooling and explain cooling based on a storage ring.

We introduce a novel concept for a ring cooler: a dual energy storage ring cooler.

3.1 BEAM COOLING REQUIREMENT IN A COLLIDER

The main consideration underlying beam cooling is the “beam quality”. Cooling methods

enhance the beam quality by compensating for various phenomena related to beam size and

loss of stored beam particles. Cooling provides the sharply collimated beams required for

precise high energy physics experiments. Beam cooling aims at reducing the size and energy

spread of a particle beam circulating in a storage ring, and leads to enhanced luminosity.

The luminosity in a collider is defined by [13]

L =
N1N2f0

4πσ∗xσ
∗
y

u
N1N2f0

εβ∗y
, (98)

where N1 and N2 are particle densities, f0 is revolution frequency, ε is the RMS emittance

of the beam, σ∗x, σ
∗
y are the horizontal and vertical beam sizes, and β∗y is the Twiss beta

value at the interaction point respectively. The luminosity L will be higher if εβ∗y or the

corresponding beam sizes are smaller and N1, N2 have larger values. Hence the goal is to

‘compress ’ the same number of particles into a beam of smaller size and energy spread, i. e.,

to increase the particle density. The phase space density is a general figure of merit of a

particle beam. Cooling significantly improves this figure of merit.

3.1.1 COOLING METHODS

In the case of light charged particles, e.g. electrons or positrons, there is a natural syn-

chrotron radiation effect. But the energy radiated decreases strongly with the rest mass of

the particles. Hence for heavier particles, radiation damping is negligible even at high ener-

gies of the order of few hundred GeV. Artificial damping needs to be introduced to enhance

the damping effect in heavier particles.
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There are different beam cooling methods adopted to cool the heavy charged particle

beams. The four main cooling methods are: stochastic cooling, electron cooling, laser cooling,

and ionisation cooling. In this subsection, we will discuss these four different cooling methods

briefly.

The method of stochastic cooling was invented by Simon van der Meer [14] at CERN at

the beginning of the 1970s, for which he was awarded the Nobel prize in 1984. This method

was used to collect and cool antiproton beams. Stochastic cooling uses a feedback system

that operates on and reduces individual particle oscillation amplitudes, not the motion of

the beam as a whole [15]. There are two steps repeated every turn in stochastic cooling: a

pick-up measures individual particle oscillation deviations, and a kicker corrects the angular

error of the oscillation downstream, reducing the oscillation amplitude. A comprehensive

description of stochastic cooling has been given in the references [16–18].

Electron cooling has become a convenient tool to increase the phase space density of

heavy charged particle (proton, ion, antiproton) beams in storage rings. The initial idea of

electron cooling was introduced by G.I. Budker in 1966 [19]. It was first tested in 1974 with

a 68 MeV proton beam at the NAP-M storage ring. In electron cooling, the circulating ion

beam and an intense electron beam share the same orbit on a small fraction of a circular

accelerator. In a straight cooler section, the interaction between electron beam and heavy

particle beam introduces friction when the average velocities of the heavy particles and

electrons coincide in magnitude and direction. During the interaction, the heavy particles

are damped and the electrons are heated. This method is highly adapted to decrease the

beam heating and increase the damping in a heavy particle storage ring.

Laser cooling, on the other hand, is a very powerful technique that takes place mainly in

the longitudinal plane, and it works for particular ions that have a closed transition between

a stable lower state and a short-lived higher state. In laser cooling [20], an ion is excited

by a photon’s absorption and returns to the ground state by the spontaneous emission of a

photon. This technique has been successfully applied for trapping ions and cooling them to

a temperature below 1 mK [21].

In ionization cooling, particles pass through a material medium and lose energy (mo-

mentum) through ionization interactions, followed by beam reacceleration in rf cavities [22].

The momentum losses occur in both longitudinal and transverse dimensions. Reacceleration

using rf cavities restores only longitudinal momentum; there is no restoration of transverse

momentum loss resulting in the transverse cooling of the particle beams. This cooling method

is mainly used for particles like muons and is generally not applicable for cooling charged
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particles like electrons and protons.

Next, we will briefly review the principles of electron cooling. Some concepts on storage

ring based electron cooler design will be provided.

3.1.2 PRINCIPLE OF ELECTRON COOLING

It is challenging to reduce the charged particles beam phase space volume without losing

particles. The main goal of an electron cooler is to increase the intensity of the heavy-charged

particle beams [23]. Cooled heavy particle beams have smaller beam sizes and divergence,

providing a means for focusing particle beams with a small energy spread. So, how can this

electron cooling technique be applied to get the quality beam in a collider experiment?

Liouville’s theorem states that the phase space volume occupied by the particles can not

be reduced further by applying conservative forces. It means the phase space volume of

beam particles can be treated like a balloon filled with air, and compressing the balloon in

one region makes it expand elsewhere. The only way to reduce the volume of the balloon is

by cooling the gas inside it [24]. We use an electron beam at a lower temperature to cool the

heavy charged particles beam at higher temperatures. To accomplish this heat exchange, we

mix the heavy charged particles beam at the higher temperature with a colder electron beam

which cools it through direct interaction between electron beam and heavy charged particles

beam via Coulomb scattering. In this phenomenon, the force involved is velocity-dependent,

and it depends on the relative velocity of the electron beam and the charged particle beams

that need to be cooled. Beam cooling techniques are non-Liouvillian processes.

Effective cooling requires the ion and electron beams’ average longitudinal velocities to

be equal, and the two beams to overlap transversely, thus creating electron-ion plasma.

The ions, while traveling with electrons, undergo Coulomb scattering and, under certain

conditions, transfer some of their thermal energy to the electrons. In equilibrium, the ion

beam temperature in the beam frame of reference becomes equal to the effective electron

temperature, i.e.,

Tp = Te,mev
2
e = mpv

2
p, (99)

where Tp and Te are the transverse temperatures, mp and me are the masses, and vp and ve are

the transverse velocities for proton and electron beam respectively. Since the proton’s mass

is about 2000 times larger than the mass of an electron, the ratio of their transverse velocities

becomes ve⊥/vp⊥ ≈ 40. Hence due to the cooling effect, the angular divergence θp⊥ = vp⊥/βc

of the proton beam is reduced by the factor of 40 compared to the electron beam. This

provides the smaller transverse beam size and beam divergence for the proton beam which
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is required at the beam interaction point in the collider to enhance the luminosity.

3.2 ELECTRON STORAGE RING BASED COOLER

Electron cooling is an effectual technique to shrink the size and momentum spread of

the stored ion beams for high-precision collider experiments. The technique of electron cool-

ing has opened up new possibilities in high-energy collider experiments, especially in many

newly constructed ion storage rings by providing cooled ion beams for collider experiments.

This technique has been widely applied and developed in many heavy ion accelerators world-

wide [23–25]. The main objective of the electron cooler is to increase of the intensity of heavy

charged particles beam and finally increase the luminosity in a collider using the cooled heavy

charged particles beam.

Electron storage rings have been considered as coolers since the late 1970s. However, none

has been built as a cooler as of this writing. An electron storage ring has the great advantage

that the electron beam cools by emitting synchrotron radiation in bending magnets in the

arc sections of the storage ring. So the electron beam can be re-used as long as the beam

lifetime is long enough [26]. At electron beam energy less than 50 MeV, the intrabeam-

scattering (IBS) effect is dominant which may create a large equilibrium emittance. Further,

the Touschek effect plays the dominant role, reducing the beam lifetime. It means the storage

ring-based cooler concepts only apply to more than 50 MeV electron beam energies. At such

an energy or higher, the energy loss due to synchrotron radiation is more significant, and

radiation damping times are inversely proportional to the energy loss per turn. Hence the

electron beam reaches equilibrium in a short time. During beam storage for long hours, the

hadron beam emittance in a collider deteriorates for various reasons. The main reason for

emittance growth during hadron beam storage is IBS. In order to improve the luminosity

in a collider, we need to apply some cooling technique that either keeps constant or further

lowers the hadron beam emittance.

3.3 MODEL FOR COOLING RATE

We consider the following highly simplified model to calculate the heat transfer rate

between an electron beam and an ion beam. Based on the law of thermodynamics, one can

define a total transverse internal energy of an electron beam as

Ue = NekTe, (100)

where Ne is the total number of electrons in a bunch, Te is the transverse temperature of
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the electron beam, and k is the Boltzmann constant. Similarly for an ion beam, the total

transverse internal energy is given by

Ui = NikTi. (101)

An electron beam is brought into thermal contact with an ion beam and Coulomb interactions

between the particles happen. When the ions are at higher temperature than the electrons,

heat in the transverse degree of freedom is transferred from the ion beam to the electron

beam leading to the ion beam cooling. We assume a phenomenological model for the cooling

per pass, and for simplicity, we will assume that every ion bunch is cooled once per pass by

an electron bunch with the bunches at the same frequency. Now the change in the transverse

internal energy of the ion beam is given by

∆U = Ui,k − Ui,k+1 = Ue,k+1 − Ue,k = η(kTi,k − kTe,k), (102)

where k and k + 1 represent the consecutive beam passes respectively and η is a parameter

that accounts for the cooling interaction. Equating the change of transverse internal energy

for each case for an electron beam and an ion beam, we get the following equations

Ue,k+1 − Ue,k = η(kTi,k − kTe,k)

Te,k+1 = (1− η/Ne)Te,k + (η/Ne)Ti,k.
(103)

Similarly, the equation for the temperature of the ion beam becomes

Ui,k − Ui,k+1 = η(Ti,k − Te,k)

Ti,k+1 = (1− η/Ni)Ti,k + (η/Ni)Te,k.
(104)

Because the electron beam undergoes synchrotron radiation damping, the electron beam

temperature is lowered after each pass. Let R denote the effect of the synchrotron radiation

in electron beam, then the above Eq. (103) and Eq. (104) can be combined and put into the

following difference equation as(
Te

Ti

)
k+1

=

(
1− η/Ne −R η/Ne

η/Ni 1− η/Ni

)(
Te

Ti

)
k

+

(
RTe,equ

0

)
, (105)

where Te,equ is the equilibrium temperature of the electron beam.

First, consider the case when there is no cooling interaction, i.e., η = 0. The solution to

this first-order linear difference equation is

Te,l = (Te,0 − Te,equ)(1−R)l + Te,equ,

Ti,l = Ti,0,
(106)
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where the subscript 0 indicates the initial condition, and l indicated the state after pass l.

In this uncoupled case the ion temperature does not change and the electron temperature

approaches the equilibrium temperature of the electrons (determined by the ring radiation

damping) with a damping decrement given by 1−R.

Now include the cooling interaction with η 6= 0, and consider the evolution equation with

R = 0 [27]. To analytically derive a cooling time note

Ti,k+1 − Te,k+1 − (Ti,k − Te,k) = −ηNe +Ni

NeNi

(Ti,k − Te,k), (107)

This difference equation is solved by

Ti,l − Te,l =

(
1− ηNe +Ni

NeNi

)l
(Ti,0 − Te,0) (108)

showing the temperature difference between the ions and electrons damps away by a factor

1 − η(Ne + Ni)/(NeNi) each revolution of the ring. In the usual case the cooling time

is much greater than the revolution time. Then we can define a time to equilibrium of

teq = trevNeNi/(η(Ne +Ni)).

When η 6= 0 and R 6= 0, there is a fixed point for the combined evolution equations given

by

Te = Ti = Te,equ. (109)

An equilibrium solution exists where both the electron and ion beam have the same tempera-

ture defined by Te,equ. Note that this equilibrium temperature is independent of the strength

of the cooling interaction. In practice within this model, the electron distribution evolves to

the same temperature regardless of the presence of ion cooling or not. Furthermore, with

the cooling on, the ions evolve to the same temperature as the electrons.

To get the cooling rate in the combined system, investigate the linear stability of the

system including the cooling interaction. The interaction matrix defined in Eq. (105) is(
1− η/Ne −R η/Ne

η/Ni 1− η/Ni

)
. (110)

For stability, this matrix should have both eigenvalues with absolute value less than 1,

because then as in the solution in Equations (106) and (108), the higher powers of the

matrix cause any initial temperature differences to eventually converge to zero. The damping

fraction per revolution, as in the above solutions, will be λ where λ is a matrix eigenvalue,

one for each mode. The eigenvalue equation takes the form,

(λ− 1)2 +

(
η

Ni

+
η

Ne

+R

)
(λ− 1) +

η

Ni

R = 0. (111)
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Solving the above equation, the corresponding eigenvalues are given by

λ± = 1−
(

η

2Ni

+
η

2Ne

+
R

2

)
±

√(
η

2Ni

+
η

2Ne

+
R

2

)2

− η

Ni

R. (112)

For the positive η and R values, both eigenvalues are clearly less than one.

The stability limit is achieved when λ− = −1 or

2 =

(
η

2Ni

+
η

2Ne

+
R

2

)
+

√(
η

2Ni

+
η

2Ne

+
R

2

)2

− η

Ni

R. (113)

Getting this condition in practical reality requires high cooling efficiency with a cooling time

comparable to the revolution time. So in all realistic conditions where the cooling time is

much longer than the revolution time, the eigenvalue with the minus sign remains stable.

When the net cooling time, the time to equilibrium, and the radiation cooling time are

much longer than the revolution time the net cooling time can be estimated from λ+ as

trev/(1− λ+), leading to

tnet,cooling =
trev[(

η
2Ni

+ η
2Ne

+ R
2

)
−
√(

η
2Ni

+ η
2Ne

+ R
2

)2

− η
Ni
R

]

≈ trev

(η/Ni)
=
teq(Ne +Ni)

Ne

, for η/N << R,

(114)

where it is assumed that there is one cooling region per ion revolution. We choose this sign

in the solution to the quadratic equation because this eigenvalue is closest to one. This mode

is damped away to zero slowest in applying repeated powers of the matrix. The approximate

formula applies when the cooling process is limited by the time it takes to transfer transverse

energy from ions to electrons through the cooling rate, i.e., the cooling time is much greater

than the electron radiation damping time. The solution has the correct scaling. Better

cooling efficiency leads to shorter cooling times and a more significant numbers of ions

(possessing more significant heat) will cool more slowly for a constant electron radiation

rate.

Now, going through the definitions and comparing to the standard definitions of the

cooling time [28], the cooling time assuming an infinite electron reservoir is

tcooling =
3mi/me

8(2π)1/2ner2
ecLZ

2

(
kTe
mc2

+
kTi
mc2

)3/2

. (115)

One obtains

tcooling = teq
Ne +Ni

Ne

(116)
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in the limit when the electron radiation damping time trad = trev/R is much shorter than

the ion cooling time. Note, teq = tcooling exactly when Ni << Ne.

In a dual energy storage ring-based loop accelerator being used in a cooling application,

the cooling ring or cooling section needs to be at the same gamma as the ions to be cooled.

In this case, synchrotron radiation damping is dominated by the high energy ring and the

high energy ring energy, which will provide an overall cooling rate not too much different

than in usual ERL cooling. Then the complete quadratic formula described above can be

solved for the overall damping time as a function of trad/teq for several values of the ratio of

ion and electron densities Ni/Ne. The overall damping time is then defined by

t± =
trad[(

1+Ni/Ne

2
+ trad

2teq

)
∓
√(

1+Ni/Ne

2
+ trad

2teq

)2

− trad
teq

] . (117)

The more compelling case happens when the intensity of electron beam dominates the ion

beam intensity, i.e., Ne >> Ni and is exactly solvable. The damping times for two different

modes are

t± = trad, teq. (118)

For the short damping time, i.e., trad < teq, the overall cooling rate is dominated by the

heat transfer efficiency between the ion beam and electron beam and is independent of the

radiation rate yielding tcooling = teq. Once trad > teq, the overall cooling rate is dominated

by the rate at which the heat may be dissipated by radiation, and tcooling = trad. It means

the radiation damping rate of the electron beam determines the heat dissipation no matter

how great the heat transfer rate into the electron beams. The second case is trad < teq,

when one should lower the energy of the high energy loop to that value where the damped

radiation emittance is low enough. The quadratic Eq. (117) can be solved numerically by

taking different ion and electron densities ratios. The curves shown in Fig. 3 are the cooling

time for the slowest-cooling mode. The sign of the square root changes to positive beyond

the value of trad/teq which causes the discriminant to vanish. The graph in Fig. 3 explains

the general procedure for the loop accelerator design from both qualitative and quantitative

perspectives. The best cooling rate possible is under the assumption that the high energy

loop is at energy such that trad << teq is given by the condition tcooling = (1+Ni/Ne)teq. The

second thing is to choose a cooling rate somewhat beyond this limit, say 50% or higher, and

increase the radiation damping time by lowering the high energy loop energy to the value

indicated by the graph.
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FIG. 3: Relative Cooling Time for Ni/Ne.

3.4 DUAL ENERGY ELECTRON STORAGE RING

The concept of an accelerator with different energies was initiated in Ref. [29]. This

type of accelerator arrangement is called an energy recovered loop accelerator. Such a

design consists of two loops with significantly different energies: the low energy loop and

the high energy loop connected by an energy recovered linac (ERL). There are two possible

configurations. The “dog-bone” configuration is shown in Fig. 4, where the electron beam is

accelerated moving left to right and decelerated moving right to left.

The “traditional” configuration is shown in Fig. 5. Unlike the “dog-bone” configuration,

where two beams propagate in opposite directions in the ERL, the beams in “traditional”

configuration move along the same direction in the ERL.
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FIG. 4: “Dog-bone” Configuration of an Energy Recovered Loop Accelerator.

FIG. 5: “Traditional” Configuration of an Energy Recovered Loop Accelerator.

Our dual energy storage ring design is based on the traditional configuration, where both

accelerating and decelerating beams move left to right. As the common beamline, an energy
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recovery linac (ERL) accelerates the beam from the low energy EL to the high energy EH and

then decelerates the beam from EH to EL in the subsequent pass. This idea can be extended

to more than two loops through the accelerator, and indeed multiple different closed orbit

sets are possible through the same accelerator, as long as the energy differences in the loops

agree with the energy change provided by the linac [29, 30]. This new design concept may

have many potential applications, including as a beam cooler.

3.5 DUAL ENERGY ELECTRON STORAGE RING COOLER

One possible application based on a dual-energy electron storage ring is as an electron

cooler that decreases the beam heating and increases the damping in a ion storage ring. A

dual energy storage ring-based cooler design uses electron cooling methodology to achieve

the best possible solution to the emittance degradation due to all heating effects in the ion

storage ring and colliders.

Applying electron cooling at ion energies above a few GeV has been limited due to the

unfavorable reduction of electron cooling efficiency with energy and the consequent difficulty

in producing and accelerating a high-current high-quality electron beam [31, 32]. A high-

current electron storage ring cooler can offer a solution to both of these problems by allowing

high cooling beam quality to be maintained by naturally occurring synchrotron radiation

damping of the electron beam. We propose a new concept of a storage ring cooler, i.e.,

a dual energy storage ring cooler, that expands the range of applicability of storage-ring

based electron cooling of ion beams by allowing the cooling electrons and ions to share the

same relativistic gamma in a tunable way, while simultaneously taking advantage of strong

synchrotron radiation damping allowed by high electron energies. Such a storage ring electron

cooler will benefit any ion storage ring or EIC by significantly enhancing the quality of their

beams and therefore improving their performance and scientific and industrial capabilities.

3.5.1 MOTIVATION

Strong cooling of the hadron beam in EIC or in a hadron collider can be used to mitigate

IBS and other effects. It can reduce the beam emittance or preserve the emittance of the

hadron beam. For the strong cooling of a hadron beam in the energy range of a few tens

- several hundred GeV, a cooled electron beam in the energy range of a few tens - several

hundred MeV is required. In such a low-energy electron beam, the IBS effect is powerful,

giving short IBS lifetimes of the order of a millisecond. Furthermore, synchrotron radiation

energy loss is proportional to the fourth power of beam energy. For such a low energy range,
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the radiation damping effect is very weak giving long damping times of the order of seconds

up to a minute.

To get better balance between IBS and radiation damping, we propose a high-energy

ring to enhance the synchrotron radiation and a low-energy ring for cooling. This is the

motivation behind the dual energy storage ring cooler design.

3.5.2 DESIGN CONCEPT

The schematic drawing of a dual energy storage ring cooler is shown in Fig. 6. In the

FIG. 6: Schematic Drawing of a Dual Energy Storage Ring Cooler.
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low-energy cooling section, the electron beam moves with the same velocity as the ion beam

and cooling interaction occurs via Coulomb scattering as in traditional electron cooling. The

cooling section provides efficient cooling, whereas the damping section is designed to reach the

required equilibrium beam parameters. These two rings are connected by superconducting

radio-frequency (SRF) structures, which provide the necessary energy difference.

In our design, the SRF system consists of main cavities and harmonic cavities next to

each other. The main cavities are running at crest that accelerates the beam from low

energy EL to high energy EH and then decelerates the beam from EH to EL in the next pass.

The harmonic cavities run in opposite phases to the main cavities in both accelerating and

decelerating passes. Harmonic cavities among the main cavities extend the bunch length,

which helps to get the longer bunch length required for a cooling application. Here, we use a

third harmonic cavity which provides the desirable bunch length of the order of a centimeter

for better cooling. A bunching cavity runs at a zero-crossing phase outside the common beam

line provides the necessary longitudinal focusing for the system. Another compensating RF

cavity used to compenstate the synchrotron radiation energy loss.

Initially, we investigated using wigglers in the high-energy ring to enhance the radiation

damping. Later our calculations showed that increasing the energy in the high energy section

may be a good option to get enough synchrotron radiation damping effect without using

wigglers. Although we may need to use larger numbers of cryomodules to boost the energy

of the electron beam going from a low energy ring to a high energy ring, wigglers magnets

with relatively high field strength are costly. So, it is more cost effective to use SRF cavities

to boost the electron beam energy than using wigglers to get shorter damping times. Hence

our final design consists of set of SRF cavities to boost the energy as shown in Fig. 6.
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CHAPTER 4

DUAL ENERGY ELECTRON STORAGE RING COOLER

In this chapter we discuss the dual energy storage ring cooler in detail. We explore the

longitudinal and transverse stability in a dual energy storage ring. The linear optics design

and beam dynamics study will be presented. We estimate the damping times and IBS times

in a dual energy storage ring for the first time. We also derive the formulas for damped

equilibrium emittance and energy spread and compare to the results of simulations. Finally,

dynamic aperture, momentum aperture, and Touschek lifetime in a dual energy storage ring

will be discussed.

4.1 LINEAR OPTICS DESIGN

The guiding and focusing of a charged particle beam in a circular accelerator rely on a

series of magnetic elements, separated by field-free drift spaces, that form the accelerator

lattice. A dual energy storage ring cooler has a figure-8 configuration, with the low energy

ring having a cooling section and the high energy ring is designed to enhance the synchrotron

radiation damping as shown in Fig. 6. The optics of the dual energy storage ring cooler is

shown in Fig. 7. This ring optics is used for the stability studies of electron beams and

exploration of cooling beam parameters. The arcs are composed of standard FODO cells

with a 900 phase advance that provide an opportunity of compensating chromaticities us-

ing properly arranged sextupoles without creating high-order sextupole-induced resonances.

Two families of sextupoles are used to compensate for the chromaticities equally distributed

in both low and high-energy rings. Dispersion is suppressed at the ends of the arcs to cre-

ate dispersion-free straights for machine elements, such as SRF structures and the cooling

solenoid. However, the evaluation of cooling performance shows that an appropriate disper-

sion in the solenoid may be needed to produce a sufficient cooling of ion beams. The optics

can be further optimized to satisfy this requirement.

In addition, we design the ring optics to match the beta functions before and after

the RF systems placed in between the two rings for the acceleration and deceleration of

electron beams. This provides the fixed beam size which ensures the transverse stability

exists in the system. In the absence of dispersions, the Root-Mean Square (RMS) beam
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FIG. 7: Optics of a Dual Energy Storage Ring.

sizes are defined by σx,y =
√
βx,yεx,y, where βx,y and εx,y are the transverse beta functions

and emittances respectively. In the accelerating pass, the emittance value decreases due to

adiabatic damping [8]. In order to keep the beam size fixed, we adjust the beta ratio of the

two rings to the momentum ratio and that assures the transverse stability in the system

as seen in the next section. We need to match the beta functions in the cooler as well.

The beta function in the cooling solenoid with the solenoidal magnetic field Bs is given by
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βs = 2p/eBs, where p, and e are the momentum and a charge of the particle respectively. If

we do not match the beta functions, then the beam size will grow in the transverse direction.

After the ring optics design was completed, single and multi-particle tracking were carried

out using the ELEGANT particle tracking code. Initially, we observed particle instability

and careful studies showed a considerable change in the longitudinal position of a particle

during tracking due to a large value of arc M56. After the arc M56 value was reduced to -

0.17 m, particle stability is obtained in the dual energy ring system.

4.2 STABILITY

It is challenging and essential to keep beam current constant with minimum fluctuation

in a storage ring. For the dual energy storage ring design, we performed both longitudinal

and transverse beam stability studies analytically and using the ELEGANT [33] particle

tracking code.

4.2.1 EQUILIBRIA AND SYNCHROTRON STABILITY

In this section, we derive the longitudinal stability conditions that need to be obtained in

a dual energy electron storage ring. There are two basic solutions to the equilibrium problem

possible. These solutions will be called “storage ring mode” because it more resembles the

usual single loop storage ring with strong synchrotron motion, and “ERL mode” because,

in this case, the RF in the two beam passes nearly cancels the longitudinal focusing. One

remarkable conclusion from this analysis: even in the ERL mode it is possible to obtain

stable small amplitude synchrotron oscillations. We also explore the effects of synchrotron

radiation in the dual energy electron storage ring.

In the design, two rings share a common beam-line where the SRF structure accelerates

the beam from low energy EL to high energy EH and then decelerates the beam from EH to

EL in the next pass. The right choice of RF voltage is necessary for the beam acceleration

and deceleration. The phasor diagram for the beam accelerating and decelerating voltage is

shown as in Fig. 8, where we choose the phase stable solution when both rings are above the

transition energy. Referring to Fig. 8, an equilibrium can exist if an acceleration followed by

deceleration leads back to the same energy. In the absence of synchrotron radiation, there

are two possible solutions for the equilibrium condition defined by

φs,d = π ± φs,a, (119)

where φs,d, and φs,a are the synchrotron phases of the decelerating and accelerating beam
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FIG. 8: RF Voltage Phasors for the Phase Stable Case When Both Rings Are Above Tran-

sition Energy.

passes. In Eq. (119), the plus sign solution is the most used in energy recovered linacs and

is called the “ERL equilibrium”. The minus sign solution has strong synchrotron phase

stability as in a storage ring and is called the “storage ring equilibrium”.

Consider an initial slight deviation ∆E0 in the beam energy E0 and the phase ∆φ0 away

from the synchronous phase φ0 of the storage ring equilibrium. The total one-turn transfer

matrix in phase space (∆φ,∆E), starting from the end of the low energy ring, is given by(
1 −hL/EL

0 1

)(
1 0

−V sinφs,d 1

)(
1 −hH/EH

0 1

)(
1 0

−V sinφs,a 1

)
, (120)

where transfer matrices starting from the left end of Eq. (120) are for the accelerating beam

pass, after passing the high energy ring, after the decelerating pass, and finally, after the

low energy ring. The parameter hH = 2πhf0LHηH/β
3
Hc is a dimensionless combination of

parameters proportional to the frequency slip factor for the high energy ring. hL is defined

similarly to hH using the parameters from the low energy ring. In this combination, h is the

harmonic number including both rings, f0 is the total revolution frequency, c is the speed of

light in a vacuum, βH is the normalized velocity, LH is the path length, and ηH is the phase

slip factor [7], all in the high energy ring. Therefore, the phase advance µ for the synchrotron
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motion is

cosµ = 1 + hLV sinφs,a/EL + hHV sinφs,a/EH+

hLhHV
2 sin2 φs,a/(2ELEH),

µ = cos−1[1 + hLV sinφs,a/EL + hHV sinφs,a/EH+

hLhHV
2 sin2 φs,a/(2ELEH)].

(121)

The synchrotron tune is then defined by

Qs =
µ

2π
=

1

2π
cos−1[1 + hLV sinφs,a/EL + hHV sinφs,a/EH + hLhHV

2 sin2 φs,a/(2ELEH)].

(122)

The following argument shows this functional form for the solution is correct. In the specific

case that the linac (RF cavity) runs on zero-crossing and the beam energy and h values are

identical in the two rings, the situation is the same physically as a single storage ring with

two beam passes. The total phase advance is just twice the single circuit result, computed

using half the harmonic number for two rings.

In storage ring language, the synchrotron phase is usually referenced to the positive

going zero-crossing phase in the cavity. To make the transition in the above formulas,

simply add ninety degrees (π/2) to φs,a such that φSRs,a = φs,a + π/2. The net result is then

sinφs,a → − cosφSRs,a , as is more standard in textbooks. Then Eq. (122) can be re-rewritten

as

Qs =
µ

2π
=

1

2π
cos−1[1− hLV cosφSRs,a/EL − hHV cosφSRs,a /EH + hLhHV

2 cos2 φSRs,a /(2ELEH)].

(123)

Following the same argument for the ERL equilibrium, the total one turn transfer matrix in

phase space (∆φ,∆E) is given by(
1 −hL/EL

0 1

)(
1 0

V sinφs,a 1

)(
1 −hH/EH

0 1

)(
1 0

−V sinφs,a 1

)
. (124)

Therefore, in storage ring language, the phase advance for the synchrotron motion is

cosµ = 1− hLhHV 2 cos2 φSRs,a /(2ELEH),

µ = cos−1[1− hLhHV 2 cos2 φSRs,a /(2ELEH)].
(125)

The synchrotron tune is then defined by

Qs =
µ

2π
=

1

2π
cos−1[1− hLhHV 2 cos2 φSRs,a /(2ELEH)]. (126)
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It is a remarkable conclusion that in an ERL equilibrium, the electron is synchrotron stable as

long as both rings are either above or below the transition energy. Because of the synchrotron

motion in the two-energy ring, the positive and negative slopes are not completely cancelled,

yielding net phase focusing. As these calculations are made, one must impose the consistency

condition on the revolution frequency

f0 =
1

tH + tL
=

c

(LH/βH) + LL/βL

, (127)

where tH , and tL are revolution times for the high and low energy rings, respectively. Now,

we consider the effect of synchrotron radiation in the system. The total energy loss due to

synchrotron radiation is given by the sum of energy loss in each ring due to radiation effects.

A compensating cavity running at the crest is used to compensate for the total energy loss.

4.2.2 TRANSVERSE STABILITY

Using the one loop transfer map, we describe the transverse stability in a dual energy

storage ring. Matrix parameterization in a ring moving from one point to another takes the

form [6]: [
x2

x′2

]
= M(s1, s2)

[
x1

x′1

]
, (128)

where M(s1, s2) =

(
m11 m12

m21 m22

)
is a transfer matrix from point s1 to another point s2 in a

storage ring. The elements of matrix are defined by

m11 =

√
β2

β1

(cosµ+ α1 sinµ)

m12 =
√
β1β2 sinµ

m21 = −(1 + α1α2)√
β1β2

sinµ+
(α1 − α2)√

β1β2

cosµ

m22 =

√
β1

β2

(cosµ− α2 sinµ).

(129)

Here, αi, βi are the Twiss parameters in the ring at different locations. In our simplified

model the Low Energy Ring (LER) and High Energy Ring (HER) are connected by zero-

length RF cavities, which accelerate the beam going from the LER to the HER and decelerate

the beam going from the HER to the LER. The transfer matrix for the LER, the HER, the

accelerating cavity and the decelerating cavity are denoted by MLER,MHER,M
acc
cav , and Mdec

cav
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respectively and defined by

MLER =

(
cosψL + αL sinψL βL sinψL

−(1 + α2
L) sinψL/βL cosψL − αL sinψL

)
,

MHER =

(
cosψH + αH sinψH βH sinψH

−(1 + α2
H) sinψH/βH cosψH − αH sinψH

)
,

Macc
cav =

(
1 0

0 pL/pH

)
,

Mdec
cav =

(
1 0

0 pH/pL

)
.

(130)

Now, the total one-turn transfer map is given by

M = Mdec
cavMHERM

acc
cavMLER. (131)

Let us assume that the beam optics design has vanishing α before and after the acceleration

and deceleration. Then αL = αH = 0 in the above Eq. 130. The trace of the total transfer

matrix M is calculated and takes the form

Trace M = 2 cosψL cosψH − sinψL sinψH (pLβH/pHβL + pHβL/pLβH) (132)

The stability criteria is defined by | Trace M/2 |< 1.

| Trace M/2 |=| cosψL cosψH −
1

2
sinψL sinψH(pLβH/pHβL + pHβL/pLβH) |< 1. (133)

Next, further assume that the optics design has the same beam size before and after ac-

celeration and deceleration because if this condition is not satisfied, the beam will not be

matched [34]. In this case the ratio of beta functions at the cavities in the two rings is equal

to the ratio of the momentum on either side of the cavities since going through a RF cavity

changes the emittance in the ratio of pL/pH on acceleration. Thus pLβH/pHβL = 1 and

hence the stability criteria defined by Eq. 133 takes the form

| Trace M/2 |=| cosψL cosψH − sinψL sinψH |< 1. (134)

From the stability criteria one concludes that when the beta ratios are equal to the mo-

mentum ratios, then, indeed, the situation is always transversely stable. Not only that, the

phase advance for the whole ring is the sum of the phase advances for the individual rings

because

cosψtot = cos(ψL + ψH). (135)
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4.3 SRF CAVITIES

A Superconducting Radio Frequency (SRF) structure encloses a volume and can sustain

an infinite number of resonant electromagnetic modes. These cavities play an important role

in CW particle accelerators and are primarily used to impart energy to the particle traveling

through it. An accelerating cavity is provided with a longitudinal electric field. The proper

phasing with the particle bunches is required to impart momentum to the particles. Since

the cavity is a structure with an electromagnetic field in it, a magnetic field, on the other

hand, provides deflection to the particle beam but no acceleration. The fundamental theory

on the RF cavity is presented in Appendix A.

The dual-energy storage ring design has a set of SRF cavities: the main cavity to ac-

celerate or decelerate the beam, the harmonic cavity to lengthen the bunch length, the

compensating cavity to compensate for the energy loss due to synchrotron radiation, and

the bunching cavity to provide additional longitudinal focusing in the system.

4.3.1 BUNCH LENGTHENING USING THE HARMONIC CAVITY

Higher harmonic cavities are used to modify the slope and shape of RF voltage together

with the main cavities so the the bunch length can be controlled in storage rings. Harmonic

cavities have been widely used in storage rings to increase the beam lifetime and Landau

damping by lengthening the bunch [35]. The total longitudinal voltage gain Vg experienced

by the beam can be written as

Vg = Vm cos(ωrft+ ψs) + Vth cos
(
ωthrf t+ ψths

)
, (136)

where Vm, and Vth are the main, and harmonic cavity voltages, ψs, and ψths are RF phases for

the main and the harmonic cavities respectively. We use a third harmonic cavity next to the

main cavity, so the harmonic angular rf ωthrf = 3ωrf . Then we have the following boundary

conditions to evaluate the voltage amplitudes for each cavities:

i) Vg

∣∣∣
t=0

= Vm cos(ωrft+ ψs) + Vth cos
(
ωthrf t+ ψths

)
= 350, (137)

ii)
dVg
dt

∣∣∣
t=0

= 0, (138)

iii)
d2Vg
dt

∣∣∣
t=0

= 0. (139)

The voltage amplitudes Vm, and Vth are evaluated using the above initial boundary conditions

at t = 0. The low energy ring is at 150 MeV, and the high energy ring is at 500 MeV. The
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total gain in the energy is 350 MeV as given by the first boundary condition. The main

cavity is running in the crest (ψs = 0◦), and the third harmonic cavity is running with the

decelerating phase (ψths = 180◦). Then we get the following relationships

Vm =
9

8
Vg

Vth =
Vg
8
.

(140)

During the particle tracking simulation, proper RF phases and voltages should be applied by

the rf cavities for beam stability. The harmonic cavity voltage is added to the main cavity
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FIG. 9: Main and the Third Harmonic Cavities Voltages to Reach the Desired ‘Flat-Top’.
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voltage with an amplitude and the phase as defined earlier such that the slope at the bunch

center is zero. As shown in Fig. 9, there is a flat-top total voltage.

In our baseline design, the total energy gain during the accelerating pass is exactly can-

celled by the total energy loss during the decelerating pass. Hence it is desirable to enhance

the longitudinal focusing in the system by providing a bunching cavity. The bunching cavity

is situated outside the common beamline. Since the bunch length is depends inversely on the

rf voltage, the bunching cavity voltage plays an important role in determining the possible

bunch length. The final equilibrium bunch length in electron storage ring is determined by

the combined effect of synchrotron radiation, quantum excitation, and the IBS effect.

When particles pass through the bending arcs, synchrotron radiation takes place and the

energy loss is present. In this case, a compensating RF cavity running on the RF crest is

used with the proper voltage to compensate the energy loss. This compensating cavity is

required; otherwise, energy loss accumulates each turns and eventually the particles get lost.

4.3.2 ENERGY FLUCTUATION IN SRF CAVITIES

In a storage ring based cooler design, fluctuation in the beam energy affects the cooling

rates. So, it is important to understand the energy fluctuations due to voltage fluctuations

especially when beam passes through the RF cavities.

In our cooler design, we have a system of RF cavities: the main cavity, harmonic cavity,

bunching cavity, and compensating cavity. The main cavity is used to accelerate or decelerate

the beam, the harmonic cavity to lengthen the bunch length, the bunching cavity to provide

the longitudinal focusing, and the compensating cavity to compensate for the energy loss due

to synchrotron radiation. When the beam passes through these cavities, voltage fluctuation

results in energy fluctuation of the beam. During the accelerating pass, the total gain

through the RF system is about 350 MeV. The maximum voltage gain occurs through the

main cavity given by Eq. (140). The peak main cavity voltage becomes Vm = 9 ∗ 350/8 =

393.75 MeV. To calculate the energy fluctuation due to the voltage fluctuation, we alter the

main cavity voltage by 0.1% keeping the voltage of all remaining cavities constant. With

0.1% voltage fluctuation in the main cavity, the main cavity peak voltage becomes 393.75 -

0.1% of 393.75 = 393.36 MeV. With the bunch length of 13.5 cm, we run ELEGANT particle

tracking and calculate the average momentum of the particle. The relative change in the

particle momentum is given by

%(∆p) =
|pcen − pave|

pcen

, (141)
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where p = βγ is particle’s momentum in units of MeV/c, pcen = 293.54 MeV/c is particle’s

central momentum, and pave = 294.47 MeV/c is the particle’s average momentum. Now,

substituting the values in Eq. (141), the change in particle’s momentum βγ = 0.7924 MeV/c.

Furthermore, γ =
√

1 + (βγ)2 = 1.275, and the energy fluctuation is given by ∆E = γ×m0c
2

= 0.69 MeV.

4.4 BEAM DYNAMICS

4.4.1 DAMPING TIMES AND IBS TIMES

In this sub-section, we first estimate the damping time in a dual energy storage ring,

beginning by recalling the analysis of the single energy ring case. The transfer matrix for

the accelerating pass, with longitudinal phase space variables (∆z,∆E), is given by(
∆z′

∆E ′

)
=

(
1 0

2πeV cosφs/λrf 1

)(
∆z

∆E

)
. (142)

When one includes the synchrotron radiation, because for the off-energy particle and the

synchronous particle have energy updates

E ′ = E −W (E)

E ′s = Es −W (Es),
(143)

the linearized model for the ring becomes(
∆z′

∆E ′

)
=

1 M56/E

0 1− dW
dE

∣∣∣
Es

(∆z

∆E

)
. (144)

Here, the function W (E) gives the total radiated energy per pass as a function of energy.

When 0 < dW/dE < 1 (this is essentially always the case), the determinant of the product

matrix is less than one. The origin of the phase space with ∆z = 0 and ∆E = 0 is a fixed

point of the product map. Because the non-linear energy equation for a full turn at the

synchronous phase is E ′s = Es + eV sinφs −W (Es), an equilibrium with eV sinφs = W (Es)

must be established. If a ring electron radiates on average energy of ∆Erad per pass, then

the deviation in a synchrotron oscillation damps exponentially at a rate given by

1

τz,rad
=

1

2trev

∆Erad

E
(2 + ξ), (145)

where τrad is the exponential decay time of the deviation, trev is the revolution time, E is

the ring energy, and ξ is the focusing lattice radiation partition integral [36]. Consistent
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with Robinson’s radiation partition theorem, the damping rates for the deviations in the

horizontal and vertical betatron oscillations are

1

τx,rad
=

1

2τrev

∆Erad
E

(1− ξ)

1

τy,rad
=

1

2τrev

∆E

E
,

(146)

respectively. Here τx,rad and τy,rad are horizontal and vertical damping times respectively.

Note that the energy dependence of the result is entirely captured in the ratio ∆Erad/E.

In a dual energy storage ring, we need to consider the low energy ring and the high

energy ring separately to calculate the damping time. The total damping time for the

whole ring is then the proper summation of damping times for the low energy ring and the

high energy ring. Consider first the damping of synchrotron oscillation. A simple analysis

of this problem is that after traversing the high energy ring the oscillation deviation is

damped by exp[−∆EH(2 + ξH)/2EH]. After traversing both the high energy ring and low

energy ring, the deviation is damped by exp[−∆EL(2 + ξL)/2EL]exp[−∆EH(2 + ξH)/2EH] =

exp[−∆EL(2 + ξL)/2EL −∆EH(2 + ξH)/2EH], where subscripts L and H stand for the low

energy ring and the high energy ring respectively. The combined damping rate is therefore

given by 1/(trev,L + trev,H) × [−∆EL(2 + ξL)/2EL −∆EH(2 + ξH)/2EH], where trev,L + trev,H

is the total revolution time for a single transit of both rings. The ratio trev/τrad simply adds

for each loop, i.e.
trev, tot

τrad,tot

=
trev, L

τrad,L

+
trev, H

τrad,H

, (147)

where trev, L = CL/cβL, and trev, H = CH/cβH are the revolution time for each ring respec-

tively. Here CL and CH are the circumferences for the low energy ring and high energy

ring such that total circumference of the storage ring C = CL + CH. βL, and βH are the

relativistic beta values for the corresponding beam energies at low energy and high energy,

and c is the velocity of light. In our design, both rings have the same circumference, i.e.,

CL = CH = C/2. For the relativistic electron beam, we can assume that βL = βH ≈ 1.

Under this condition, Eq. (147) becomes

1

τrad,tot

=
1

2τrad,L

+
1

2τrad,H

. (148)

The same idea applies to each degree of freedom in turn.

To see that this analysis is more or less correct, consider a model where the two different

energy rings are connected by a zero-length accelerator. Follow the argument through one
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full circuit of the ring performing all calculations to linear order. The total one turn transfer

matrix is(
1 0

2πeV cosφs,a/λrf 1

)1 M56,L/EL

0 1− dW/dE
∣∣∣
Es,L

( 1 0

2πeV cosφs,d/λrf 1

)1 M56,H/EH

0 1− dW/dE
∣∣∣
Es,H

 .

(149)

The determinant of the matrix is simply the product of the determinants, which is(
1− dW/dE

∣∣∣
Es,L

)(
1− dW/dE

∣∣∣
Es,H

)
≈ 1− dW/dE

∣∣∣
Es,L

− dW/dE
∣∣∣
Es,H

, (150)

yielding the same combination principle in the evidence above.

In a dual energy storage ring, accelerating and decelerating passes cancel. A compensat-

ing cavity is used to compensate for the energy loss due to synchrotron radiation. In this

case, the equilibrium condition for the synchronous particle is

eVc sinφs,c = W (Es,L) +W (Es,H), (151)

where Vc and φs,c are the RF voltage and phase angle for the compensating cavity. This

shows that the equilibrium tends to be dominated by the higher energy radiation.

The damping times calculations in a dual energy storage ring are presented in Ap-

pendix F. The damping times depend on beam energy and lattice design. Since the energy

loss per turn due to synchrotron radiation is directly proportional to fourth power of the

beam energy, the corresponding damping time is inversely proportional to the third power

of the beam energy for the given lattice. In dual energy storage ring case, two rings are at

markedly different energies, the damping effect is dominated by high energy ring. The total

damping rate is calculated using the formula given by Eq. (148) and the damping time is

the reciprocal of the damping rate.

The theory of intra-beam scattering (IBS) is described well in a number of publica-

tions [37–40]. The IBS is the multiple small-angle Coulomb scattering of charged particles

within an accelerator beam. This scattering process couples the beam emittances in all three

dimensions and eventually leads to emittance growth. Electron storage rings have strong

radiation damping, and the equilibrium emittance is determined by a balance between ra-

diation damping, quantum excitation, and IBS. This balance process also determines the

equilibrium bunch length [41].

In our dual energy storage ring, we calculate the IBS rates for each ring using ELEGANT.

For the given optics design and equilibrium beam parameters, ELEGANT uses an IBS
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model [39] to calculate the IBS rates in each ring. Similarly to the total damping rate

calculation defined by Eq. (148), the total IBS rate is calculated using the formula

1

τIBS,tot

=
1

2τIBS,L

+
1

2τIBS,H

, (152)

where τIBS,L, and τIBS,H are the IBS times for low energy ring and high energy ring respectively

and τIBS,tot is the total IBS time for the whole ring. We determine the damping times and

IBS times in each dimension separately for the low energy ring and the high energy ring.

The total damping times and the total IBS times are then calculated using the formula given

by Eq. (148), and Eq. (152), respectively. Table 1 lists the damping times and IBS times

for individual rings and for the whole ring. The damping times in all three-dimensions are

shorter than the corresponding IBS times. An electron storage ring with shorter damping

time compared to the IBS time is highly required by design to mitigate the emittance growth

due to the IBS effect.

TABLE 1: Damping Times and IBS Times in a Dual Energy Storage Ring.

Parameters LER (s) HER (s) Total (s)

τrad,x 60.7 1.64 3.19

τrad,y 13.03 0.35 0.68

τrad,z 4.68 0.13 0.25

τIBS,x 4.11 6.62 5.07

τIBS,y 6.6E03 3.9E05 1.30E4

τIBS,z 0.79 0.35 0.49

4.4.2 DAMPED EQUILIBRIUM EMITTANCE AND ENERGY SPREAD

We have already discussed the effects of radiation damping and damping times in a dual
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energy storage ring. We derive the new formula for damped equilibrium energy spread and

the emittance in a dual energy storage ring. Our calculation shows that these equilibrium

parameters tend to be dominated by the radiation in the high-energy ring. The equilibrium

beam parameters in the cooling section at the low energy ring are determined by the damped

equilibrium parameters at the high energy ring.

As in a single-energy storage ring, the linear optics design may be used to control the

damped equilibrium emittance and energy spread. Because the individual radiation events

in the two rings are different and independent, we can provide analytical estimates of the

damping times in a dual energy storage ring. The damped energy spread, and emittance

can be determined for various parameters related to lattice design and the ring energies. We

present analytical calculations and simulation results to estimate damped energy spread and

emittance values in a dual energy storage ring. We also note that these quantities tend to

be dominated by the radiation in the high-energy ring

In the case of a dual energy storage ring, one determines the equilibrium energy spread

by adding total photon flux Ṅph〈ε2〉 from all sources in the two rings passes and utilizes

the two-ring damping time τz determined elsewhere [12]. Therefore, the equilibrium energy

spread in a dual energy storage ring is given by

σ2
E

E2
=

τz

4E2
Ṅph〈ε2〉 =

Cq

γ̂2

γ7
H〈1/ρ3

H〉+ γ7
L〈1/ρ3

L〉
[(2 + ξH)γ3

H〈1/ρ2
H〉+ (2 + ξL)γ3

L〈1/ρ2
L〉]

, (153)

where γ̂2 in the denominator scales with the corresponding ring energy, and L and H stand

for low and high energy rings, respectively

However, δ〈a2〉 is energy dependent (geometric emittance). As we know, the normalized

emittance is a constant parameter in a dual energy storage ring, we should get

δ〈γa2〉 = γH(z)
( ε
E

)2

. (154)

Then,

d〈γa2〉
dt

= GN
x =

γ

E2

∮
Ṅph〈ε2〉H(z)dz,

d〈γa2〉
dt

=
〈Ṅph〈ε2

L〉HL
x (z)

m2c4γL
+
〈Ṅph〈ε2

H〉HH
x (z)

m2c4γH
.

(155)

The quantity N〈ε2〉 is defined by

N〈ε2〉 =
3

2
Cu~c

γ3

ρ3

〈Pγ〉
〈1/ρ2〉

, (156)
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where Cu = 55/24
√

3. Substituting the value of average power loss due to synchrotron

radiation, Eq. (155) takes the form

GN
x =

3

4πTtot
CuCγ~m2c5(γ6

H〈HH
x /ρ

3
H〉+ γ6

L〈HL
x/ρ

3
L〉). (157)

Then equilibrium is reached with 〈γa2〉 = τ txG
N
x /2, and σ2

x = τ txG
N
x /2. The geometric

emittance is defined by

εx =
σ2
x

βx
=

1

2

〈γa2〉
γ

=
1

4γ
τ txG

N
x . (158)

Substituting the values of τ tx and GN
x in the above Eq. (158), the damped equilibrium emit-

tance in a dual energy storage ring is given by

εx =
Cq

γ̂

γ6
H〈HH

x /ρ
3
H〉+ γ6

L〈HL
x /ρ

3
L〉

[(1− ξH)γ3
H〈1/ρ2

H〉+ (1− ξL)γ3
L〈1/ρ2

L〉]
, (159)

where HL
x and HH

x are chromatic invariants for the low energy ring and the high energy ring

respectively. (1− ξL) and (1− ξH) are the horizontal damping partition numbers for the low

energy ring and the high energy ring, respectively.

Using Eq. (153) and Eq. (159), we calculate the damped equilibrium energy spread and

the emittance values for each rings in a dual energy ring. Our calculations show that the

damped equilibrium parameters are dominated by the high energy ring. The damped equi-

librium energy spread values at low energy ring and high energy ring are related by the

following condition (σE
E

)
L
≈
(σE
E

)
H
× γH
γL
. (160)

The similar relationship is valid in the case of damped equilibrium emittance, i.e.,

εLx ≈ εHx ×
γH
γL
, (161)

where εLx and εHx are the horizontal damped equilibrium emittances for the low energy ring

and the high energy ring, respectively. Hence damped equilibrium parameters in a dual

energy ring is dominated by the high energy ring such that the low energy ring parameters

are approximately equal to the high energy ring parameters multiplied by the energy ratio

of the high energy ring to the low energy ring. Further, damped equilibrium emittance

and energy spread values are obtained from ELEGANT particle tracking simulations and

compared with the analytical calculations. Table 2 lists the values of equilibrium parameters

with the beam energies of 150 MeV in the low energy ring and 1000 MeV in the high energy

ring. Overall, the results show an agreement with 100 particles being used to extract the
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TABLE 2: Equilibrium Parameters for LER = 150 MeV and HER = 1000 MeV.

LER HER

Parameter Analytical Tracking Analytical Tracking

εx(µm) 18.20 19.99 2.73 2.55

% Difference 9.83 6.59
σE
E

(×10−3) 3.03 3.28 0.454 0.509

% Difference 8.25 12.11

damped parameters. The discrepancy is expected to be further reduced with more particles

statistically. Here, the high energy ring energy is chosen to be 1000 MeV to increase the

damping effect and hence save simulation time.

Further, we calculate the damped equilibrium emittance and energy spread in a dual

energy storage ring with the low energy ring at 150 MeV and the high energy ring at 500

MeV. Table 3 lists the equilibrium parameters. Due to the limitation in simulation time, we

calculate equilibrium parameters analytically.

4.4.3 DYNAMIC APERTURE

The dynamic or physical aperture is defined as the largest betatron oscillation amplitude,

which is still stable in the presence of non-linear fields in a storage ring [7]. The Dynamic

Aperture (DA) plays a significant role in the design of a storage ring which eventually

determines the injection efficiency and beam lifetime. The strong focusing quadruples are

used to design the ring optics that introduce chromatic aberrations. To compensate for these

chromatic aberrations, we require strong sextupoles to be installed in the ring’s dispersive

region [42]. These strong sextupoles result in a small DA. Further explorations on the DA

with different sextupoles distributions in a dual energy storage ring system were carried out.

The maximum DA is obtained with sextupoles placed in both the low and high-energy rings

to compensate for chromaticity [43]. The DA in a dual energy storage ring is calculated

using numerically intensive procedures in ELEGANT. The DA for the LER at 150 MeV and

the HER at 500 MeV is shown in Fig. 10.
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TABLE 3: Equilibrium Parameters for LER = 150 MeV and HER = 500 MeV.

Parameter Unit LER HER

Energy MeV 150 500

Normalized horizontal emittance µm 622 622

Normalized vertical emittance µm 31 31

Un-normalized horizontal emittance εx µm 2.12 0.635

Un-normalized vertical emittance εy µm 0.106 0.0317

Energy spread σE/E 10−4 7.4 2.2

The maximum DA possible is ±8σx in the horizontal plane, and 35σy in the vertical plane

for on-momentum particle, where σx and σy are the root means square (RMS) beam sizes in

two planes, respectively.

4.4.4 MOMENTUM APERTURE AND TOUSCHEK LIFETIME

The Momentum Aperture (MA) is defined as the maximum momentum deviation that

a particle can have without becoming unstable and being lost by colliding with the vacuum

chamber of the storage ring [44]. The MA in a storage ring is determined by the complex

6-dimensional dynamics of the particle. In our dual energy storage ring, the MA is calculated

using ELEGANT starting at the beginning of the Low Energy Ring (LER) and going to the

end of the High Energy Ring (HER), as shown in Fig. 11. From Fig. 11, we can see that the

LER momentum acceptance is bigger than the HER momentum acceptance. The reduction

in MA for HER is due to the damping of beam phase-space through the RF acceleration

from the LER [8], with the ratio of two energies [34]. In our design, both LER and HER are

of equal length in circumference.

Touschek scattering is a phenomenon describing the collision of two electrons in a bunch

with transferring a small momentum in the transverse direction into a large momentum in

the longitudinal direction, leading to the loss of particles [45]. Based on the MA of the ring,

Touschek lifetime is calculated both analytically and in simulation using ELEGANT. The
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FIG. 10: DA for Low Energy Ring at 150 MeV and High Energy Ring at 500 MeV.

Touschek scattering rate α and the lifetime τ (where the lifetime is defined for the beam

intensity to decay down half of its initial value) is given by [46]

α =
1

τ
=

r2
ecq

8πeγ3σs

1

C

∮
F ([δacc(s)/γσx′(s)]

2)

σx(s)σ′x(s)σy(s)δ
2
acc

ds. (162)

The integration in the formula above is along the circumference of the ring, where re is

the classical electron radius, q is the bunch charge, σs is the RMS bunch length, C is the

circumference of the ring, σx(s) and σy(s) are the RMS horizontal and vertical beam sizes

including the dispersion terms, c is the speed of the light, e is the electronic charge, γ

is the relativistic Lorentz factor of the beam, and δacc(s) is the local relative momentum

acceptance along the ring respectively. The beam sizes σx(s) and σy(s) can be calculated
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FIG. 11: Momentum Aperture for Low Energy Ring at 150 MeV and High Energy Ring at

500 MeV.

using the formula

σx(s) =
√
εxβx(s) + (σδη(s))2, (163)

σy(s) =
√
εyβy(s), (164)

with εx = εx0/(1 + κ), εy = κεx0/(1 + κ) and there is no vertical dispersion. Here εx0 is the

natural horizontal emittance, κ is the emittance coupling factor, η and η′ are the horizontal

dispersion and the slope of the horizontal dispersion respectively. The quantity σx′(s) is the

beam divergence which can be calculated using the formula

σx′(s) =
εx

σx(s)

√
1 +
H(s)σ2

δ

εx
, (165)

where H(s) is the chromatic invariant given by

H(s) = γxη
2 + 2αxηη

′ + βxη
′2. (166)

The special function F (x) is defined by

F (x) =

∫ 1

0

(
1

u
− 1

2
ln

(
1

u

)
− 1) exp

(
−x
u

)
du. (167)
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The Touschek lifetime in a dual energy storage ring is obtained through 1/τ = 1/(2τLER) +

1/(2τHER), where τLER and τHER are the corresponding Touschek lifetimes for the LER and

HER, respectively. Based on our calculation, the Touschek lifetime in a dual energy storage

ring is dominated by the high energy ring. The Touschek lifetimes are presented in Table 4.

Touschek lifetimes are calculated in a dual energy storage ring for the low energy ring at

TABLE 4: Touschek Lifetime in a Dual Energy Storage Ring.

Method Touschek Lifetime (h)

τLER τHER Total

ELEGANT 0.67 0.43 0.42

Formula 0.68 0.34 0.34

150 MeV and the high energy ring at 500 MeV using ELEGANT and analytical formula.

The lifetime values obtained from the analytical calculations and simulations, agree well.

The number of particles in the bunch is 6.9 ×1010 and the RMS bunch length (σs) used in

this calculation is 2.5 cm. The damped equilibrium emittance and energy spread values are

used with the emittance coupling factor κ = 0.05. Touschek lifetime values obtained in a

dual energy storage ring are shorter than expected. Further exploration on increasing the

momentum acceptance to extend the Touschek lifetime is in progress.

4.4.5 LASLETT TUNE SHIFTS

This sub-section uses derivations to calculate the Laslett tune shift in a dual energy

storage ring. The Laslett space-charge tune shift is the betatron tune shift for particles

with small betatron amplitudes. Particles with large betatron amplitudes have a smaller

space-charge tune shift; the small-amplitude tune shift dominates the large-amplitude one.
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The following estimate shows that the small-amplitude tune shift is small. The equation of

motion, including space charge, following reference [7] is

u” +
[
k0 −

2rc
β2γ3

λ

σx(σx + σy)
fcorr

]
u = 0, (168)

where k0 is the unperturbed focusing from the magnet lattice, and the second term is the

space charge defocusing. fcorr is the correction factor due to image fields, and is defined by

fcorr = 1 +
2σy(σx + σy)

b2
ε1[1 + (γ2 − 1)B] + ε2(γ2 − 1)

b2

g2
B, (169)

where σx, σy are the RMS beam sizes, γ is the relativistic factor, B is the magnetic field, b,

and g are the metallic and ferromagentic boundaries, respectively. The coefficients ε1 and

ε2 are the Laslett form factors which are for infinite parallel plate vacuum chambers and

magnetic poles defined by

ε1 = π2/48, ε2 = π2/24. (170)

In the case of constant focusing and constant space charge defocusing, the total phase

advance in radians is

∆ψ =
[
k0 −

2rc
β2γ3

λ

σx(σx + σy)
fcorr

]1/2

L u
√
k0L−

rc

β2γ3
√
k0

λ

σx(σx + σy)
fcorrL. (171)

In the usual analysis of a single energy storage ring, tune is defined as Q = L×
√
k0/2π, and

tune shift is given by

∆Q = − rc

2πβ2γ3
√
k0

λ

σx(σx + σy)
fcorr. (172)

This result is derived for a single energy storage ring case. In a dual-energy storage ring,

the total phase advance change is the sum of those over the low and high-energy rings. Hence

the total change in phase advance is

∆ψtot = ∆ψL + ∆ψH =
√
koLLL +

√
koHLH

− rc

β2
Lγ

3
L

√
k0L

λL
σxL(σxL + σyL)

fcorrLL −
rc

β2
Hγ

3
H

√
k0H

λH
σxH(σxH + σyH)

fcorrLH .
(173)

The unperturbed tune for the model is Q = (
√
k0LLL +

√
k0HLH)/2π, and the tune shift for

one complete revolution is

∆Q = − rc

2πβ2
Lγ

3
L

√
k0L

λL
σxL(σxL + σyL)

fcorrLL −
rc

2πβ2
Hγ

3
H

√
k0H

λH
σxH(σxH + σyH)

fcorrLH . (174)

After performing a proper perturbation calculation, and following the results in Wiedemann

21.63 [7],

∆Qx,y = − rc
2π

∮
βx,yλL

β2
Lγ

3
LσxL(σxL + σyL)

fcorrdz −
rc
2π

∮
βx,yλH

β2
Hγ

3
HσxH(σxH + σyH)

fcorrdz, (175)
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where βx,y are the values of the beta-function for the unperturbed solution to Hill’s equation

for the ring. This calculation re-enforces the conclusion that the vertical emittance in the low

energy ring should not be allowed to become too small. The linear particle density is defined

by λL = Ntot/nb
√

2πσz, where Ntot is the total number of particles in the circulating beam,

nb is the number of bunches (nb = 1), and σz is the standard bunch length for Gaussian

distribution. The beam sizes are defined by σx,y =
√
βx,yεx,y, where εx,y represents the

transverse emittances. Then the normalized beam emittance is defined by εNx,y = γβx,yε
rms
x,y ,

where γ is the relativistic energy factor.

Taking the first part of the above integral in Eq. (175) and solving, we get

− rc
2π

∫ 2πR

0

βx,yλL
β2
Lγ

3
LσxL(σxL + σyL)

fcorrdz ≈ −
rc

2πβLγ2
L

Nb√
2πσzL

CL

εNy (1 +
√

εx
εy

)
. (176)

The total tune shift given by Eq. (175) is

∆Qx,y ≈ −
rc

2πβLγ2
L

Nb√
2πσzL

CL

εNy (1 +
√

εx
εy

)
− rc

2πβHγ2
H

Nb√
2πσzH

CH

εNy (1 +
√

εx
εy

)
, (177)

where CL and CH are the circumferences for the low and high energy rings, respectively.

The Laslett tune shifts are estimated for each ring separately and the total tune shift is

calculated which are presented in Table 5. These calculated values for the tune shifts are

very minimal, and they are not significant enough to cause resonant detuning. We have

used the standard RMS bunch length of 2.5 cm, and the number of particles used in this

calculation is 6.9×1010.

4.5 DUAL ENERGY STORAGE RING COOLER PARAMETERS

The cooling performance in a ring cooler highly depends on electron beam quality. The

equilibrium electron beam parameters are calculated by considering the radiation damping

and quantum excitation. Special care has been taken in lattice design to obtain the desired

equilibrium electron beam to determine the cooling performance. The cooling simulation is

performed with the electron beam parameters listed in Table 6.

The optics is designed for the low energy ring at 150 MeV and the high energy ring at

500 MeV. Both rings are identical, with the total circumference of 343.4 m. Table 6 has a

ring circumference of 532.8 m after adding extra 60.0 m length in the cooling section at a low

energy ring to run a cooling simulation. The average dipole bending radius is 2.55 m. The

arcs are composed of standard FODO cells with a 900 phase advance. Chromaticities are
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TABLE 5: Laslett Tune Shifts in a Dual Energy Storage Ring.

Energy (MeV) 150 (LER) 500 (HER)

Circumference C (m) 171.7 171.7

rc 2.82e-15 2.82e-15

Nb 6.9e+10 6.9e+10

β 0.999 0.999

γ 293.54 978.47

RMS bunch length σz (m) 0.025 0.025

RMS Hori. Emittance εx (um) 2.12 0.635

RMS Vert. Emittance εy (um) 0.106 0.0317

Nor. Hori. Emittance εNx (um) 622 622

Nor. Verti. Emittance εNy (um) 31.1 31.1

εx/εy 20 20

Laslett tune shift 0.0057 0.00052

Laslett tune shift (whole ring) 0.0063
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corrected using two families of sextupoles distributed equally in both low and high-energy

rings. A numerically intensive procedure in ELEGANT is used to calculate the dynamic

aperture in a dual energy storage ring. The dynamic aperture is plotted in the horizontal

and vertical planes in terms of beam sizes. The possible DA is ±8σ in the horizontal, and

35σ in vertical, for on-momentum particle. These aperture values are good enough for the

stability of charged particles. The Laslett space-charge tune shift value for the whole ring is

0.0063, which is a small value and is supposed not to alter the particles’ betatron oscillation

significantly. Based on the momentum aperture search, Touschek lifetime is calculated. The

Touschek lifetime is less than an hour. To increase lifetime, we need to explore further

the method of increasing momentum aperture in a dual energy storage ring. Intra-beam

scattering (IBS) and synchrotron radiation (SR) damping times are calculated in all three

dimensions. The damping times are shorter than the IBS times. It fulfills the requirement

of an electron storage ring design to mitigate the emittance growth due to the IBS effect.

Table 6 and Table 7 lists the specific electron storage ring parameters, electron beam

parameters, cooler parameters, RF parameters, and proton beam parameters. These pa-

rameters are used to calculate the ring parameters such as Touschek lifetime, IBS and SR

damping times. The cooling section length has a 120 m solenoid magnet. For a 4.0 T

solenoidal magnetic field, the matched β function in the cooler is 0.25 m. The RMS beam

sizes are calculated taking matched β function and damped equilibrium emittance values

obtained for the low energy ring. Transverse and longitudinal beam temperature at the

cooler are calculated using the damped emittance and energy spread values. The details of

the formulas used to calculate the beam temperatures are presented in Appendix B.

The RF parameters in a dual energy storage ring are calculated with high precision.

First, the revolution time for each ring is calculated. The total revolution frequency is

calculated taking the reciprocal of the sum of the revolution times for both rings. The

RF frequency is 97.7 MHz, except in the third harmonic cavity which uses three times the

RF frequency. A bunching cavity with a small voltage of 80 V running on 1800 provides

additional longitudinal focusing in the system. ELEGANT simulations show that smaller

the bunching cavity voltage, the longer the bunch length possible. A compensating cavity

running on 900 phase with RF voltage 1643 V is used to compensate for the energy loss due

to synchrotron radiation.
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TABLE 6: Parameters in a Dual Energy Electron Storage Ring Cooler.

Storage Ring Parameters Value

Low energy ring energy [MeV] 150

High energy ring energy [MeV] 500

Total ring circumference [m] 532.8

Natural chromaticity h/v -16.17/-24.70

Corrected chromaticity h/v 1.0/0.87

Dipole bending radius [m] 2.55

On-momentum dynamic aperture h/v ±8σ/35σ

Betatron tune h/v 11.131/9.227

Phase advance of FODO arc [radians] π/2

Space charge tune shift 0.0063

Touschek lifetime [hour] 0.68

IBS time h/v/l [s] 5.07/1.3E4/0.49

SR damping time h/v/l [s] 3.19/0.68/0.25

Electron Beam Parameters

Bunch intensity 6.9×1010

Bunch charge [nC] 11.1

Peak bunch current [A] 52.9

Average bunch current [A] 1.08

RMS bunch length [cm] 2.5

FWHM bunch length [cm] 5.8

Energy loss per turn [keV] 1.643

Synchrotron power [kW] 1.774

RF Parameters

RF frequency [MHz] 97.7

Main cavity voltage, phase [MV, degree (a/d)] 393.75, 90/270

Harmonic cavity voltage, phase [MV, degree (a/d)] 43.75, 270/90

Compensating cavity voltage, phase [kV, degree] 1.643, 90

Bunching cavity voltage, phase [V, degree] 80, 180

h/v/l for horizontal, vertical and longitudinal dimensions.

a/d for accelerating/decelerating
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TABLE 7: Proton and Electron Beam Parameters at Cooler.

Electron Beam Parameters @ Cooler Value

Average β function in the cooling section h/v [m] 0.25/0.25

Normalized emittance h/v [µm] 622/31.1

Emittance coupling (κ) 0.05

Energy spread @ cooler [10−4] 7.4

RMS beam size h/v @ cooler [mm] 0.74 /0.16

Transverse temperature @ cooler [eV] 9323.87

Longitudinal temperature @ cooler [eV] 0.2798

Cooling channel length [m] 120

Cooling solenoid [kG] 40

Proton Beam parameters

Proton energy [GeV] 275

Relativistic factor γ 293.1

Bunch intensity 6.9×1010

Bunch charge [nC] 11.1

Normalized emittance h/v [µm] 2.8/0.45

Energy spread [10−4] 6.6

RMS bunch length [cm] 6.0

RMS beam sizes h/v [cm] 0.17/0.043

IBS time h/v/l [h] 2.6/3.7/4.1

Cooling time h/v/l [h] 0.65/1.38/1.5
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CHAPTER 5

COOLING PERFORMANCE

Until now, we discussed the beam dynamics in a dual energy storage ring and explored

the stability criteria. This chapter mainly discusses the cooling performance in a dual energy

storage ring cooler. The cooling performance is simulated using Jefferson Lab Simulation

Package for Electron Cooling (JSPEC) for proton beams at the top energy of 275 GeV for

the Electron-Ion Collider.

5.1 INTRODUCTION

A collider experiment requires high density and low energy spread particle beams to

obtain high luminosity. Light particle beams, for example, those of electrons undergo syn-

chrotron radiation damping. However, heavy particle beams like the proton and heavy ions

do not have a significant radiation damping effect and they need some mechanism to get

compressed. Electron cooling is an established method that can suppress or reverse the beam

emittance growth and increase both peak and average luminosity [47].

The theory of electron cooling is based on the friction force that results from the relative

motion of ions immersed in an electron beam. In a straight cooling section, the ion and

electron beams co-propagate with the same average velocities. The cooled electron beam and

the hot ion beam can be considered as two thermodynamics systems. According to the second

law of thermodynamics, heat transfer occurs between a system at a higher temperature to

a system at lower temperature till there exists an equilibrium temperature. In the end, the

cooled ion beam is extracted and directed toward the collision point or interaction point in

a collider where it collides with other particles. In a dual-energy ring cooler, the electron

beam in the electron storage ring is reused after it completes the cooling interaction with

the ion beam.

5.2 CONCEPT OF BEAM TEMPERATURE

According to thermodynamics, the temperature measures the average kinetic energy of

the atoms or molecules in the system. The distribution of particles in a beam can be explained

by thermodynamic-like velocity distribution. Hence, one can assign a temperature to the
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ensemble of beam particles and relate them to the velocity fields of phase-space coordinates.

To cool means to reduce the beam temperature.

A velocity-dependent drag force is involved during the cooling process; hence, the process

is non-Liouvillean. There are many factors to heat the beam in an accelerator. Some factors

are beam mismatch, space charge, intra-beam scattering, residual gas, and external noise.

In general, the transverse beam temperature T⊥ and the longitudinal beam temperature T‖

in the beam rest frame are defined by [27]

T⊥ = meV
2
⊥γ

2 = mec
2 εL
βs
γ2, V 2

⊥ = V 2
x + V 2

y .

T‖ = mec
2

(
∆p

p

)2

,
(178)

where γ is the relativistic energy factor, mec
2 is the rest mass energy of an electron, βs

is matched Twiss beta function in the cooler, V⊥ is the transverse velocity, εL is the un-

normalized Larmor emittance defined by εL = V 2
⊥βs/c

2, and ∆p/p is the equilibrium energy

spread. The above temperatures are defined in the case of magnetized electron cooling.

5.3 BEAM COOLING

5.3.1 COOLING RATES

The heat exchange between the electron beam and ion beam occurs until they reach

to the same equilibrium temperature. This heat exchange via Coulomb’s scattering occurs

continuously, defined by the cooling rates. In the case of non-magnetized cooling, the cooling

rate is defined by [48]

1

τcool

=
3πZ2rirecneΛc

√
2γ2
[
2
(
kTe/mec2

)3/2

+
(
kTi/mic2

)3/2] × Lc
Ci
, (179)

where mi, Z, ri and Ti are the mass, charge, classical radius, and temperature of the ions,

and me, re, Te, and ne are the mass, classical radius, temperature, and the density of cooling

electrons. The quantity Λc is the Coulomb logarithmic cut-off term, and chosen to be Λc

= 20 in the cooling simulation in a dual energy storage ring cooler. The ratio of cooling

channel length to the total circumference of the ion ring is given by the term Lc/Ci and the

total cooling rate is affected by this ratio. From Eq. (179), it is clear that the cooling rate

has a linear dependence on electron beam intensity ne, and cooler length Lc/Ci, favorable

for highly charged ions Z2, slow for hot ion beams, and decreases with energy as γ2.
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To get best cooling rates, it is important that the transverse cross-sections of the electron

beam and ion beam completely overlap with each other. Partial overlapping results in

reduced cooling. The energy term γ2 in the denominator comes from the cooling force

formula, which is based on the exchanges of momenta in all directions in the rest frame of

the electron and ion beams. Taking laboratory frame as a reference frame, the cooling rate

receives one γ from time dilation and another one from the electron density as a result of

Lorentz transformation. This γ2 term being in the denominator highly affects the cooling

rates and it takes significantly longer to cool the ion beams with electron beams at high

energy. Even so, reasonable cooling rates can be achieved by increasing the electron-beam

density ne to a great extent.

5.3.2 COOLING FORCES

Several friction forces are proposed to explain the kinetics of electron cooling of beams

in the heavy particle storage ring [49–51]. The effectiveness of the friction force increases if

the relative velocity between electron beam and ion beam is small. The drag force between

electron and ion beams are based on the binary collision model. Due to Coulomb interaction

between ion and electron beam the momentum and energy exchange takes place which is

logarithmically divergent in the region of large impact parameter. The calculation of non-

magnetized friction force experienced by an ion moving with electron beam in the cooler

section is explained in reference [51].

A strong magnetic field is applied along the longitudinal direction inside the cooler in

magnetized cooling. This causes the electron motion to follow a spiral trajectory around the

magnetic field line. In the magnetized electron beam, when the maximum impact parameter

is larger than the radius of the electron Larmor rotation, so-called “magnetized collisions”

between the ion and electron take place. In this case, the electron beam is attracted by the

ion, which pulls it along the magnetic field line. Depending on the different ranges of the ion

velocity and impact parameter compared with the radius of electron Larmor rotation, the

collisions can be classified into three categories: fast, adiabatic, and magnetized [49, 50].

5.3.3 INTRABEAM SCATTERING

Intrabeam scattering (IBS) in the ion beam enhances diffusion growth of 6D phase space

volume of the ion beam. The IBS calculation is based on the momentum variation due to

Coulomb interactions with other particles in the beam. There are several models for IBS

calculation. Besides the Martini model [52], the Bjorken-Mtingwa (BM) model [39] is another
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widely used model for the IBS expansion rate calculation. During the cooling simulation in

the case of magnetized cooling, we use BM model for the IBS expansion rate calculation in

a dual energy storage ring cooler. Using BM model, the IBS expansion rate of a beam with

Gaussian distribution can be calculated using the following formula

1

τd
= A

〈∫ ∞
0

dλλ1/2

[|L+ λI|]1/2

{
TrLdTr

( 1

L+ λI

)
− 3TrLd

( 1

L+ λI

)}〉
, (180)

where d = x, y, l, I is the identity matrix, the angle bracket as a whole is taken to average

over the storage ring. For a bunched beam the term A is defined as

A =
cr2NLc

8πβ3γ4εxεyσpσs
, (181)

where c is the speed of the light, r is the classical radius of the ion, N is the number of ions,

β, γ the relativistic Lorentz factor, εx, εy the horizontal and vertical emittance, σp is the rms

momentum spread, and σs the rms bunch length. L is defined by

L = L(x) + L(y) + L(z), (182)

with

L(x) =
βx
εx


1 0 −γφx
0 0 0

−γφx 0 γ2Hx/βx



L(y) =
βy
εy


0 0 0

0 1 −γφy
0 −γφy γ2Hy/βy



L(z) =
γ2

σ2
p


0 0 0

0 0 0

0 0 1

 ,

(183)

where βx,y is the horizontal or vertical Twiss functions and φx,y and Hx,y are defined as

φx,y = D′x,y −
β′x,yDx,y

2βx,y
, and Hx,y =

D2
x,y + β2

x,yφ
2
x,y

βx,y
. (184)

In the above expression Dx,y and D′x,y are dispersion and dispersion slope in horizontal and

vertical directions respectively.
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5.3.4 PROTON BEAM PARAMETERS

Similarly to the electron ring lattice, the hadron ring lattice design is carried out to

get the desired hadron beam parameters in a collider experiment. After the hadron ring

lattice is designed, beam dynamics studies provide the emittance, dynamic aperture, beam

lifetime, and stability. In particular, the beam size and intensity at the location of the

electron cooler are obtained. The cooling simulation is carried out for 275 GeV proton

beam at the Relativistic Heavy Ion Collider (RHIC) ring. Its Twiss parameters are used to

run the JSPEC simulation. The proton beam parameters are listed in Table 8, taken from

reference [1].

TABLE 8: Proton Beam Parameters.

Proton energy [GeV] 275

Relativistic factor γ 293.1

Bunch intensity 6.9×1010

Bunch charge [nC] 11.1

Normalized emittance h/v [µm] 2.8/0.45

Energy spread [10−4] 6.6

RMS bunch length [cm] 6.0

RMS beam sizes h/v [cm] 0.17/0.043

Cooling channel [m] 120

Cooling solenoid [kG] 40

5.4 COOLING PERFORMANCE

This section presents the summary of the cooling performance to cool a 275 GeV proton
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beam in EIC, as determined using the JSPEC simulation code. Cases both with and without

dispersion at the cooler have been calculated. The asymptotic formula by Meshkov [53] is

used to calculate the friction force between electron and proton beams. The details of the

theory of interactions of heavy particles with magnetized electron beam are presented in [49–

51, 53].

5.4.1 COOLING SIMULATION

In the absence of cooling, the IBS heating effect for the proton beam is very large in

both horizontal and longitudinal planes, as shown in Fig. 12. The need to keep control of

the proton horizontal emittance and energy spread against this IBS heating demonstrates

the need for strong cooling at EIC both in the horizontal and longitudinal planes.
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FIG. 12: Emittance Growth of 275 GeV Proton Beam Caused by the IBS Effect in the

Absence of Cooling.



72

Simulations show that almost no transverse cooling is observed in the absence of dis-

persion in the cooling section. However, strong longitudinal cooling is observed due to the

large difference in cooling gradients. When a horizontal dispersion Dx = 2.5 m and vertical

dispersion Dy = 0.5 m are included in the cooling section for the ion beam, the cooling rates

between the horizontal and longitudinal direction [49, 54] are redistributed. The introduction

of dispersion in the cooling section greatly enhances transverse cooling.

Table 8 shows the proton beam parameters used to run JSPEC simulation. Table 9 lists

electron cooling times and proton IBS times. Cooling times in all three dimensions are shorter

than the IBS times. The simulation calculations show that a 275 GeV proton beam can be

cooled with a 150 MeV electron beam with in the given cooling times presented in Table 9.

Figure 13 shows the evolution of the proton beam transverse and longitudinal emittance with

cooling. In the absence of dispersion, there is no cooling effect in the horizontal but a strong

cooling in the longitudinal direction. When we introduce the dispersion Dx = 2.5 m and

Dy = 0.5 m in the cooler, there exists a strong cooling both in transverse and longitudinal

directions.

5.4.2 PROTON BEAM PHASE SPACE

To see the cooling effect more clearly, we plot the initial and final proton beam phase-

space as simulated by JSPEC. Figure 14 shows clearly that the proton beam phase-space

density is increased after the cooling effect in all six-dimensions.

5.4.3 RATES CALCULATION

JSPEC simulation calculates the initial IBS rate, electron cooling rate, and total ex-

pansion rate. These rates are listed in Table 9. Initial IBS rates are smaller compared to

the initial electron cooling rates in all three directions. It means electron cooling times are

shorter than proton IBS times. The total expansion rate is negative. It indicates that the

electron cooling effect dominates the proton IBS growth rate. The variation of IBS, electron

cooling, and total expansion rates during JSPEC simulation is plotted in Fig. 15.

5.5 COOLING OF LOW ENERGY PROTON BEAMS

We further run the JSPEC cooling simulation for a 100 GeV proton beam, which requires

cooler ring energy to be 55 MeV. Damped equilibrium emittance and energy spread values

are calculated for 55 MeV electron beam energy in the cooler ring. Electron beam sizes,
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FIG. 13: The Evolution of the Horizontal (εx), Vertical (εy) and Longitudinal (δp/p) Proton

Beam Emittance During Cooling. Upper Plot: Di = 0 m; Bottom Plot: Dx = 2.5 m, Dy =

0.5 m and IBS Coupling Factor = 0.2.
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TABLE 9: Rates and Time Calculations.

Parameter Horizontal Vertical Longitudinal

IBS rate (1/s) 1.063E-04 7.437E-05 6.810E-05

Electron cooling rate (1/s) -4.076E-04 -2.016E-04 -1.897E-04

Total expansion rate (1/s) -3.012E-04 -1.272E-04 -1.216E-04

IBS time (h) 2.6 3.7 4.1

Cooling time (h) 0.65 1.38 1.5

transverse, and longitudinal temperatures are calculated based on those damped equilibria

parameters. Proton beam parameters for a 100 GeV case are taken from EIC-CDR [1].

Simulations show that no cooling is observed and the proton beam emittance growth takes

place in all three dimensions. It requires further studies to understand the hadron beam

cooling at lower energies.
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CHAPTER 6

CONCLUSIONS

The main goal of studying a dual energy storage ring cooler design was to explore the

possibilities on storage ring based cooler design to cool the hadron beams in collider experi-

ments. This dissertation is divided into two parts. The first part of this dissertation presents

the optics design and beam dynamics studies in a dual energy storage ring. The second part

of the dissertation presents the cooling performance to cool the 275 GeV EIC proton beam.

From scratch, the optics design of such a storage ring based cooler is carried out using

the MAD-X software package. Particle tracking simulation is carried out using ELEGANT

particle tracking simulation code. Numerical calculations were performed using PYTHON

and MATHEMATICA software packages. After the optics design is completed, single and

many particle tracking simulations were performed using ELEGANT particle tracking. Dy-

namic aperture and momentum aperture calculations were carried out using a numerically

intensive procedure in ELEGANT. Based on the momentum aperture, the Touschek life-

time is calculated for each ring and the whole ring both analytically and in simulation using

ELEGANT.

Furthermore, the damped equilibrium emittance and energy spread of an electron beam

in a dual energy storage ring are estimated based on newly derived formulas. Equilibrium

is achieved with a balance between radiation damping, quantum excitation, and intra-beam

scattering (IBS). Since the radiation damping effect dominates the IBS effect, we calculate

the damped equilibrium emittance and energy spread considering the radiation damping and

quantum excitation only. We derived the new formulas for damped equilibrium emittance

and energy spread for the first time. Damped equilibrium parameters are obtained from

analytical calculations and compared to tracking simulations with low energy ring at 150

MeV and high energy ring at 500 MeV, respectively.

Electron beam temperatures were calculated based on the damped equilibrium param-

eters in a dual energy storage ring. Using these parameters, cooling simulations were per-

formed using the JSPEC simulation codes. The RHIC lattice is being used, and 275 GeV

proton beam parameters were taken from the EIC-CDR. Cooling simulations were performed

considering different cases of dispersion and IBS effects in the cooler section for the proton
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beam. Cooling performance shows that the dual energy storage ring cooler may provide a

feasible path to cool the hadron beams at higher energy, eventually improving the collider

performance with higher luminosity. The cooling performance of a two-energy ring has better

damped parameters than for Brookhaven’s single energy ring design. The JSPEC simulation

shows that 275 GeV proton beam emittances are under better control than Brookhaven’s

single energy cooling simulation results.

6.1 FUTURE WORKS

In this thesis, we have not answered all questions concerning two-energy ring stability.

In the future, we suggest working on the following topics. For example, the beam optics

can perhaps be better optimized, HOM studies should be undertaken, and identifying the

potential issues such as CSR and beam-break up should be studied and solved. We are also

exploring the possible applications of dual energy storage ring design besides beam cooler

design.

6.1.1 OPTICS OPTIMIZATION

It may be possible to change the beam optics in our dual energy storage ring to get better

cooling performance. This dissertation summarizes the dual energy storage ring design for

the specific case of a low energy ring at 150 MeV and the high energy ring at 500 MeV. The

low energy ring at 150 MeV is chosen for the cooling requirement of hadron beam energy

at 275 GeV. The high energy ring at 500 MeV is chosen to get the sufficient synchrotron

radiation damping. Further optics study should be carried out to study whether this design

can be used to cool the hadron beam at lower energies, say 100 GeV or 41 GeV.

In the future, optics optimization should be carried out including emittance coupling in

the design directly. We calculated the damped equilibrium horizontal emittance and take 5%

coupling to get the vertical emittance. ELEGANT particle tracking simulations to calculate

equilibrium beam parameters do not introduce coupling.

6.1.2 HOM STUDIES

In a dual energy storage ring cooler, SRF cavities are used to accelerate or decelerate

the high average current and high bunch charge beams. Different eigenmodes of frequencies

are excited when the beam passes through these cavities. Higher order modes (HOM) are

parasitic eigenmodes with frequencies higher than that of the fundamental operating mode.
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HOMs are one of the dominating factors that need to be considered in designing high-current

cavities. These modes can limit the performance and operation of SRF cavities. In general,

multi-pass multi-bunch instabilities are driven by high impedance dipole modes, resulting

in the beam breakup. Further power loss into the HOMs must be removed from these SRF

cavities. The future work involves identifying and investigating possible trapped HOM modes

that might result in multi bunch instabilities in a dual energy storage ring cooler.

6.1.3 IDENTIFY POTENTIAL ISSUES

Some possible potential issues such as coherent synchrotron radiation (CSR) and beam-

break up studies should be carried out. CSR eventually leads towards the collective insta-

bilities and may affects the operation of the electron storage ring. Future work involves

studying such effects in a dual energy storage ring.

6.1.4 POSSIBLE APPLICATIONS OF A DUAL ENERGY STORAGE RING

A dual-energy electron storage ring configuration was initially proposed as an electron

cooler to cool the ion beam in a collider. In this novel configuration of a dual energy storage

ring, an energy recovery linac structure is a sandwich between two rings that continuously

accelerates and decelerates the electron beam. Such a configuration may have various appli-

cations in the field of accelerator science. A dual energy storage ring design concept can be

used for the following applications [55]:

• Electron cooler for hadron beam cooling at high energy.

• Ultra-short bunches for light source applications.

• Compton source of radiation

• Fundamental studies such as Electric Dipole Moment (EDM) search, dark matter

search, low-energy electron physics, and figure-8 ring test.

• Test of beam-beam effects with both co- and counter-propagating beams with inter-

esting beam-beam tune shifts.

• Tests of cryomodules, HOM couplers, and crab cavities at high currents.

• Isotope production test.

• Positron production tests and low – energy positron physics and applications.
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FIG. 16: Schematic Drawing of a Dual-Color Compton Light Source (Left) and Compton

Scattering Process (Right).

• Serve as a driver beam for tests of a plasma afterburner.

Among the above-listed possible applications based on a dual energy storage ring configu-

ration, we briefly discuss two possible applications: a dual-color Compton light source and

electric dipole moment measurement.

When a relativistic electron beam interacts with a high-field laser beam, intense and

highly collimated electromagnetic radiation will be generated through Compton scatter-

ing. This process generates highly energetic polarized photons along the electron beam mo-

tion [56]. Because the intense radiation is produced with desirable properties, many Compton

light source facilities worldwide exist. We propose a new design concept for Compton light

sources based on a dual energy storage ring. The schematic drawing of a dual-color Compton

light source is shown in Fig. 16. In this design concept, an ERL is used to accelerate and

decelerate the beam at two different energies: EL for the low energy loop and EH for the high

energy loop respectively. Fixed Field Alternating Gradient (FFA) optics is used in the arc

design since the FFA arcs are able to contain beams of significantly different energies [57].

Due to different beam rigidity, low energy electron beam bends more and moves along the

path indicated by solid blue line whereas high energy electron beam bends less and moves

along the solid black line. A high-power laser incident at Interaction Point (IP) interacts

with an electron beam and undergoes Compton scattering. As a result, high-energy X-ray

radiation is produced. The theory of Compton scattering of a laser photon by a relativistic
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FIG. 17: Layout of a Dual Energy Storage Ring for Measuring the Electron Electric Dipole

Moment.

electron is discussed in [58]. The great advantage of this dual-color Compton light source

design is that it can provide two beams with different photon energies for one experiment.

A dual-energy storage ring design can be used to perform experiments to measure the

permanent Electric Dipole Moment (EDM) of the electron relevant to CP violation and

matter-antimatter asymmetry in the universe and to search for dark energy and ultra-light

dark matter. The simplest layout design of a ring for measuring the electron EDM is pre-

sented in Fig. 17 [59]. A dual energy storage ring in Fig. 17 is configured in the figure-8 spin

transparency mode so the net bend at each energy is zero. This eliminates the spin preces-

sion due to the Magnetic Dipole Moment (MDM). SRF cavities accelerate and decelerate the
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electron beam going from the low energy ring to the high energy ring and vice-versa. The

beam directions in the two arcs of each energy are opposite to one another, making the net

bending angle zero. This principle is equally applicable to hadron beams. However, while

electrostatic acceleration and deceleration may be sufficient for electrons, hadron beams re-

quire a more significant energy difference that an electrostatic field cannot provide. Such a

significant energy difference may be achieved using Energy Recovering Linacs (ERLs).

The optics design of such a ring system to measure the EDM must provide a high efficiency

in terms of the EDM spin rotation rate, a long spin coherence time, adequate momentum

acceptance and dynamic aperture, low emittance growth rates due to Intra-Beam Scattering

(IBS), and acceptable stored beam size. Since there is a change in the bending direction

between the adjacent arcs, each arc must be achromatic.

The dispersion can be suppressed in each arc by varying the bending direction within

the arc, keeping its net bend fixed at 180◦. This allows for an achromatic weak-focusing arc

design with constant horizontal and vertical focusing strengths [60]. A conventional Mott

polarimeter can be used to measure the electron beam polarization in the energy range from

a few keV to a few MeV. The principle of Mott polarimetry and the experimental procedure

to measure the electron EDM are discussed in [61]. The SRF structure in this design has

time-varying magnetic fields accompanying the oscillating electric fields. The effect of these

magnetic fields on the spins requires further study.

6.1.5 EFFICIENCY IN A DUAL ENERGY STORAGE RING COOLER

Next consider a dual energy storage ring cooler as a heat pump. The electron beam

temperature in such a cooler arises from the radiative equilibrium formed between quantized

emission and radiation damping in the ring. The RF system provides the operating energy

to the beam by acceleration. The work on each electron, per pass, exactly balances the

amount of radiation it emits. The following thermodynamics argument is applicable in a

dual energy storage ring cooler.

In the cooler, the electrons pick up heat ∆Q from the ion beam at temperature Tcool.

The entropy change in the electron beam is ∆Q/Tcool. This entropy change causes a slight

temperature (emittance) increase in the electron beam. Suppose the average temperature

the beam radiates the heat away is Trad. For the same amount of entropy to leave the electron

beam ∆Qrad = (Trad/Tcool)∆Q, and the difference ∆Qrad −∆Q = W is the additional work

needed to run the cooler [62]. The work done Wcooler, and efficiency εcooler of such a cooler
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is defined by

Wcooler =

(
Trad − Tcool

Tcool

)
∆Q,→ εcooler =

Tcool

Trad − Tcool

. (185)

Based on the analysis of the Carnot cycle, the efficiency ε of a refrigerator or heat pump

cannot exceed

ε =
T2

T1 − T2

, (186)

where T2 is the (lower) temperature at which heat is put into the working fluid, and T1 is

the temperature at which heat leaves the working fluid and is rejected into the environment.

A storage ring electron cooler operates with this maximum efficiency.

Consistent with this analysis, the following conclusion can be made: The storage ring

must be designed be such that Trad > Tcool. If it is not so designed, as in the reversible heat

pump, the cycle actually runs in the opposite direction. Some heat that is not radiated is

transferred and the “cooler” actually rejects heat into the higher temperature ion beam and

a beam heater results. Also Trad 6= Tcool. According to the second law of thermodynamics,

no net heat flow can develop between two systems at the same temperature.

In a beam, no energy enters or leaves it except through the RF and the synchrotron

radiation. Any beam compression or decompression is adiabatic to a good approximation.

Hence a beam can be considered a very good physical model of a Carnot cycle, as long

as the beam temperature at which the synchrotron radiation emits can be well quantified.

Whether there exists any precision thermodynamics experiment that could be done with a

dual energy storage ring cooler is an interesting question for future work.
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APPENDIX A

FUNDAMENTALS OF RF CAVITY

An ideal cavity is a vacuum volume enclosed by perfectly conducting surfaces. The

electromagnetic fields in a cavity are solutions of Maxwell equations in a vacuum defined as

~∇ · ~E = 0,

~∇ · ~B = 0,

~∇× ~E = −∂
~B

∂t
,

~∇× ~B =
1

c2

∂ ~E

∂t
.

(187)

The boundary condition near a perfect conductor is that, outside the conductor the electric

field is perpendicular to the surface whereas the magnetic field must be parallel to the surface,

i.e. n̂ × ~E = 0, n̂ · ~H = 0 and ~B = µ0
~H, µ0 is the permeability of free-space. We assume

that the spatial and temporal variation of the fields in a cavity with a cylindrical geometry

can be represented as

~E(x, t) = ~E(ρ, φ)eikz−iωt

~H(x, t) = ~H(ρ, φ)eikz−iωt,
(188)

where k is the wave number, ω is the angular frequency of the cavity, . Maxwell’s equations

defined in Eq. 187 combine to yield the wave equations(
∇2 − 1

c2

∂2

∂t2

){ ~E

~H

}
. (189)

Now, substituting the values of fields in Eq. 188 into the Eq. 189, we get the following two

sets of solutions

∇2
⊥
~E +

(ω2

c2
− k2

)
~E = 0,

∇2
⊥
~B +

(ω2

c2
− k2

)
~B = 0.

(190)

The term ∇2
⊥ refers to the transverse components of the Laplace differential operator. Under

the boundary conditions in cylindrical symmetric geometry, the solutions given by Eq. 190 are
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known as the eigenmodes of the cavity, each with a characteristic frequency. This transverse

solution can be divided into two types as a transverse electric (TE) and the transverse

magnetic (TM) modes.

Consider a cylindrical cavity which has radius R and height L, the solutions for transverse

magnetic modes TMmnp are given by

Ez = E0 cos
(pπz
L

)
Jm

(xmnρ
R

)
cos(mφ),

Eρ = −E0

( pπR
Lxmn

)
sin
(pπz
L

)
J ′m

(xmnρ
R

)
cos(mφ),

Eφ = E0
mpπR2

ρLx2
mn

sin
(pπz
L

)
Jm

(xmnρ
R

)
sin(mφ),

Hz = 0,

Hρ = iE0
mωmnpR

2

ηcρx2
mn

cos
(pπz
L

)
Jm

(xmnρ
R

)
sin(mφ),

Hφ = iE0
ωmnpR

ηcxmn
cos
(pπz
L

)
J ′m

(xmnρ
R

)
cos(mφ).

(191)

Similarly, the solutions for the transverse electric modes TEmnp are

Hz = H0 sin
(pπz
L

)
Jm

(x′mnρ
R

)
cos(mφ),

Hρ = H0

( pπR
Lxmn

)
cos
(pπz
L

)
J ′m

(x′mnρ
R

)
cos(mφ),

Hφ = −H0
mpπR2

ρLx′2mn
cos
(pπz
L

)
Jm

(x′mnρ
R

)
sin(mφ),

Ez = 0,

Eρ = iH0
mηωmnpR

2

cρx′2mn
sin
(pπz
L

)
Jm

(x′mnρ
R

)
sin(mφ),

Eφ = iH0
ηωmnpR

ηcx′mn
sin
(pπz
L

)
J ′m

(x′mnρ
R

)
cos(mφ)

(192)

where c is the speed of the light, η is the free space impedance, ω is the frequency of each

mode, Jm is the mth order Bessel function of first kind and J ′m is its derivative. The xmn and

x′mn are the nth zero of the Bessel functions Jm and J ′m of order m respectively. m,n, and p

in TMmnp and TEmnp are integers that corresponds to the number of sign changes of Ez or

Hz in φ, ρ, and z directions considering a cylindrical coordinates system. The frequency of

TM and TE modes are given by

ωmnp(TM) = c

√(xmnc
R

)2

+
(pπ
L

)2

,

ωmnp(TE) = c

√(x′mnc
R

)2

+
(pπ
L

)2

.

(193)
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APPENDIX B

ELECTRON BEAM TEMPERATURE CALCULATION

We get the damped equilibrium emittance and energy spread of electron beam by consid-

ering the combined effect of synchrotron radiation, and quantum excitation. With damped

equilibrium beam parameters, Electron beam temperature are calculated in the cooler section

to be used to run in JSPEC simulation.

• Matched beta function for a solenoid: βs = 2p
eBs

= 2×3.3357(Tm/(GeV/c)×p(GeV/c)
Bs

, where Bs

is the longitudinal magnetic field applied in the cooling solenoid.

• Normalized drift emittance (in the lab frame) εNd = βγ〈r2〉
βs

.

• Un-normalized drift emittance : εd = 〈r2〉
βs

= 2〈x2〉
βs

for around beam.

• Un-normalized drift emittance : εd = 〈r2〉
βs

= 〈x2〉+〈y2〉
βs

, for a flat beam.

• Normalized Larmor emittance (in the lab frame) : εNL =
βγV 2

⊥
c2

βs.

• Un-normalized Larmor emittance : εL =
V 2
⊥
c2
βs.

• Transverse temperature (defined in the beam frame) : T⊥ = meV
2
⊥[eV ]γ2 =

mec
2 εL
βs
γ2, V 2

⊥ = V 2
x + V 2

y .

• Longitudinal temperature : T‖ = mec
2(∆p

p
)2.

• Traditional temperature ε =
√
εdεL.

• In our calculation of cooling rates, εd = εx
2
, (εx is the damped emittance), εL = εy

2
.

Then εL → T⊥,
∆p
p
→ T‖
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APPENDIX C

ELEGANT TRACKING FILE

&change_particle

name = electron

&end

&run_setup

lattice = SR_500MeV.lte,

use_beamline = SR_cooler,

p_central = 293.541002921706, !LER 150 MeV

! p_central = 978.4751765220160,!HER 500 MeV

parameters = "%s.param",

! default_order = 2,

! concat_order = 3,

centroid = "%s.cen",

always_change_p0 = 0,

! random_number_seed = 0,

&end

&alter_elements name=*, type=CSBEND, item=N_KICKS, value=150,

allow_missing_elements=1 &end

&alter_elements name=*, type=KSEXT, item=N_KICKS, value=200,

allow_missing_elements=1 &end

&alter_elements name=*, type=KQUAD, item=N_KICKS, value=150,

allow_missing_elements=1 &end

!&alter_elements name=B*, type=CSBEND, item=SYNCH_RAD, value=1 &end

!&alter_elements name=B*, type=CSBEND, item=ISR, value=1 &end

!&alter_elements name=Q*, type=KQUAD, item=SYNCH_RAD, value=1 &end
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!&alter_elements name=Q*, type=KQUAD, item=ISR, value=1 &end

!&alter_elements name=S*, type=*SEXT*, item=SYNCH_RAD, value=1 &end

!&alter_elements name=S*, type=*SEXT*, item=ISR, value=1 &end

&run_control

! n_indices = 1

! n_steps = 1

n_passes = 1000

&end

&bunched_beam n_particles_per_bunch = 1,

centroid[0] = 0.0,0.0,0.0,0.0,0.0,0.0 &end

&track &end

&stop &end

!Bunched beam case

&bunched_beam

bunch = "%s.bun"

n_particles_per_bunch = 5,

sigma_dp = 1e-03

sigma_s = 14e-02

! emit_z = 1e-06,

! beta_z = 99.0668359, alpha_z = -0.071976102,

distribution_type[0] = 3*"uniform-ellipse",

distribution_cutoff[0] = 1,1,1,

&end

&track &end

&stop &end



94

APPENDIX D

ELEGANT TWISS SET-UP FILE

&change_particle

name = electron

&end

! comment the below : divide_elements when matching elements

in momentum aperture run

&divide_elements name=*, type=CSBEND, divisions=5 &end

!&divide_elements name=*, type=KQUAD, divisions=5 &end

!&divide_elements name=*, type=KSEXT, divisions=5 &end

&run_setup

lattice = SR_500MeV.lte,

use_beamline = SR_cooler,

! p_central = 293.541002921706, !LER 150 MeV

p_central = 978.4751765220160, !HER 500 MeV

default_order = 2,

concat_order = 2,

! centroid = %s.cen,

! acceptance = %s.acc,

! final = %s.fin,

output = %s.out ,

! always_change_p0 = 1

parameters = %s.param,

magnets = "%s.mag",

! rootname=<rootname>

&end
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!there is no need to set synch_rad=1 for twiss parameter output

&run_control

! n_steps = 1,

n_passes = 1

&end

&twiss_output

filename = "%s.twi",

! concat_order = 2,

matched = 1,

! output_at_each_step = 1,

radiation_integrals = 1,

higher_order_chromaticity = 1,

higher_order_chromaticity_range = 3e-6,

higher_order_chromaticity_points = 7,

compute_driving_terms = 1,

&end

&bunched_beam n_particles_per_bunch = 1 &end

&matrix_output

printout = "%s.mpr"

printout_order = 1

&end

&track &end

&stop &end
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APPENDIX E

ELEGANT LATTICE FILE

DLMT12:DRIFT,L=1.4

QLMT12:KQUAD,L=0.25,K1=-1.1373174212,TILT=0,N_KICKS=10

DLMT11:DRIFT,L=2.9

QLMT11:KQUAD,L=0.25,K1=1.2148799268,TILT=0,N_KICKS=10

QLMT10:KQUAD,L=0.25,K1=-1.207033748,TILT=0,N_KICKS=10

DLMT10:DRIFT,L=2.9

QLMT09:KQUAD,L=0.25,K1=1.052500738,TILT=0,N_KICKS=10

DLMT09:DRIFT,L=2.9

QLMT08:KQUAD,L=0.25,K1=-0.7339796576,TILT=0,N_KICKS=10

DLMT08:DRIFT,L=2.9

QLMT07:KQUAD,L=0.25,K1=0.40639472,TILT=0,N_KICKS=10

DLMT07:DRIFT,L=2.9

QLMT06:KQUAD,L=0.25,K1=-0.519852988,TILT=0,N_KICKS=10

DLDS01:DRIFT,L=1.25

BXLDS:CSBEND,L=1, ANGLE=0.1963495408,TILT=0,&

E1=0.0,E2=0.0,K1=0.0,N_KICKS=10

QLDS04:KQUAD,L=0.25,K1=1.044472586,TILT=0,N_KICKS=10

QLDS03:KQUAD,L=0.25,K1=-1.165652134,TILT=0,N_KICKS=10

QLDS02:KQUAD,L=0.25,K1=1.3305682628,TILT=0,N_KICKS=10

QLARC01:KQUAD,L=0.25,K1=-1.3842288308,TILT=0,N_KICKS=10

DLARC01:DRIFT,L=0.25

SXLARC01:KSEXT,L=0.25,k2=-12.60302638,TILT=0,N_KICKS=10

!SXLARC01:KSEXT,L=0.25,k2=0.0,TILT=0,N_KICKS=10

DLARC02:DRIFT,L=0.75

BXLARC:CSBEND,L=1, ANGLE=0.3926990817,TILT=0,&

E1=0.0,E2=0.0,K1=0.0,N_KICKS=10

DLARC03:DRIFT,L=1.25

QLARC02:KQUAD,L=0.25,K1=0.8192991508,TILT=0,N_KICKS=10
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! yeslai uncomment garne ho hai zero test paxi

SXLARC02:KSEXT,L=0.25,k2=8.216007204,TILT=0,N_KICKS=10

!SXLARC02:KSEXT,L=0.25,k2=0.0,TILT=0,N_KICKS=10

DLMT06:DRIFT,L=0.5

QLMT05:KQUAD,L=0.25,K1=-2.4865962008,TILT=0,N_KICKS=10

DLMT05:DRIFT,L=1.8

QLMT04:KQUAD,L=0.25,K1=3.1614112472,TILT=0,N_KICKS=10

DLMT04:DRIFT,L=1.8

QLMT03:KQUAD,L=0.25,K1=2.57976146,TILT=0,N_KICKS=10

DLMT03:DRIFT,L=1.8

QLMT02:KQUAD,L=0.25,K1=-3.1431037448,TILT=0,N_KICKS=10

DLMT02:DRIFT,L=0.6

QLMT01:KQUAD,L=0.25,K1=2.5366239528,TILT=0,N_KICKS=10

DLMT01:DRIFT,L=0.3

SOL_H:DRIFT,L=12.5

MXBTAC1:EMATRIX,L=0,ORDER=1,&

R11=1.82574185791,R12=-6.00987037913e-10,R13=0.0,R14=0.0,R15=0.0,

R16=-1.59614632155e-19,&

R21=1.11846643058e-11,R22=0.547722557581,R23=0.0,R24=0.0,R25=0.0,

R26=-2.38332706462e-21,&

R31=0.0,R32=0.0,R33=1.82574185883,R34=1.61828328515e-10,

R35=0.0,R36=0.0,&

R41=0.0,R42=0.0,R43=1.64295105298e-11,R44=0.54772255743,

R45=0.0,R46=0.0,&

R51=0.0,R52=5.16987882846e-26,R53=0.0,R54=0.0,

R55=1.0,R56=0.0,&

R61=0.0,R62=0.0,R63=0.0,R64=0.0,R65=0.0,R66=1.0

DHMT12:DRIFT,L=1.4

QHMT12:KQUAD,L=0.25,K1=0.4263975716,TILT=0,N_KICKS=10

DHMT11:DRIFT,L=2.9

QHMT11:KQUAD,L=0.25,K1=-0.16420329672,TILT=0,N_KICKS=10

QHMT10:KQUAD,L=0.25,K1=-0.8568511784,TILT=0,N_KICKS=10
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DHMT10:DRIFT,L=2.9

QHMT09:KQUAD,L=0.25,K1=1.010767854,TILT=0,N_KICKS=10

DHMT09:DRIFT,L=2.9

QHMT08:KQUAD,L=0.25,K1=-0.305278963,TILT=0,N_KICKS=10

DHMT08:DRIFT,L=2.9

QHMT07:KQUAD,L=0.25,K1=0.4287427224,TILT=0,N_KICKS=10

DHMT07:DRIFT,L=2.9

QHMT06:KQUAD,L=0.25,K1=-0.909010916,TILT=0,N_KICKS=10

DHDS01:DRIFT,L=1.25

BXHDS:CSBEND,L=1, ANGLE=-0.1963495408,TILT=0,&

E1=0.0,E2=0.0,K1=0.0,N_KICKS=10

QHDS04:KQUAD,L=0.25,K1=1.044472586,TILT=0,N_KICKS=10

QHDS03:KQUAD,L=0.25,K1=-1.165652134,TILT=0,N_KICKS=10

QHDS02:KQUAD,L=0.25,K1=1.3305682628,TILT=0,N_KICKS=10

QHARC01:KQUAD,L=0.25,K1=-1.3842288308,TILT=0,N_KICKS=10

DHARC01:DRIFT,L=0.25

! yslai uncomment garne ho hai zero test paxi

SXHARC01:KSEXT,L=0.25,k2=12.60302638,TILT=0,N_KICKS=10

!SXHARC01:KSEXT,L=0.25,k2=0.0,TILT=0,N_KICKS=10

!SXHARC01:KSEXT,L=0.25,k2=25.255828880,TILT=0,N_KICKS=10

DHARC02:DRIFT,L=0.75

BXHARC:CSBEND,L=1, ANGLE=-0.3926990817,TILT=0,&

E1=0.0,E2=0.0,K1=0.0,N_KICKS=10

DHARC03:DRIFT,L=1.25

QHARC02:KQUAD,L=0.25,K1=0.8192991508,TILT=0,N_KICKS=10

! yeslai uncomment garne la zero test paxi

SXHARC02:KSEXT,L=0.25,k2=-8.216007189,TILT=0,N_KICKS=10

!SXHARC02:KSEXT,L=0.25,k2=0.0,TILT=0,N_KICKS=10

!SXHARC02:KSEXT,L=0.25,k2=-16.420585953,TILT=0,N_KICKS=10

QHMT31:KQUAD,L=0.25,K1=-1.3229761492,TILT=0,N_KICKS=10
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DHMT31:DRIFT,L=1.585

QHMT32:KQUAD,L=0.25,K1=1.134552496,TILT=0,N_KICKS=10

DHMT32:DRIFT,L=1.585

QHMT33:KQUAD,L=0.25,K1=-0.756561852,TILT=0,N_KICKS=10

DHMT33:DRIFT,L=1.585

QHMT34:KQUAD,L=0.25,K1=1.0511401528,TILT=0,N_KICKS=10

DHMT34:DRIFT,L=1.585

QHMT35:KQUAD,L=0.25,K1=-1.41462735,TILT=0,N_KICKS=10

DHMT35:DRIFT,L=1.585

QHTT02:KQUAD,L=0.25,K1=1.220298132,TILT=0,N_KICKS=10

DHTT01:DRIFT,L=3.5

QHTT01:KQUAD,L=0.25,K1=-1.209560824,TILT=0,N_KICKS=10

MXBTDC1:EMATRIX,L=0,ORDER=1,&

R11=0.547722557568,R12=-1.32296174016e-09,R13=0.0,R14=0.0,R15=0.0,

R16=5.86642694277e-19,&

R21=4.1597489342e-11,R22=1.82574185808,R23=0.0,R24=0.0,R25=0.0,

R26=-4.61126049634e-20,&

R31=0.0,R32=0.0,R33=0.547722557527,R34=-5.5315418912e-11,

R35=0.0,R36=0.0,&

R41=0.0,R42=0.0,R43=1.62173503793e-11,R44=1.82574185806,

R45=0.0,R46=0.0,&

R51=1.29246970711e-26,R52=0.0,R53=0.0,R54=0.0,R55=1.0,

R56=0.0,&

R61=0.0,R62=0.0,R63=0.0,R64=0.0,R65=0.0,R66=1.0

! Making very small M56

MSLIP: EMATRIX, L=0, ORDER=1, &

R11=1.0, R12=0.0, R13=0.0, R14=0.0, R15=0.0, R16=0.0, &

R21=0.0, R22=1.0, R23=0.0, R24=0.0, R25=0.0, R26=0.0, &

R31=0.0, R32=0.0, R33=1.0, R34=0.0, R35=0.0, R36=0.0, &

R41=0.0, R42=0.0, R43=0.0, R44=1.0, R45=0.0, R46=0.0, &

R51=0.0, R52=0.0, R53=0.0, R54=0.0, R55=1.0, R56=-12.30, &

R61=0.0, R62=0.0, R63=0.0, R64=0.0, R65=0.0, R66=1.0
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!original, with radiation on

!97.7 MHz, CSBEND+QUAD+SEXT (Syn_rad+ISR)

!ACRF:RFCA,L=0,VOLT=393750000.0,PHASE=90.0,FREQ=97777085.5029211000,

CHANGE_T=1,CHANGE_P0=0

!HMRF1:RFCA,L=0,VOLT=-43750000.0,PHASE=90.0,FREQ=293331256.508763000,

CHANGE_T=1,CHANGE_P0=0

!DCRF:RFCA,L=0,VOLT=393750000.0,PHASE=270.0,FREQ=97777085.5029211000,

CHANGE_T=1,CHANGE_P0=0

!HMRF2:RFCA,L=0,VOLT=-43750000.0,PHASE=270.0,FREQ=293331256.508763000,

CHANGE_T=1,CHANGE_P0=0

!BUCRF:RFCA,L=0,VOLT=80.0,PHASE=180.0,FREQ=97777085.5029211000,

CHANGE_T=1,CHANGE_P0=0

!COM_RF:RFCA,l=0.0,VOLT=1643.6751269522,FREQ=97777085.5029211000,

PHASE=90, CHANGE_T=1,CHANGE_P0=0

en1: energy, central_momentum=293.541002921706, ! 150 MeV

en2: energy, central_momentum=978.4751765220160, ! 500 MeV

!MA: malign,dp=3.0E-03,on_pass=1 ! put MA after en1

!MA: malign,on_pass=1

!w1: watch,filename="%s.w1",mode="centroid"

w1: watch,filename="%s.w1",mode="coordinates"

w2: watch,filename="%s.w2",mode="coordinates"

w3: watch,filename="%s.w3",mode="coordinates"

w4: watch,filename="%s.w4",mode="coordinates"

w5: watch,filename="%s.w5",mode="coordinates"

w6: watch,filename="%s.w6",mode="coordinates"

w7: watch,filename="%s.w7",mode="coordinates"
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w8: watch,filename="%s.w8",mode="coordinates"

w9: watch,filename="%s.w9",mode="coordinates"

wemit1:watch,filename="%s.wemit1",mode="parameter"

wemit2:watch,filename="%s.wemit2",mode="parameter"

LER: LINE=(&

DLMT12,QLMT12,DLMT11,QLMT11,DLMT11,QLMT10,DLMT10,

QLMT09,DLMT09,QLMT08,&

DLMT08,QLMT07,DLMT07,QLMT06,DLDS01,

BXLDS,DLDS01,QLDS04,DLDS01,BXLDS,&

DLDS01,QLDS03,DLDS01,BXLDS,DLDS01,

QLDS02,DLDS01,BXLDS,DLDS01,QLARC01,&

DLARC01,SXLARC01,DLARC02,BXLARC,

DLARC03,QLARC02,DLARC01,SXLARC02,DLARC02,BXLARC,&

DLARC03,QLARC01,DLARC01,SXLARC01,

DLARC02,BXLARC,DLARC03,QLARC02,DLARC01,SXLARC02,&

DLARC02,BXLARC,DLARC03,QLARC01,DLDS01,BXLDS,

DLDS01,QLDS02,DLDS01,BXLDS,&

DLDS01,QLDS03,DLDS01,BXLDS,DLDS01,

QLDS04,DLDS01,BXLDS,DLDS01,DLMT06,&

QLMT05,DLMT05,QLMT04,DLMT04,QLMT03,

DLMT03,QLMT02,DLMT02,QLMT01,DLMT01,&

SOL_H,w2,SOL_H,DLMT01,QLMT01,DLMT02,

QLMT02,DLMT03,QLMT03,DLMT04,QLMT04,&

DLMT05,QLMT05,DLMT06,DLDS01,BXLDS,DLDS01,

QLDS04,DLDS01,BXLDS,DLDS01,&

QLDS03,DLDS01,BXLDS,DLDS01,QLDS02,DLDS01,

BXLDS,DLDS01,QLARC01,DLARC01,&

SXLARC01,DLARC02,BXLARC,DLARC03,QLARC02,

DLARC01,SXLARC02,DLARC02,BXLARC,DLARC03,&

QLARC01,DLARC01,SXLARC01,DLARC02,BXLARC,

DLARC03,QLARC02,DLARC01,SXLARC02,DLARC02,&

BXLARC,DLARC03,QLARC01,DLDS01,BXLDS,DLDS01,

QLDS02,DLDS01,BXLDS,DLDS01,&
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QLDS03,DLDS01,BXLDS,DLDS01,QLDS04,DLDS01,

BXLDS,DLDS01,QLMT06,DLMT07,&

QLMT07,DLMT08,QLMT08,DLMT09,QLMT09,

DLMT10,QLMT10,DLMT11,QLMT11,DLMT11,&

QLMT12,DLMT12)

HER: LINE=(&

DHMT12,QHMT12,DHMT11,QHMT11,DHMT11,QHMT10,DHMT10,&

QHMT09,DHMT09,QHMT08,DHMT08,QHMT07,DHMT07,

QHMT06,DHDS01,BXHDS,DHDS01,&

QHDS04,DHDS01,BXHDS,DHDS01,QHDS03,DHDS01,

BXHDS,DHDS01,QHDS02,DHDS01,&

BXHDS,DHDS01,QHARC01,DHARC01,SXHARC01,

DHARC02,BXHARC,DHARC03,QHARC02,DHARC01,&

SXHARC02,DHARC02,BXHARC,DHARC03,QHARC01,

DHARC01,SXHARC01,DHARC02,BXHARC,DHARC03,&

QHARC02,DHARC01,SXHARC02,DHARC02,BXHARC,

DHARC03,QHARC01,DHDS01,BXHDS,DHDS01,&

QHDS02,DHDS01,BXHDS,DHDS01,QHDS03,DHDS01,

BXHDS,DHDS01,QHDS04,DHDS01,&

BXHDS,DHDS01,QHMT31,DHMT31,QHMT32,DHMT32,

QHMT33,DHMT33,QHMT34,DHMT34,&

QHMT35,DHMT35,QHTT02,DHTT01,QHTT01,DHTT01,

QHTT02,DHTT01,QHTT01,DHTT01,&

QHTT02,DHTT01,QHTT01,DHTT01,QHTT02,DHMT35,

QHMT35,DHMT34,QHMT34,DHMT33,&

QHMT33,DHMT32,QHMT32,DHMT31,QHMT31,

DHDS01,BXHDS,DHDS01,QHDS04,DHDS01,&

BXHDS,DHDS01,QHDS03,DHDS01,BXHDS,DHDS01,

QHDS02,DHDS01,BXHDS,DHDS01,&

QHARC01,DHARC01,SXHARC01,DHARC02,BXHARC,

DHARC03,QHARC02,DHARC01,SXHARC02,DHARC02,&

BXHARC,DHARC03,QHARC01,DHARC01,SXHARC01,DHARC02,



103

BXHARC,DHARC03,QHARC02,DHARC01,&

SXHARC02,DHARC02,BXHARC,DHARC03,QHARC01,

DHDS01,BXHDS,DHDS01,QHDS02,DHDS01,&

BXHDS,DHDS01,QHDS03,DHDS01,BXHDS,DHDS01,

QHDS04,DHDS01,BXHDS,DHDS01,&

QHMT06,DHMT07,QHMT07,DHMT08,QHMT08,DHMT09,

QHMT09,DHMT10,QHMT10,DHMT11,&

QHMT11,DHMT11,QHMT12,DHMT12)

!Twiss

SR_cooler: LINE=(HER)

!SR_cooler: LINE=(LER,MXBTAC1,HER,MXBTDC1)

RETURN
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APPENDIX F

DAMPING AND IBS TIME CALCULATIONS

Damping times in a dual energy storage ring design are calculated using ELEGANT. This

method uses the individual ring optics. Damped equilibrium energy spread and emittance

values are taken for each rings. The following syntax in ELEGANT is used:

ibsEmittance twissFile resultFile -particles=6.9E10 -coupling=0.05

-isRing=1 -emitInput=damped emittance

-deltaInput=damped energy spread

-length=bunch length (mm)

To get the damping times values, use the following command

sddsprintout resultFile -par=taux -par=tauy -par=taudelta

taux, tauy, and taudelta printout the horizontal, vertical and longitudinal damping times.

To get the IBS rates, use the following command

sddsprintout resultFile -par=xGrowthRateInitial

-par=yGrowthRateInitial -par=zGrowthRateInitial

xGrowthRateInitial, yGrowthRateInitial, and zGrowthRateInitial printout the horizontal,

vertical and longitudinal IBS rates respectively. The total damping and IBS times calculation

after this follows the methods explained in Chapter 4.

Reference:

https://ops.aps.anl.gov/manuals/elegant_latest

/elegantsu94.html#x103-1020008.9

In a storage ring, damping times can be calculated theoretically using the following

formulas

τx =
2E0T0

JxU0

, τy =
2E0T0

JyU0

, τz =
2E0T0

JzU0

, (194)

where τx, τy, and τz are the horizontal, vertical, and longitudinal damping times, respectively.

E0, T0, U0 are the beam energy, revolution time, and the energy loss per turn due to syn-

chrotron radiation. Jx, Jy, and Jz are the damping partition numbers such that Jx + Jy + Jz

= 4.
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APPENDIX G

ELEGANT FILE TO CALCULATE DYNAMIC APERTURE

!DA calculation

!Tracking ==================================================================

&run_setup

lattice = SR_500MeV.lte,

use_beamline = SR_cooler,

p_central = 293.541002921706, !LER 150 MeV

! p_central = 978.4751765220160,! HER 1000 MeV

parameters = "%s.param",

acceptance = %s.acc

! default_order = 2,

! concat_order = 3,

centroid = "%s.cen",

! always_change_p0 = 0,

! random_number_seed = 0

&end

!&twiss_output

! filename = "%s.twi",

! concat_order = 1,

! matched = 1,

! radiation_integrals = 1

! beta_x = 100

! beta_y = 100

! output_at_each_step = 0

!&end

&alter_elements name=*, type=CSBEND, item=N_KICKS, value=150,

allow_missing_elements=1 &end
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&alter_elements name=*, type=KSEXT, item=N_KICKS, value=200,

allow_missing_elements=1 &end

&alter_elements name=*, type=KQUAD, item=N_KICKS, value=150,

allow_missing_elements=1 &end

&run_control

! n_indices = 1

! n_steps = 1

n_passes=500

&end

!&vary_element

! index_number = 0,

! index_limit = 11,

! name = mal,

! item = dp,

! initial = -5,

! final = 5,

! multiplicative = 1

!&end

&find_aperture

output = "%s.aper",

mode = "n-line",

n_lines = 5,

xmin = -0.001,

xmax = 0.01,

ymin=0,

ymax = 0.01,

nx = 5,

ny = 9,

n_splits = 8,
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split_fraction = 0.1,

verbosity = 1,

desired_resolution = 0.00001,

offset_by_orbit = 1

&end

&bunched_beam n_particles_per_bunch = 1 &end

&track &end

&stop &end
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APPENDIX H

ELEGANT FILE TO CALCULATE MOMENTUM APERTURE

!Momentum Aperture Run

&run_setup

lattice = SR_500MeV.lte,

magnets = %s.mag

p_central = 293.54100292171,

! p_central = 978.4751765220,

use_beamline= SR_cooler,

default_order = 3,

concat_order = 0,

centroid="%s.cen"

parameters = %s.paramOpt,

magnets = %s.mag,

losses = %s.lost

&end

!&insert_elements

! name = *,

! type = *[QLMT]*,

! skip = 1,

! element_def = "TEST: TSCATTER",

!&end

&twiss_output

filename = "%s.twi",

statistics=1,

radiation_integrals=1,

&end
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!&alter_elements name=Q*, type=KQUAD, item=SYNCH_RAD, value=1 &end

!&alter_elements name=B*, type=CSBEN*, item=SYNCH_RAD, value=1 &end

!&alter_elements name=S*, type=*SEXT*, item=SYNCH_RAD, value=1 &end

&run_control

n_passes = 1000

&end

&momentum_aperture

output = %s.mmap,

x_initial = 1e-5,

y_initial = 1e-5,

delta_negative_start = 0.0

delta_negative_limit = -0.01

delta_positive_start = 0.0,

delta_positive_limit = 0.01

delta_step_size = 0.001,

! oversteps = 1,

steps_back = 1,

split_step_divisor = 10,

splits = 10,

s_start = 0.0,

s_end = 343.4,

skip_elements = 0,

! include_name_pattern = TEST,

verbosity = 4

soft_failure = 1

&end

&track &end

&stop &end
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APPENDIX I

PYTHON SCRIPTS TO CALCULATE DAMPED PARAMETERS

! The following python codes calculate the damped emittances

import pandas as pd

import numpy as np

from math import sqrt

E_L = 150 !(Low energy ring energy in MeV)

E_H = 500 !(High energy ring enerhy in MeV)

mc2 = 0.510999 !(Rest mass of an electron in MeV)

g_L = E_L/mc2 !(relativisitic gamma for LER)

g_H = E_H/mc2

bg_L = sqrt((g_L*g_L)-1) !(Relativisitc beta for LER)

bg_H = sqrt((g_H*g_H)-1)

h_bar = 1.05457e-34

m = 9.10938356e-31

c = 299792458

a = 55*sqrt(3)/(24*4)

A = a*h_bar/(m*c)

! damping partition numbers in x, y, and s

Jx = 0.2144927 #(1 -xi) in the formula

Jy = 1

Js = 2.785507

!bending radius in meter

rho_L = 2.55 # bend radius for LER

rho_H = 2.55 # bend radius for HER

! radiation integrals

I5 = 0.74106

I2 = 1.85055
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Ex_nu = A*(pow(g_H,6)*I5 + (pow(g_L,6)*I5))

Ex_den = Jx*(pow(g_H,3)*I2 + (pow(g_L,3)*I2))

! LER and HER emittances

Ex_L = Ex_nu/(g_L*Ex_den)

Ex_H = Ex_nu/(g_H*Ex_den)

!Normalized LER and HER emittances

noremitt_L = Ex_L*bg_L

noremitt_H = Ex_H*bg_H

k = 0.05 !coupling factor

!Vertical emittances for LER and HER

veremitt_L = Ex_L*k/(1+k)

veremitt_H = Ex_H*k/(1+k)

!! The following codes calculate the energy spread

es_square_nu = A*(pow(g_L,7)+ pow(g_H,7))*(1/pow(rho_L,3))

!numerator term

es_square_den = Js*(pow(g_L,3)+pow(g_H,3))*(1/pow(rho_L,2))

!denominator term

es_squ_Low = es_square_nu/((pow(g_L,2)*es_square_den))

es_Low = sqrt(es_squ_Low) ! energy spread for LER

es_squ_High = es_square_nu/(pow(g_H,2)*es_square_den)

es_High = sqrt(es_squ_High) ! energy spread for HER
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APPENDIX J

PYTHON SCRIPTS TO CALCULATE TOUSCHEK LIFETIME

import pandas as pd

import numpy as np

r_e = 2.817e-15

c = 3e8

n = 6.9e10

e = 1.6e-19

q=n*e

E_e = 150

mc2 = 0.511

gamma = E_e/mc2

pi = 3.1416

C = 171.7

sigma_s = 0.025

A = r_e*r_e*c*q/(8*pi*e*gamma*gamma*gamma*sigma_s*C)

df1=pd.read_csv("twiss_param_1.txt",sep="\s+")

df2=pd.read_csv("twiss_param_2.txt",sep="\s+")

df3=pd.read_csv("mom_aper.txt",sep="\s+")

#Merging two sets of dataframe

df4 = df1.reset_index().merge(df2.reset_index(), left_index=True,

right_index=True, how=’left’)

df = df3.reset_index().merge(df4.reset_index(), left_index=True,

right_index=True, how=’left’)

for ind, row in df.iterrows():

df.loc[ind,"eta*delta_pos"] = row["deltaPositive"] * row["etax"]

for ind, row in df.iterrows():

df.loc[ind,"eta*delta_pos_square"] = row["eta*delta_pos"] *
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row["eta*delta_pos"]

for ind, row in df.iterrows():

df.loc[ind,"sigma_x^2"] = row["sigma_x1"] +

row["eta*delta_pos_square"]

for ind, row in df.iterrows():

df.loc[ind,"sigma_x"] = np.sqrt(row["sigma_x1"] +

row["eta*delta_pos_square"])

for ind, row in df.iterrows():

df.loc[ind,"H(s)"] = (row["gamma_x"]*row["etax"]*row["etax"])

+ (2* row["alphax"]*row["etax"]*row["etaxp"]) +

(row["betax"]*row["etaxp"]*row["etaxp"])

df[[’H(s)’]].mean()

ex = 2.287e-06

sigma_delta = 6.9E-04

sigma_delta_sqr = sigma_delta*sigma_delta

ratio = sigma_delta_sqr / ex

for ind, row in df.iterrows():

df.loc[ind,"sigma_div"] = (ex /row["sigma_x"])*

np.sqrt(1 + row["H(s)"]*ratio)

gamma_L = 293.54

for ind, row in df.iterrows():

df.loc[ind,"denominator"] = row["sigma_div"]*gamma_L

for ind, row in df.iterrows():

df.loc[ind,"x"] = row["deltaPositive"]/row["denominator"]

for ind, row in df.iterrows():

df.loc[ind,"x^2"] = row["x"]*row["x"]

# Integrating F(x) and getting array values of integration

for all values of x



114

from scipy.integrate import quad

import math

from math import log

x_values = df["x^2"].to_numpy()

I1 = np.empty(len(x_values))

def f(u,x):

return (1/u - 0.5*np.log(1/u) - 1)*np.exp(-x/u)

for i, x in enumerate(x_values):

I1[i] = quad(f, 0, 1, args=(x))[0]

for ind, row in df.iterrows():

df.loc[ind,"Pdel_square"] = row["deltaPositive"]*

row["deltaPositive"]

for ind, row in df.iterrows():

df.loc[ind,"I2"] = row["sigma_x"]*row["sigmay"]*

row["sigma_div"]*row["Pdel_square"]

df["I1"] = pd.Series(I1) # Convert numpy array into

dataframe column

for ind, row in df.iterrows():

df.loc[ind,"I"] = row["I1"] / row["I2"]

I_sum = df["I"].sum()

pos_trate = A*I_sum

pos_tlifetime = 1/pos_trate/3600 ! lifetime in hour
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