
EXPERIMENTAL STUDIES OF MULTIPASS BEAM BREAKUP AND
ENERGY RECOVERY USING THE CEBAF INJECTOR LINAC

BY

NICHOLAS S. R. SERENO

B.S., University of Illinois, 1987
M.S., University of Illinois, 1989

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Physics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois



Chapter 1

Introduction

Particle accelerators are now used in a multitude of applications in basic and applied

science. Initially driven by the needs of nuclear physics, accelerators now are used

in medicine, in the electronics industry for the development of fast microelectronic

devices, in the oil industry, in heavy ion fusion and in nuclear and particle physics

research (which use by far the largest, most powerful and therefore costliest accelera-

tors). More recently they have also been used to drive high power free electron lasers

(FELs). The unique features of high power and the ability to tune the wavelength

of the light over a broad range make the FEL important to many fields in basic and

applied research such as biology, chemistry, and materials science. It is not surprising

in view of the many and varied applications of particle accelerators that accelerator

physics as a discipline has grown out of the need to understand “the machine” itself.

Questions of prime importance to accelerator design concern the interaction of

the particle beam with the electromagnetic fields used to accelerate, guide and focus

it as it passes through the machine. These interactions can severely limit machine

performance and are therefore important to understand both theoretically and ex-

perimentally. The experimental and theoretical study of a particular collective beam

interaction known as multipass beam breakup in a superconducting linac is the sub-

ject of this thesis.

These experiments were performed at the Continuous Electron Beam Accelerator

Facility (CEBAF) in Newport News, Virginia where a 4 GeV 200 µA continuous wave
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(CW) superconducting linac is nearing completion. Understanding the multipass

BBU instability is crucial for considering such a device for producing high energy and

high current electron beams for nuclear physics research (CEBAF’s main mission) or

for driving a FEL where the energy of the beam after undergoing a lasing interaction

is returned to the accelerator. The large amount of energy remaining in the beam

after passing through the optical cavity can be recovered, thereby greatly increasing

the efficiency of the FEL.

Before proceeding with the main discussion of the multipass BBU instability and

energy recovery, it is useful to review some general aspects of particle motion in

accelerators. Although particle beams vary widely in specific properties, two basic

statements can be made that constitute a reasonable definition of a beam. First, the

beam is made up of an ensemble of particles that have one momentum component

much larger than the other two components so that each particle tends to follow the

same trajectory through space. The common trajectory in a given machine is known

as the “design” or “central” orbit. Particle motion at a given point along the design

orbit is described naturally in terms of a curvlinear coordinate system anchored to

the design orbit. Particle coordinates are expressed as functions of the arc length

parameter along the design orbit. Second, the individual particles that constitute the

beam remain “near” the design orbit. Using the curvlinear coordinate system the

particle equation of motion is expanded in a series about the design orbit and then

solved (see [Br84]). The first-order solution to the equation of motion shows that

particle motion is harmonic (both longitudinally and transverse) about the design

orbit (higher-order terms become important for particles that stray too far from the

design orbit).

The most common acceleration technique employed is based on a resonance con-

dition that must be satisfied in order for acceleration to occur. The particles obtain a

small energy increment many times thereby gaining a large energy at the exit of the

accelerator. The resonance condition guarantees that the acceleration field is applied
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when particles are present. The resonance condition implies that a particle beam

must consist of pulses of charge (a bunched beam) separated equally in time such

that the bunch separation is equal to (or some integral multiple of) the period of the

acceleration field of the accelerator.

A common approach to particle acceleration is provided by the linear accelerator

or linac. A linac uses the confined electromagnetic field of a microwave cavity to

accelerate charged particles. To illustrate the idea, consider the simple cylindrical

(pillbox) cavity excited at the frequency of its TM010 mode. This mode has an electric

field that oscillates in the axial z direction and a magnetic field that circulates around

in the φ direction. To first-order the electric field is constant for small values of r/a

and the magnetic field is linear in r/a where r is the transverse coordinate and a is

the cavity radius. If a charged particle beam made up of small bunches separated

in time by the period of the TM010 cavity mode is made to pass through the cavity

along its axis, the beam as a whole can be accelerated by the electric field and gain

energy.

A simple linac consists of a chain of microwave cavities arranged along the axial

coordinate. Each cavity imparts a small energy increment so that when the beam

arrives at the end it has gained an energy equal to the number of cavities times the

energy increment per cavity. The energy increment is usually expressed in terms of

the energy gain per meter of acceleration structure or gradient. In practice a linac

“cavity” is commonly made up of smaller units similar to the simple pillbox cavity

coupled together and powered from a single radiofrequency (RF) power source. The

CEBAF superconducting cavities are made of five elliptically-shaped cells coupled

together to form a single structure. They are made of niobium and when cooled

below 9.2◦ K are superconducting. As a result typical Q values for the fundamental

accelerating mode (similar to the TM010 mode of the pillbox cavity) are very large and

in the range 109-1010 [Su85] (as compared to similar room temperature Cu structures

which have Qs typically around 104 [Ja83]) due to the very small BCS and other
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surface current losses.

Bunching of the particle beam is necessary for acceleration using a linac. Beam

bunches are typically small in two ways: their transverse dimension is small enough so

that the near-axis approximation for the cavity mode fields and other electromagnetic

fields encountered in the accelerator is valid to first-order; and the axial bunch length

is small compared to the temporal bunch spacing times the velocity of the particle

beam (or equivalently the wavelength of the cavity acceleration mode). Electrons are

so light that they reach relativistic speeds at low energy. At only 1.5 MeV kinetic

energy electrons are already traveling at .967 c; so that, for a bunched electron beam,

the bunch spacing remains fixed as the beam accelerates. The longitudinal motion

of electrons within a bunch is also quickly frozen because of the relativistic motion.

Electron linacs are therefore constructed using cavities of the same size distributed

along the linac. In contrast, proton linacs are complicated by the fact that protons are

not relativistic at low energies. Proton linac design must therefore take into account

the velocity increase of the beam particles as the beam is accelerated. The largest

electron linac is located at the Stanford Linear Accelerator Center (SLAC); it is 3

kilometers long and uses room temperature cavities. The SLAC linac operates as a

pulsed accelerator so that power dissipation in the cavities is not excessive. It is used

to accelerate electrons and positrons to 50 GeV.

Two accelerators that improve the efficiency of a linac are the microtron and the

recirculating linac. In both of these machines a recirculation scheme using magnets

is employed so that the beam passes through the linac more than once. The resulting

beam energy after N passes is the same as if N linacs arranged in a straight line

were used to accelerate the beam. The basic difference between the two types of

machines is the magnetic recirculation method involved. Microtrons use two large

180◦ dipole bending magnets that bend all particle orbits back to the linac axis. The

linac axis is a line of tangency for all orbits and the dipole magnets contain all orbits

of the machine. Microtrons have been used at a number of laboratories such as the
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facilities at the Universities of Illinois and Mainz. The MUSL-2A microtron at Illinois

employed a superconducting linac that was capable of accelerating an electron beam

to 100 MeV after nine orbits. The recirculating linac employs separate beam lines for

each orbit and has common dipole bending magnets on the high and low energy end

of the linac that serve (respectively) to separate and combine each orbit according

to its energy. The High Energy Physics Lab at Stanford (HEPL), the MIT-Bates

facility, and CEBAF employ recirculating linacs. CEBAF will employ two 400 MeV

superconducting linacs in a racetrack configuration that can pass the beam up to five

times through each linac. Maximum electron beam energy will be 4 GeV at a CW

current of up to 200 µA. For both types of machine the time for particles to traverse

each orbit must be exactly equal to an integral number of RF periods of the cavity

acceleration mode for acceleration to occur.

It is important to understand the concept of the duty factor because this parameter

determines the average beam current. When bunches enter the cavity each cycle of the

electromagnetic field the beam is said to be CW or continuous wave. When there are

intervals when no bunches are present the beam is said to be pulsed. The duty factor,

usually expressed as a percentage, describes the fraction of fundamental acceleration

mode cycles beam is actually present. A CW beam therefore has a duty factor of

100%. A duty factor of 1% would describe a beam that, for example, was made up

of a pulse of current containing 10 bunches repeated every 1000 acceleration mode

cycles. A practical, high energy CW accelerator cannot employ room temperature

cavities with large acceleration gradients because of the excessive power dissipation

in the cavity walls. SLAC is therefore a pulsed, low duty factor machine because it

uses room temperature cavities at high gradient whereas CEBAF uses high gradient

superconducting cavities which experience very little dissipation and is a CW machine.

Finally an important consideration for microtrons and recirculating linacs such as

CEBAF arises because multipass BBU instabilities can become severe when these

machines use superconducting cavities to accelerate high current CW beams.
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1.1 Linac Beam Breakup Instabilities

The subject of BBU has generated much interest because these instabilities pose fun-

damental limitations on linac performance. The understanding of the instability (and

of similar collective beam instabilities in synchrotrons and storage rings) has been the

goal of a great deal of effort in accelerator physics since the first large scale experi-

ence at SLAC of beam loss due to BBU [Pa66]. The banishment of BBU at nominal

operating conditions through clever machine design has been the ultimate quest of

research into these types of beam instabilities. Linacs that use superconducting cav-

ities to accelerate high average current (up to 200 µA at CEBAF) CW beams are

especially prone to BBU. The instability is due to collective interactions of the beam,

and involves the various acceleration, bending, and focussing electromagnetic fields

used to guide the beam through the linac.

In linacs, and especially in linacs that use superconducting cavities, cavity modes

other than the fundamental acceleration mode known as higher-order modes (HOMs)

can adversely affect the motion of the beam. Of particular concern are modes similar

to the TM110 mode in a pillbox cavity. These modes have constant transverse mag-

netic fields near the axis and longitudinal electric fields that increase linearly in the

radial coordinate r near the axis. They are known as dipole modes because the fields

also have a sinusoidal φ dependence (similar to a dipole radiation field) and hence act

to deflect particle beams in one plane.

The basic cause of the instability is transverse beam deflection caused by the

HOM magnetic field. The electric field can then couple to the charge of the beam

bunches and kinetic energy can be transferred from the beam to the mode. It is the

interaction of the beam with these HOMs that is the origin of collective instabilities

in linacs. Other TM modes that have transverse magnetic fields that go as (r/a)n−1

and longitudinal electric fields that go as (r/a)n [Ba89] where n ≥ 2 (quadrupole,

sextupole, etc. modes) near the axis can also cause instability but are not as important

as the dipole modes because typical beam dimensions are small compared to the cavity
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radius a. This means that deflection of the beam due to the quadrupole mode (n = 2)

can be expected to be a factor of r/a smaller than a deflection due to a dipole (n = 1)

mode of the same quality factor for near axis beam bunches. In the rest of this thesis,

unless otherwise stated, the term HOM will refer to a dipole mode because they are

potentially the most destructive to the beam.

The first instability relevant to linacs, known as regenerative BBU, was first ob-

served in a number of short, high-current commercial linacs in 1957 [He66]. Regen-

erative BBU occurs as the beam passes through a single acceleration structure or

cavity. The regenerative interaction begins when an on-axis bunch is deflected by

the magnetic field of a HOM within the cavity. The kick the bunch receives is then

translated into a transverse displacement further down the structure. The displaced

bunch interacts through the longitudinal electric field of the HOM resulting in a loss of

kinetic energy of the bunch, leading to additional excitation of the mode (throughout

the structure) which then kicks following bunches harder. The electromagnetic field

of the HOM is enhanced because bunches receiving the stronger kicks are displaced

a greater distance off axis. There is, therefore, closure of a feedback loop within the

structure. The amount of beam kinetic energy loss depends upon the phase of the

HOM field when the bunch arrives in the structure, with maximum energy loss occur-

ring when the maximum electric field of the HOM opposes the bunch motion. There

exists a maximum average beam current (the threshold current) for this interaction

such that above threshold there is exponential growth of the HOM fields with time

resulting in beam loss in a wall or aperture of the linac. For a standing wave linac

the threshold current is given by [Wi82]

Ith =
π3E

2eRkL
, (1.1)

where E is the energy of the beam, k is the wavenumber of the HOM, R is the

shunt impedance of the HOM (which measures the efficiency with which energy is

transferred from the beam to the mode), e is the electron charge, and L is the length

of the acceleration structure.
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The threshold for the regenerative BBU instability can be explained simply as

that point where the energy the beam deposits in the mode (per unit time) due to

the deflection just equals the energy dissipated by the mode through losses [La70].

In practice the regenerative interaction is suppressed in modern linacs by keeping

individual acceleration structures short and the shunt impedance of typical HOMs

low. For the CEBAF/Cornell cavities the Q of the HOM’s are reduced relative to the

Q of the fundamental acceleration mode through the use of waveguide couplers and

HOM loads resulting in shunt impedances five orders of magnitude lower than for the

fundamental acceleration mode. As a result, threshold currents for regenerative BBU

at CEBAF are relatively high compared to other instabilities, and are calculated to

be on the order of tens of amperes. Without the use of HOM damping at CEBAF the

threshold currents could be on the order of 100 µA rendering the CEBAF/Cornell

cavity useless for accelerating the design 200 µA beam.

The first large scale encounter with BBU occurred at SLAC in 1966 [Al66, Pa66]

just after the linac was first turned on. The instability observed is known as cumula-

tive BBU and results from the beam interacting with two or more cavities that make

up the linac. Cumulative BBU begins when a bunch receives a transverse kick from

a cavity HOM resulting in a transverse displacement in a given downstream cavity.

The optical parameters that drive the instability are the angle to displacement trans-

fer matrix elements in both transverse planes (M12 for the x-plane and M34 for the

y-plane). The displaced bunches can drive the HOM at the second cavity coherently

thereby transferring kinetic energy into the HOM. Following bunches arriving at the

downstream cavity are then more strongly deflected because of the additional energy

contained in the HOM, and the whole process continues as more beam bunches pass

through the linac.

The important difference between cumulative BBU and regenerative BBU is that

in cumulative BBU there is no feedback of the HOM energy of the driven cavity back

to the cavity that initially deflects the beam. The cavities act to amplify the beam
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offsets due to the kick, and this amplification is strongly dependent on beam current.

The worst case for the instability occurs when a harmonic of the bunching frequency

is within a half width of the HOM frequency [Bi88a] so that the beam itself can excite

cavity modes coherently. Another possibility for worst case beam deflection occurs

when an upstream cavity HOM and a downstream cavity mode overlap in frequency

which can occur in a long linac with many identical cavities.

The threshold current for cumulative BBU is the current where the offsets are

amplified to the point where the beam hits the beam pipe. The offsets can, in princi-

ple, be suppressed by adjusting the optics between the cavities so that a beam which

is deflected by the first cavity crosses the axis of the second cavity; this minimizes

the coupling between the beam and the HOMs of the second cavity. This can be

mathematically summarized by requiring that M12 and M34 equal zero between cav-

ities. At SLAC, cumulative BBU was found to be due to the extreme length of the

linac and the high Q of the HOMs. The cure at SLAC was to adjust the quadrupole

focussing especially at the low energy injection end where HOM deflections are most

severe and to detune the HOMs from section to section to prevent coherent excitation

of HOMs along the linac [Ne68]. Cumulative BBU is expected to become important

for currents on the order of one ampere [Kr86] for the first pass through the CEBAF

main linac, a value that is still three orders of magnitude above the design current.

Multipass beam breakup is an instability that is of most concern in accelerators

such as microtrons and recirculating linacs (like CEBAF) in which the beam is passed

many times through the same linac structure. The important mechanism that causes

the instability is the fact that the recirculated beam can be displaced at a given

cavity due to a kick it receives from a HOM in the same cavity on a previous pass.

The displaced beam can then interact with the fields of the HOM on subsequent

passes and feed energy into it causing subsequent bunches to be kicked even harder,

and so on. The M12 and M34 matrix elements (in this case for the recirculation) are

important for the feedback aspect of the instability. There is also a cumulative aspect
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to multipass BBU [Bi88a] because the beam effectively sees Np linacs in a row where

Np is the number of times the beam passes through the linac. Many cavities can

therefore contribute coherently to the instability if their HOM frequencies overlap.

A definite average threshold beam current analogous to that for regenerative beam

breakup exists where the power fed into the mode equals the mode power dissipation.

The threshold current therefore depends on the various beam, transverse optical, and

HOM parameters. Above threshold, HOM fields grow until the beam is deflected into

the wall or an aperture of the machine. The first or low energy passes of the beam

are most likely to exhibit this instability because deflections of the low energy beam

result in the largest subsequent displacements in the machine. It is crucial for the

CEBAF/Cornell superconducting cavities that they include HOM damping to reduce

the HOM Q’s otherwise the CEBAF linac would be limited by multipass BBU (as

well as regenerative and cumulative BBU) to less than 200 µA CW current. Of the

three types of BBU, multipass BBU is calculated via computer simulation using the

beam breakup code tdbbu [Kr90] to be the limiting type at CEBAF with threshold

currents in the range 11-24 mA [Kr90]–two orders of magnitude above design. A

derivation of the threshold current is presented in the next section which illustrates

how the theory is used to calculate BBU properties.

The CEBAF accelerator is an example of a linac where the combination super-

conducting cavities and the use of a recirculation scheme to accelerate the electron

beam poses a unique set of potential multipass beam instability problems. The com-

missioning of the injector linac at CEBAF offered a unique opportunity to investigate

experimentally multipass BBU problems basic to superconducting recirculating linacs.

The experiments described in this thesis extended earlier beam instability measure-

ments [Ly83] to the substantially higher beam currents, acceleration gradients, and

parasitic mode damping used in the CEBAF/Cornell cavities. Another issue of cur-

rent interest is the use of superconducting linacs in the construction of high-efficiency

FEL’s where the beam, after having gone through a lasing interaction, is returned
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through the linac 180 degrees out of RF phase with the electric field of the accelera-

tion mode, thereby returning energy to the field. This process, called energy recovery,

was performed at CEBAF and extends previous measurements [Ne89, Sm86] to the

substantially higher accelerating gradients of the CEBAF/Cornell cavities. RF mea-

surements of cavity HOMs were also performed while running the recirculator in the

energy recovery mode.

A beam transport system was constructed at CEBAF [Ba90] that permitted the

beam emerging from the CEBAF injector linac to be recirculated so that it passed

twice through same linac cavities. The injected beam energy into the recirculator

was 5.6 MeV. After passing once through the linac the energy was 42.8 MeV and

after recirculation through the linac the beam was dumped at an energy of 80.1 MeV.

The recirculated CW beam was used to directly measure HOM resonances in the

CEBAF/Cornell superconducting cavities using an transverse RF stripline kicker and

both a cavity as well as an RF stripline pickup. These are the first such measurements

of HOM resonances using a recirculated CW beam in the CEBAF/Cornell cavities.

The main result of this experiment is that in the worst case location in the ma-

chine in terms of energy (5.6 MeV injection energy into the recirculator) and at the

highest beam currents available from the injector (in excess of 200 µA CW beam cur-

rent) the beam was not unstable due to multipass beam breakup. Adjustment of the

transverse recirculation optics was made in an attempt to find a set of optics which

would cause the beam to go unstable. These measurements confirm experimentally

that the CEBAF/Cornell cavity HOM damping design is adequate to protect the

machine against the multipass instability. The experimental results are compared

to computer simulation along with a simple single cavity/HOM theoretical model of

multipass BBU. Thresholds for multipass BBU computed using tdbbu were found to

be between 5 and 20 mA depending on the tune of the recirculation optics. For com-

parison the main CEBAF recirculating linac is estimated to have threshold currents

between 11 and 24 mA [Kr90].
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Finally, there exist longitudinal multipass BBU effects that can occur due to lon-

gitudinal HOMs (longitudinal modes other than the fundamental acceleration mode).

The relevant parameter that describes the optics central to the instability is the

longitudinal momentum kick to longitudinal displacement matrix element (M56) for

the recirculation path. The feedback occurs analogous for transverse multipass BBU

because a longitudinal momentum kick is translated to longitudinal displacement

through non-isochronicity of the recirculation path. The longitudinal HOMs can

therefore drive themselves coherently (analogous to transverse multipass BBU) be-

cause of recirculation. An estimate [Bi88b] of the threshold current for longitudinal

multipass BBU for the CEBAF injector recirculator is about 200 mA, or about an

order of magnitude higher than the expected transverse multipass BBU threshold

currents.

1.2 Energy Recovery Using Superconducting Linacs

A promising aspect of using of superconducting linacs to drive FELs is that it is

possible, in principle, to recover a large fraction of the energy in the accelerated

beam [Ro88]. Since a superconducting cavity is very efficient at supplying energy

to the beam and vice versa because of the low wall losses, a very efficient (in terms

of wall plug power to laser power) FEL is possible. Since the wall losses and the

cooling needed depend only on the operating gradient in the cavity, high average

beam current implies the possibility of high overall efficiency provided almost all of

the beam energy is recovered. Even if extremely high efficiency is not obtainable by

this technique, the recovery of a significant fraction of the energy in the beam will

reduce the operating costs of the FEL by greatly reducing the RF power requirements.

RF beam steering effects from transverse misalignment or from tilts of the sym-

metry axis of the cavities away from the nominal centerline scale as the gradient.

As a consequence, recovering large fractions of the energy is expected to become in-

creasingly difficult as the gradient is increased. Another problem is due to the fact
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that magnetic elements incorporated into the accelerator to correct steering errors for

the accelerating beam will generally not work well for the decelerating beam. This

is because at any point in the accelerator, the decelerated beam will generally be at

a different energy than the accelerated beam, so the same correction will not work

properly for both beams. It is important to know at what gradient steering errors

become impossible to control, and understand which correction schemes utilizing the

recirculation optics are best for minimizing this problem.

For the CEBAF energy recovery experiment reported here the main extensions

beyond the SCA experience are the high accelerating gradient of 5 MV/m and the

greater number of accelerating cavities (16) inside the recirculation path. The addi-

tional element needed to do this experiment is a way to vary the recirculation path

length by one half an RF wavelength, or 10 cm. To accomplish the necessary path

length adjustment, the first 180◦ bend was mounted on a stand so that a “trombone”

pathlength adjustment was possible by translating the bend in the direction of the

linac axis by at least 5 cm. This amount of path length adjustment is adequate for

both acceleration and deceleration of the second pass beam.

The main result of the experiment is that full energy recovery (within the 1.8%

energy measurement uncertainty) was achieved with the second pass beam at up to

30 µA CW beam current for the first time using the CEBAF/Cornell superconducting

cavities. Specifically, the second pass beam, initially at 42.8 MeV at the entrance of

the linac, was decelerated to the injection energy of 5.6 MeV in this experiment. This

indicates a maximum of 1.1 kW of beam power delivered to the fundamental mode

field of the linac cavities by the second pass beam at 30 µA.

The main limitation on achieving higher CW beam currents was that the second

pass beam was large transversely and prone to scrape on small apertures in the system

as it lost energy. Allowing for the fact that the recirculation optics were optimized

for second pass acceleration, improvements in the recirculation optics would no doubt

have allowed energy recovery for even higher currents. No evidence for multipass BBU
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was observed for the energy recovery run. Finally, an improvement to the experiment

would be to incorporate a way to change the emittance and energy spread to mimic

an FEL lasing interaction.
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Chapter 2

Theory and Simulation of Multipass BBU

2.1 Overview

As the average current of a bunched particle beam passing through a linac is raised,

interactions between beam bunches play an increasingly prominent role in determin-

ing the overall dynamics of the beam. The beam bunches can interact through the

electromagnetic fields, known as wakefields, they excite in the linac structure through

which they pass. The cavity wakefields induced by the bunch on previous passes cou-

ple to the bunch charge, resulting in feedback that can further enhance the wakefield.

The wakefields manifest themselves as excitations of the various cavity HOMs which

can deflect the beam so that it strikes a wall and is lost.

For fully relativistic beams such as the CW electron beam at CEBAF, calcula-

tion of the effect of the bunch-wakefield interaction is simplified by the fact that the

bunches remain fixed longitudinally. The multipass BBU instability is due to the

wakefields produced by bunches traversing the cavities off the linac axis. The excited

HOMs can give a transverse momentum kick to subsequent bunches. The transverse

deflection in general results in a transverse displacement on following passes through

the linac causing further HOM excitation, and ultimately instability if the average

beam current is high enough. The following sections present a formal approach for

describing the transverse wakefield in terms of a transverse wake function. The trans-

verse wake function is then used to compute the threshold conditions and response

functions for the beam-HOM interaction for the simplest case of a linac–a single cav-
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ity containing a single HOM. The results derived from this simple model are used in

Chapter 4 to determine bounds on the threshold current for multipass BBU for each

optical setting from the RF measurement data.

2.2 Treatment of the Beam-Wakefield Interaction

2.2.1 Introduction

The physics of a charged particle beam interacting with an accelerating structure can

be understood in terms of the wakefield. The charged particles that make up the

beam interact with the various normal modes in the accelerating structure according

to Maxwell’s equations and the Lorentz force. The concept of the electromagnetic

wakefield is a useful formulation of the solution to the Lorentz force equation which

makes calculation of the beam dynamics straightforward. The formulation is quite

general and can be used to describe the motion of charged particles traversing enclosed

regions where electromagnetic fields are present. Coupling of the charge of the bunch

to the electric field of the HOM is the basic energy exchange mechanism. For the

case of multipass BBU, it is the transverse deflection of the beam by the cavity HOM

field that drives the instability.

Early models described the interaction in a general fashion by treating the cavities

as sets of coupled resonators [He66, Vi66]. The CEBAF cavities can be treated as

uncoupled due to the fact that the beam pipe separating them has a cutoff frequency

(about 6 GHz for a beam pipe of radius 1.9 cm) well above the frequency of the HOMs

of greatest concern (that is, those that have the highest Q and/or shunt impedance)

which lie below 2.5 GHz [Am84]. The theory outlined here [Bi87, Co41, Gl85, Kr87,

Ve80] and on which the transverse BBU simulation code tdbbu is based, treats the

cavity HOMs as high Q, uncoupled oscillators, where each HOM has two orthogonal

polarizations that are furthermore assumed to be uncoupled.

In the discussion that follows we will focus on the transverse wake and its descrip-

tion in terms of the transverse HOMs of the cavities (the treatment of the longitudinal
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Figure 2.1: Definition of test and exciting charge coordinates.

wake is similar [Wi82]). In the analysis that follows, beam motion in the x plane will

be considered in detail; the y plane is analogous for the typical case of no coupling

of the x and y beam motions. Figure 2.1 shows the situation where a given exciting

charge qe induces a wakefield in a structure which then acts on a following test charge

qt. The electromagnetic wakefield induced by qe displaced from the cavity axis a

distance d in the x direction in the accelerator is:

Ex(r, t; d) − cBy(r, t; d) =
∫

∞

−∞

j(r′, t′; d)G(r, t; r′, t′)dr′ (2.1)

where G(r, t; r′, t′) is the electromagnetic Green’s function and,

r = (x, y, z) (2.2)

r
′ = (x′, y′, z′) (2.3)

j(r′, t′; d) = qecδ(x
′ − d)δ(y′)δ(z′ − ct′). (2.4)

The transverse fields in equation 2.1 are related to the transverse momentum kick

given to qt by the Lorentz force,

c

qt

dpx

dz
= Ex(r, z/c + τ ; d) − cBy(r, z/c + τ ; d) (2.5)

where dpx/dz is the transverse momentum kick per unit length of acceleration struc-

ture. Here c is the velocity of light (the charges are assumed to be relativistic), and

τ is the time delay by which qt follows qe. The transverse wake function is defined

as the total transverse momentum change of the test charge due to electromagnetic

wakefield of the exciting charge divided by the magnitude of the test charge qt, the

magnitude of the exciting charge qe, and the displacement d.

W (τ) ≡
(

c

qeqtd

)

∆px(τ, d). (2.6)

17



In terms of the electromagnetic wakefield given by equation 2.1 the wake function is

given by,

W (τ) ≡ 1

qed

∫

[Ex(r, z/c + τ ; d) − cBy(r, z/c + τ ; d)]dz. (2.7)

Equation 2.6 most clearly shows that the wake function is an equivalent way of ex-

pressing the total transverse momentum change (kick) imparted to the test charge

due to the wakefield of the the exciting charge. For fully relativistic particles, the

electromagnetic fields are proportional to the displacement d of the exciting charge

off the axis, and are independent of the transverse position, x, of the test charge,

so that, in this limit, the transverse wake function is independent of d. The wake

function given by equations 2.6 and 2.7 therefore depends only on the single time

delay variable τ . To a good approximation, this is the situation for a superconduct-

ing electron linac such as CEBAF where the energy of the electrons after the first

two superconducting cavities in the injector is 5.6 MeV corresponding to a velocity of

.996 c. The wake function is expressed in MKS units as volts per coulomb per meter

as may be seen upon inspection of equation 2.7.

It is useful to express the wake function in terms of HOM parameters (that can be

computed and/or measured for a given cavity geometry) by using the definitions given

by equations 2.6 and 2.7. The complete wake function that describes all the HOMs

in the cavity is approximated as an expansion over all the HOMs in the structure

[Co41]. The result is [Kr90, Wi82]

W (τ) =
∑

m

Wm(τ) (2.8)

Wm(τ) =

(

(R/Q)mkmωm

2

)

e−
ωmτ
2Qm sin(ωmτ), (2.9)

where ωm and km are the frequency and wavenumber of the HOM denoted by the sub-

script m. The quantity (R/Q)m is the shunt impedance divided by the HOM quality

factor and is a purely geometric property of the accelerating structure. In particular,

(R/Q)m is independent of the HOM quality factor and describes the strength of the

excitation of the cavity due to the passage of short, single bunches. Qm is the usual
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Figure 2.2: TM110 mode in a cylindrical “pillbox” cavity.

quality factor for the HOM which determines the time it takes for the HOM excita-

tion to decay after the passage of a short bunch. The shunt impedance of the HOM

Rm = (R/Q)mQm describes the average excitation of the HOM after many bunches

have passed through the cavity and thus determines the average threshold current for

BBU instabilities. The quantity (R/Q)m is sometimes called the “shunt impedance”

in the literature resulting in confusion over terminology. For clarity, (R/Q)m will be

denoted as the shunt impedance of the HOM throughout this work.

Equation 2.9 indicates that the functional form of W (τ) is that of a simple damped

oscillator. The electromagnetic wakefield also has the same functional form which

implies that W (τ) is simply proportional to the wakefield. Indeed the proportionality

is evident from the wake function definition given by equation 2.7. For the low

frequency regime of typical HOMs of most concern for the CEBAF superconducting

cavities, the transverse wake function is completely described by an expansion in

terms of the complete set of high Q HOM states represented by equation 2.8.

Figure 2.2 shows the field configuration of a typical dipole HOM. The figure shows

a pillbox cavity and a TM110 mode which has an on-axis magnetic field and an electric

field that varies linearly with distance off-axis. A charged particle passing through

the cavity can be deflected by the magnetic field and excite the mode through the

longitudinal electric field if it passes off-axis. The dipole modes in actual CEBAF

cavities have this same TM110 like structure near the axis.

The transverse impedance is defined as proportional to the Fourier transform of

the transverse wake function according to [Wi82],

Z(ω) = i
∫

∞

−∞

W (τ)eiωτdτ. (2.10)

This impedance, multiplied by the current moment (the product of beam current and
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transverse beam offset) in the frequency domain, yields the voltage induced in the

structure by the beam in the steady state. Using equations 2.8 and 2.9 an expression

for the impedance in terms of HOM parameters is given by,

Z(ω) = iW (ω) (2.11)

W (ω) =
∑

m

Wm(ω) (2.12)

Wm(ω) =
ρm

Qm







1 −
(

ω

ωm
− i

2Qm

)2






−1

(2.13)

ρm =
(R/Q)mQmkm

2
. (2.14)

Considering only one HOM term in equation 2.12 one can study each HOM by defining

the normalized wake function and normalized frequency as,

Υm(Ω) ≡ Wm(Ω)

ρm

(2.15)

Ω ≡ ω

ωm

. (2.16)

The normalized wake function when explicitly written out depends only on the nor-

malized frequency and the quality factor of the mode

Υm(Ω) = Am(Ω)e−iφm(Ω) (2.17)

Am(Ω) =
{

Q2
m(1 − Ω2 + 1/4Q2

m)2 + Ω2
}−

1
2 (2.18)

φm(Ω) = tan−1

{

Ω

Qm(1 − Ω2 + 1/4Q2
m)

}

. (2.19)

Figure 2.3 shows plots of Am(Ω) and φm(Ω) for typical values of Qm for CEBAF cavity

HOMs. The resonance condition for each HOM is found by setting the derivative of

Am(Ω) equal to zero so that on resonance,

Ωr =

√

1 − 1

4Q2
m

(2.20)

Am(Ωr) = 1 (2.21)

φm(Ωr) = tan−1
√

4Q2
m − 1. (2.22)
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Figure 2.3: Amplitude and phase of the normalized wake function for a HOM. The
plots show the response for three different HOM Q values.

-bb-error =

Figure 2.4: CEBAF/Cornell superconducting cavity pair showing the HOM damping
scheme.

The amplitude plot shows that on resonance Ωr ∼ 1 or equivalently ωr ∼ ωm for

the condition Qm ≫ 1. The amplitude of the oscillation on resonance is very large

and equal to ρm for the HOM. This result is very important for a superconducting

linac such as at CEBAF because in principle the HOM Qm values might be as high

as 1010–the same order of magnitude as the fundamental accelerating mode Q. The

CEBAF/Cornell cavity design shown in figure 2.4 incorporates special waveguide

HOM couplers which act to absorb as much HOM energy as possible thereby lowering

Qm to values in the range 104 − 105 [Am84]. The phase plot shows that on resonance

φ(1) = 90◦ relative to the DC or Ω = 0 situation. The impedance so defined by

equation 2.10 is therefore a real quantity at each HOM resonance.

The wakefield concept is used in the following sections to derive expressions for

threshold conditions and response functions for the simplest linac–a single cavity

containing a single transverse HOM in addition to the fundamental accelerating mode.

The simple linac, with the addition of a single recirculation, will serve to illustrate

how the multipass BBU threshold depends on the various machine parameters such

as energy, average current, and optics; in addition to HOM transverse impedance,

frequency, and Qm. The single cavity linac is studied in both the time and frequency

domains. Finally, a simulation analysis of multipass BBU in the CEBAF injector

using the code tdbbu is performed. The simulation takes into account the fact that

the linac contains 16 cavities each containing more than one important HOM.
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2.2.2 Time Domain Threshold Current Calculation for One Cavity with

One Higher-Order Mode and One Recirculation

Figure 2.5 shows schematically a cavity where the (electron) beam enters from the

left with momentum pi, is recirculated along the dashed path with momentum pr,

and exits the cavity on the second pass with momentum pf . The figure shows both

the central trajectory (solid line) and the trajectory of the beam caused by the HOM

deflection (dashed line). Assuming the beam enters the cavity on axis, the transverse

deflecting voltage, known as the transverse wake potential, of the HOM in the time

domain is given by:

V (t) =
∫ t

−∞

W (t − t′)I(t′ − tr)x
(2)
c (t′)dt′. (2.23)

Here the displacement of the beam at the cavity on the second pass at time t is denoted

by x(2)
c (t). The wake potential is interpreted in terms of the transverse momentum

kick px(t) given to the beam at time t according to,

px(t) =
eV (t)

c
. (2.24)

The angular deflection of the beam at the exit of the cavity on the first pass is the

ratio:

θ(1)
c (t) =

px(t)

pr
(2.25)

where pr is the longitudinal momentum of the beam after the cavity.

The displacement of the beam on the second pass can be written as:

x(2)
c (t) = M

(r)
12 θ(1)

c (t − tr) (2.26)

where M
(r)
12 represents the angle to displacement recirculation transfer matrix ele-

ment. The bunch passing the cavity on the second pass at time t was kicked by the

HOM at time t − tr where tr is the recirculation time (the time it takes a bunch to

travel from a point in the cavity on the first pass to the same point on the second
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Figure 2.5: Single cavity linac with a single recirculation path. The cavity is assumed
to contain a single HOM in addition to the fundamental acceleration mode.

pass). Substituting equations 2.24, 2.25, and 2.26 into equation 2.23 results in an

integral equation for the wake potential V (t).

V (t) =
eM12

prc

∫ t

−∞

W (t − t′)I(t′ − tr)V (t′ − tr)dt′. (2.27)

The beam current is approximated by:

I(t) =
∞
∑

n=−∞

I◦t◦δ(t − nt◦) (2.28)

where the delta function structure approximates the bunched nature of the beam, I◦

is the average current, and t◦ = 2π/ω◦ is the bunch period. For the case of a single

HOM, W (τ) as given by equation 2.8 consists of only one term.

A normal mode solution for the wake potential is assumed and substituted into

equation 2.27 where

V (t) = V◦e
−iωt. (2.29)

In this expression, the imaginary part of ω describes exponential growth above thresh-

old. Using equations 2.28 and 2.9 for the beam current and the wake function, equa-

tion 2.27 becomes:

V◦e
−iωt = κV◦

∞
∑

n=−∞

∫ t

−∞

e−
ωm(t−t′)

2Qm sin(ωm(t − t′)) ×

δ(t′ − nt◦ − tr)e
−iω(t′−tr)dt′ (2.30)

κ =
eM

(r)
12 I◦t◦(R/Q)mkmωm

2prc
.

Performing the integration over the delta function results in:

e−iωt =
κ

2i
e−

ωm(t−tr)
2Qm

l
∑

n=−∞

{

eiωm(t−tr)en{ ωm
2Qm

−i(ω+ωm)}t◦ −
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e−iωm(t−tr)en{ ωm
2Qm

−i(ω−ωm)}t◦
}

(2.31)

l =
t − tr

t◦
(2.32)

where l is the number of bunches that have passed through the cavity on the second

pass at time t (here t is given as an integer number of bunch spacings t◦). The sum

in equation 2.31 is of the form:

l
∑

n=−∞

enz± =
e(l+1)z±

ez± − 1
(2.33)

z± =

{

ωm

2Qm

− i(ω ± ωm)

}

t◦ (2.34)

which converges to the value given when Re(z) > 0. Substitution of equations 2.33

and 2.34 into equation 2.31 results after simplification in the equation for the complex

frequency ω,

1 = κeiωtr

{

ξ sin(ωmt◦)

1 − 2ξ cos(ωmt◦) + ξ2

}

(2.35)

ξ = e
ωmt◦
2Qm e−iωt◦ .

Equation 2.35 is exact as it stands. For a given set of HOM parameters, the threshold

current can be found numerically by treating ω as a real quantity and solving for the

current I◦. The smallest real value of I◦ is the threshold current. In practice one

would only need to search around the HOM resonance peak ωm for the threshold

current since the HOM impedance is maximum near resonance.

By treating κ as a small quantity (κ ≪ 1), a perturbative solution to equation 2.35

is obtained. The complex frequency is approximated to first-order in κ by:

ω ≈ a + bκ (2.36)

where a and b are parameters to be determined. Substitution of equation 2.36 into

equation 2.35 and collecting only first-order terms in κ results in the desired expression

for ω:

ω ≈ ±ωm − iωm

2Qm
∓ e±iωmtre

ωmtr
2Qm

2t◦
κ. (2.37)
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The imaginary part of equation 2.37 can be written as:

Im(ω) = − ωm

2Qm

{

1 − I◦
It

}

, (2.38)

so that, Im(ω) = 0 at the threshold current as required. Using equations 2.37 and 2.38,

the expression for the threshold current is to first-order:

It =
−2prc

e(R/Q)mQmkmM
(r)
12 sin(ωmtr)e

ωmtr
2Qm

. (2.39)

For beam currents slightly larger than the threshold current, the growth rate of the

HOM amplitude from equation 2.38 is

Im(ω) =
ωm

2Qm
× δI◦

It
(2.40)

I◦ = It + δI◦ (2.41)

The momentum dependence (pr) in Equation 2.39 shows that the threshold current

increases as the energy of the beam is increased. This is to be expected because at

higher energies the kick given by a HOM to the beam gets translated on the next

pass to a smaller displacement. It is therefore expected that the first few passes of

recirculating linacs will be most prone to exhibit multipass BBU. The phase factor

sin(ωmtr)e
ωmtr
2Qm is present because the bunch can arrive back at the cavity at a time

when the HOM fields are not at their optimum phase for excitation. The matrix

element determines the transverse displacement of the second pass beam after having

been kicked on the first pass. The threshold current therefore goes down as M
(r)
12 gets

larger because the beam couples more strongly to the HOM field the farther off axis it

is displaced on the second pass. The quality factor Qm determines how fast the mode

can dissipate energy put into it by the beam. Large values of Qm therefore imply

small threshold currents because of the long time it takes for the energy in the mode

to be dissipated by losses. Thought of in terms of energy exchange, the threshold

current is the average beam current where the energy given up by the beam to the

HOM fields equals the energy dissipated by the HOM due to losses. Above threshold
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Parameter Value

(R/Q)m 21.925Ω

Qm 90,000

ωm 1.194 × 1010 rad/s

km 39.812 m−1

Table 2.1: Parameters for a CEBAF cavity HOM at fm = 1899.54 MHz.

there is exponential growth and below threshold a steady state is eventually reached.

Equation 2.39 is only valid for It > 0 which occurs when M
(r)
12 sin(ωmtr) < 0. When

this condition is not satisfied the assumptions made in deriving equation 2.39 are not

valid and a numerical solution of equation 2.35 must be made.

Table 2.1 lists parameters for a relatively high Q HOM in the CEBAF cavities.

Taking a typical beam energy in the CEBAF injector of 23.7 MeV, a typical matrix

element from a dimad [Se85] simulation of the recirculator M
(r)
12 of −6.779 m, and

a the recirculation time tr = 320 t◦ where t◦ = 668 ps, the threshold current from

equation 2.39 is .287 Amperes. Without HOM damping as in the CEBAF/Cornell

cavity design, Qm could be a factor of 105 larger and the threshold current would be

2.87 µA according to equation 2.39. HOM damping is an essential requirement for

superconducting cavities such as CEBAF where ∼ 200 µA beam currents are required.

Equation 2.39 was checked by using tdbbu to calculate the threshold current for this

numerical example using the parameters of table 2.1. The threshold current was

found to be .260 Amperes, in good agreement with the approximate formula. For

comparison, a numerical solution of the exact formula given by equation 2.35 was

performed by treating ω as a real quantity and searching for the value of the frequency

that caused the imaginary part of equation 2.35 to vanish. In principle there are many

values of the frequency that make the equation real and the search was narrowed by

only looking very close to the HOM frequency. The calculated threshold current was
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found to be .25975 Amperes at a normalized frequency Ω = 1.0000152438, in excellent

agreement with tdbbu.

It is useful to estimate the time it takes for the beam loss to occur when the current

is near (but above) threshold. It is reasonable to assume that beam loss begins to

occur when the amplitude of the HOM angular deflection becomes the same as typical

angular deviations in the beam. Using equations 2.24, 2.25 and 2.29, the time it takes

for the HOM amplitude to grow large enough for beam loss is given by:
∣

∣

∣

∣

∣

eV◦e
Im(ω)tg

prc

∣

∣

∣

∣

∣

∼ 10−3 (2.42)

where the imaginary part of ω is given by equation 2.40 and tg is the time it takes for

the HOM amplitude to grow to the point of beam loss. A reasonable value for the

initial HOM amplitude V◦ at threshold is obtained from the definition of the wake

function as:

V◦ ∼
(R/Q)mkmωmItt◦xtp

2
(2.43)

where xtp is a typical beam offset taken to be 10−3 m. Solving equation 2.42 using

the previous HOM parameters for the case where the threshold current is 1% above

threshold (δI◦/It = .01) results in a growth time of 15 ms for V◦ ∼ 1 volt.

The generalization of this simple example of multipass BBU must include the

possibility of many cavities, recirculation arcs, and many cavity HOM’s. Matters

are complicated by the fact that at each cavity site bunches from every pass of the

machine are present. The transfer matrices must also be generalized to include HOM

kicks between various passes of the machine [Bi87, Gl86, Kr90]. The analysis of real

machines therefore is only possible through computer simulation.

2.2.3 Frequency Domain Calculation of the Higher-Order Mode Deflec-

tion, Pickup Current Moment and Threshold Current

The wakefield formalism is now used to analyze two situations depicted schematically

in figures 2.6 and 2.7 where the wake potential and pickup current moment are an-

alyzed in the frequency domain. The calculations involve determining the effect of
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Figure 2.6: Kicker-Cavity-Pickup single pass case for the frequency domain response
function calculations.

signals placed on the beam due to the HOM along with signals placed on the beam

in a controlled way by deflecting it transversely similar to a HOM deflection. By

calculating response functions for the cavity and beam, threshold properties for mul-

tipass BBU identical to those from the previous time domain analysis are obtained.

The relative ease of making RF measurements in the frequency domain makes them

an attractive way to measure HOM properties as a function of beam energy, current

and recirculation transfer matrix elements. The simple analytic results derived here

are used in Chapter 4 to analyze the RF measurements that were taken during the

course of these experiments.

Figure 2.6 shows a single cavity containing a single HOM preceeded by a kicker

device used to deflect the beam transversely and followed by a similar pickup device

used to detect transverse position of the beam. For this situation, called the “single

pass case,” the beam proceeds from left to right passing once through the kicker,

cavity, and pickup. Figure 2.7 shows the second situation, the “recirculation case,”

where the beam passes first through the kicker and cavity, then follows the recircula-

tion path and passes through the cavity a second time, and finally passes through the

pickup. For each situation the HOM deflection (wake potential) and current moment

at the pickup are computed in the frequency domain and are shown to depend on the

various beam, HOM, and optical parameters for the two situations.

2.2.4 Single Pass Case

Considering first the single pass case, the beam is accelerated from an initial mo-

mentum pi before the cavity to a final momentum pf after passing once through the

cavity. The transfer matrices M (k) and M (p) are first-order transfer matrices from
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kicker to cavity and cavity to pickup respectively. The kick due to the HOM is first

calculated and the result used to compute the current moment at the pickup. The

current moment calculation shows that the shunt impedance (R/Q)m of the HOM

can be determined from a measurement of the current moment at the pickup.

In the time domain, the kicker used in these experiments produces a time depen-

dent angular kick of the beam:

θk(t) = θ◦cos(ωkt), (2.44)

where θ◦ is the maximum kick produced (which depends on beam energy at the kicker,

kicker feed power, etc.) and ωk is the angular frequency of the kicker drive source.

The beam current is modeled as an infinite series of pulses according to equation 2.28.

In the time domain the wake potential is given by,

V (t) =
∫ t

−∞

W (t − t′)I(t′)xc(t
′)dt′, (2.45)

where I(t) is the beam current given by equation 2.28, and xc(t) is the displacement

coordinate of the beam at the cavity. Both beam coordinates can be obtained by

defining a matrix that includes the HOM deflection. They are given by,













xc(t)

θc(t)

pf













= M (k)













xk(t − tk)

θk(t − tk)

pi













(2.46)

M (k) =













M
(k)
11 M

(k)
12 0

M
(k)
21 M

(k)
22

px(t)
pipf

0 0
pf

pi













(2.47)

where the column vector on the right has components that are the initial beam

coordinates at the kicker. Each column vector also includes as a third component

the value of the beam momentum at the axial position of the first two components x

and θ. The matrix M (k) includes not only the normal first-order transfer from kicker

to cavity but also the cavity HOM kick as the M
(k)
23 matrix element. The HOM kick
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is modeled as an angular impulse given to the beam at the exit of the cavity. The

HOM kick px(t) is given in terms of V (t) according to equation 2.24. From now on

the initial transverse position of the beam at the kicker xk(t − tk) will be assumed

constant and will be denoted as xi.

Equation 2.45 shows that the kick received by a bunch that enters the cavity at

time t is due to the wakefield generated by all bunches that have already passed

the cavity. Equation 2.46 indicates that a bunch that enters the cavity at time t

was deflected by the kicker at the earlier time t − tk where tk is the time it takes

for a bunch to drift the distance from kicker to cavity. A change of variables in

equation 2.45 yields

V (t) =
∫

∞

−∞

W (τ)I(t − τ)xc(t − τ)dτ (2.48)

where τ = t − t′ and W (τ) = 0 for τ < 0. Taking the Fourier transform and using

the convolution theorem results in the frequency domain expression

V (ω) = W (ω)Ixc(ω). (2.49)

This is the desired result for the cavity wake potential in the frequency domain. An

antenna suitably located in the cavity would detect a signal proportional to V (ω)

depending on the effective coupling between the HOM and antenna. The current

moment at the cavity is given as,

Ixc(ω) = Ixc(ω)b + Ixc(ω)k (2.50)

where

Ixc(ω)b ≡ M
(k)
11 I(ω)xi (2.51)

Ixc(ω)k ≡ M
(k)
12 Iθk(ω) (2.52)

I(ω) = 2πI◦
∞
∑

n=−∞

δ(ω − nω◦) (2.53)

Iθk(ω) = πI◦θ◦
∞
∑

n=−∞

{

e−iωktkδ(ωk − ω − nω◦) +

eiωktkδ(ωk + ω + nω◦)
}

, (2.54)
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and use was made of the Fourier identities:

∞
∑

n=−∞

einω◦t = t◦
∞
∑

n=−∞

δ(t − nt◦) (2.55)

∞
∑

n=−∞

einωt◦ = ω◦

∞
∑

n=−∞

δ(ω − nω◦). (2.56)

In equation 2.50 the current moment spectrum at the cavity Ixc(ω) consists of a term

due only to the beam current I(ω) denoted by the subscript b and a term due to

the product of the beam current and kicker angular deflection Iθk(ω) denoted by the

subscript k.

The spectrum given by 2.50 is composed of signals at all harmonics of the bunching

frequency due to the beam (equation 2.53) as well as sidebands separated from each

harmonic by ±ωk due to the kicker (equation 2.54). The real beam spectrum does

not have all harmonics present but begins to roll off at frequencies of the order of the

inverse temporal bunch length. At CEBAF where the bunch length is approximately 2

ps rolloff occurs at 500 GHz. The most important HOMs at CEBAF have frequencies

less than about 2.5 GHz, so that as far as CEBAF HOMs are concerned the beam

spectrum extends so high in frequency that the summation index n in equations 2.53

and 2.54 effectively runs to infinity. The beam model given by equation 2.28 is

therefore a valid approximation for the situation at CEBAF where the HOMs of most

concern have widths on the order of 50 kHz and are low enough in frequency that

they have no appreciable amplitude at the rolloff frequency. In contrast, for the class

of instabilities known as the single-bunch wakefield effects, the short time structure of

the bunch is crucial to the analysis and understanding of the instability [Kr90]. For

these effects where times on the order of the bunch length are important in describing

the resultant instability the beam model 2.28 is clearly not valid.

For the final part of the single pass analysis the current moment at the pickup is

calculated. The coordinates at the pickup are given by the previous matrix formalism
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in terms of the coordinates at the cavity:












xp(t)

θp(t)

pf













= M (p)













xc(t − tp)

θc(t − tp)

pf













(2.57)

M (p) =













M
(p)
11 M

(p)
12 0

M
(p)
21 M

(p)
22 0

0 0 1













(2.58)

where M (p) is defined to have the same dimensionality as M (k). Next the current

moment at the pickup is written in the time domain as

Ip(t)xp(t) ≡ I(t − tp)xp(t) (2.59)

where this definition is due to the fact that a bunch arriving at the pickup at time t

passed the cavity at time t − tp where tp is the time it takes a bunch to travel from

the cavity to the pickup. Using equations 2.46 and 2.57 to obtain the expression for

the coordinate xp(t), equation 2.59 is transformed to the frequency domain resulting

in,

Ipxp(ω) = Ipxp(ω)b + Ipxp(ω)k +

eM
(p)
12 e−iωtp

2πpfc
I(ω) ∗ V (ω) (2.60)

Ipxp(ω)b ≡ e−iωtp
(

M (p)M (k)
)

11
I(ω)xi (2.61)

Ipxp(ω)k ≡ e−iωtp
(

M (p)M (k)
)

12
Iθk(ω), (2.62)

where the convolution is performed in the frequency domain and V (ω) is given by

equation 2.49.

The current moment at the pickup splits naturally into a beam term and a kicker

term analogous to the current moment at the cavity given by equation 2.50 with an

additional term due to the HOM kick. Evaluating the convolution yields:

I(ω) ∗ V (ω) = Ixc(ω)
∞
∑

m=−∞

2πI◦W (ω − mω◦) (2.63)
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where the property

Ixc(ω − mω◦) = Ixc(ω), (2.64)

has been used. Using equations 2.60 and 2.63 the current moment at the pickup is,

Ipxp(ω) = Ipxp(ω)b + Ipxp(ω)k +

eI◦M
(p)
12 e−iωtp

pfc
Ixc(ω)

∞
∑

m=−∞

W (ω − mω◦) (2.65)

where Ixc(ω) is the current moment at the cavity defined in terms of a beam and

kicker term according to equation 2.50. Equations 2.49 and 2.65 represent the main

results of this section. It is useful to express these equations in terms of a ratio where

the denominator is the current moment in the absence of any HOM interaction and

is due simply to the beam or the kicker. This results in the equations,

Ipxp(ω)

Ipxp(ω)b

= 1 +
M

(k)
11 M

(p)
12

(M (p)M (k))11

G(ω) (2.66)

Ipxp(ω)

Ipxp(ω)k
= 1 +

M
(k)
12 M

(p)
12

(M (p)M (k))12
G(ω) (2.67)

G(ω) =
eI◦
pfc

∞
∑

m=−∞

W (ω − mω◦) (2.68)

where the first is due to the beam term and the second is due to the kicker term.

Similarly the HOM wake potential in the frequency domain as given by equation 2.49

can be written,
V (ω)

Ixc(ω)
= W (ω) (2.69)

These equations show that both the kicker and cavity signals can be expressed con-

veniently in terms of the wake function or the HOM impedance divided by i.

The quantity G(ω) is a strongly peaked function of ω with peaks corresponding

to the HOM resonance. From equation 2.68, each term in the sum is maximum only

if

ω − mω◦ = ωr ∼ ωm (2.70)
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and is simply the statement that the wake function is strongly peaked only when its

argument is equal to the HOM resonance frequency given by equation 2.20. From

equation 2.53 appreciable response due to the bunched beam occurs when

ω − nω◦ = 0. (2.71)

Combining equations 2.70 and 2.71 and eliminating ω gives:

(n − m) ω◦ = ωr ∼ ωm (2.72)

or when the HOM frequency is some harmonic of the bunching frequency appreciable

excitation of the HOM occurs. This situation can be troublesome especially if the

HOM in question is not heavily damped, because the beam itself can drive the mode.

On the other hand, for the experiments discussed here it is desirable to be able to

drive a particular HOM selectively using the kicker. From equation 2.54 appreciable

response due to the kicker occurs occurs when

ωk ± (ω + nω◦) = 0. (2.73)

Combining equations 2.73 and 2.70 yields,

ωk = ± (ωr + (n + m) ω◦) (2.74)

and is the desired result for the kicker-HOM excitation condition. We can thus adjust

the kicker frequency to drive any mode we wish and in addition we can have the kicker

operate at a low frequency and use the bunched beam to “alias up” the kicker signal

to a HOM much higher in frequency.

Using previous results for the wake function (impedance) at resonance, equa-

tion 2.69 can be written as
∣

∣

∣

∣

∣

V (ωr)

Ixc(ωr)

∣

∣

∣

∣

∣

=
(R/Q)mkmQm

2
. (2.75)

Equation 2.75 implies that by measuring the wake potential at a particular HOM

resonance, along with a measurement of the frequency and width of the HOM peak (to
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obtain Qm and km) the transverse impedance (R/Q)m can be obtained experimentally.

Using the HOM parameter values from table 2.1 along with equation 2.75 one obtains

3.02 × 107 Ω/m for the magnitude of the impedance on resonance. Similarly, the

magnitude of the current moment at the pickup from equations 2.66 and 2.67 can be

written as:
∣

∣

∣

∣

∣

Ipxp(ωr)

Ipxp(ωr)b

∣

∣

∣

∣

∣

=
√

1 + g2
b (2.76)

∣

∣

∣

∣

∣

Ipxp(ωr)

Ipxp(ωr)k

∣

∣

∣

∣

∣

=
√

1 + g2
k (2.77)

gb =
M

(k)
11 M

(p)
12

(M (p)M (k))11
|G(ωr)| (2.78)

gk =
M

(k)
12 M

(p)
12

(M (p)M (k))12

|G(ωr)| (2.79)

where,

|G(ωr)| =
eI◦
pfc

∣

∣

∣

∣

∣

V (ωr)

Ixc(ωr)

∣

∣

∣

∣

∣

(2.80)

is written in terms of the magnitude of the HOM impedance. |G(ωr)| can be regarded

as a measure of the strength of the HOM kick for a given average beam current I◦

and final beam momentum pf . These results indicate that a measurement of the

current moment at the pickup can in principle determine the HOM impedance and

thus the shunt impedance of the mode (R/Q)m. Using the HOM parameters from

table 2.1, assuming a final beam momentum of 5 MeV/c and a beam current of 200 µA

equation 2.80 becomes

|G(ωr)| = 1.21 × 10−3 m−1 (2.81)

For CEBAF HOMs one sees that |G(ωr)| is relatively small compared with that

of typical undamped HOMs in superconducting cavities where the Qm values (and

hence the strength factor |G(ωr)|) can be up to a factor of 105 higher than the value

in table 2.1. For these experiments one would like to use the signal detected at the

pickup to obtain a measurement of (R/Q)m. The factor gk should therefore be on

the order of 1 so that the HOM signal is clearly distinguished from that of the kicker
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-bb-error =

Figure 2.7: Kicker-Cavity-Pickup recirculation case for the frequency domain response
function calculations.

alone. This implies that the ratio of matrix elements in equation 2.79 should be on

the order of 1000 m to detect a HOM kick signal with |G(ωr)| given by equation 2.81.

The first-order matrix elements in the denominator of equations 2.78 and 2.79 can

in principle be made zero which means that the division in equation 2.66 and 2.67

is therefore not valid. This implies that the only signal at the pickup would be due

to the HOM. If the deflections produced by the HOM are relatively small, the HOM

signal at the pickup will be in the noise and therefore impossible to detect. Finally,

the ratio of the matrix elements in equations 2.78 and 2.79 can be viewed as a gain

parameters that can be used to increase the HOM signal at the pickup. In practice,

the matrix element (M (p)M (k))12 in the denominator of equations 2.67 and 2.79 is

mimimized to maximize the sensitivity to HOM deflections. This means that the

optics from kicker to pickup are point to point so that only HOM deflections can

produce net displacement of the beam off axis at the pickup.

2.2.5 Recirculation Case

The case where the beam traverses the recirculation path shown in figure 2.7 is now

considered. The beam with momentum pi is deflected by the kicker and has coordi-

nates at the cavity that are determined by the transfer matrix M (k)(t). The beam

then passes through the cavity, is accelerated to momentum pr, and has coordinates

at the cavity on the second pass determined by the transfer matrix M (r)(t). Finally,

the beam is accelerated to momentum pf and has coordinates at the pickup deter-

mined by the transfer matrix between the cavity on the second pass and the pickup

M (p)(t). Determination of the HOM kick and pickup current moment proceeds along

the same line of arguement as that for the single pass case and begins in the time
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domain.

The wake potential for the recirculation case including the kicker and pickup is

written as,

V (t) =
∫ t

−∞

W (t − t′)I(t′)x(1)
c (t′)dt′ +

∫ t

−∞

W (t − t′)I(t′ − tr)x
(2)
c (t′)dt′ (2.82)

where the first and second term are due to the first and second pass beam respectively,

and the principle of superposition has been used. The current moment at the cavity

on the first pass at time t is I(t)x(1)
c (t) and that on the second pass is I(t− tr)x

(2)
c (t).

Time is measured relative to when the beam passes the cavity on the first pass. The

second pass beam therefore enters the cavity on the first pass at time t− tr where tr

is the recirculation time. Changing variables in equation 2.82 by letting τ = t − t′

and requiring that W (τ) = 0 for τ < 0, V (t) is written as:

V (t) =
∫

∞

−∞

W (τ)I(t − τ)x(1)
c (t − τ)dτ +

∫

∞

−∞

W (τ)I(t − τ − tr)x
(2)
c (t − τ)dτ. (2.83)

The coordinates x(1)
c (t) and x(2)

c (t) are given in terms of a matrix equation, where












x(1)
c (t)

θ(1)
c (t)

pr













= M (k)(t)













xi

θk(t − tk)

pi













(2.84)













x(2)
c (t)

θ(2)
c (t)

pf













= M (r)(t)













x(1)
c (t − tr)

θ(1)
c (t − tr)

pr













(2.85)

M (k)(t) =


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


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M
(k)
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(k)
12 0

M
(k)
21 M

(k)
22

px(t)
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
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







(2.86)

M (r)(t) =













M
(r)
11 M

(r)
12 0

M
(r)
21 M

(r)
22

px(t)
prpf

0 0
pf

pr













(2.87)
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and tk is the time it takes for the beam to travel from the kicker to the cavity. The

above transfer matrices include not only the usual first-order optical transfer matrix

elements, but also include the time dependent cavity kick as the M23 matrix element

where the transverse momentum kick px(t) is given in terms of V (t) according to

equation 2.24. Performing the matrix multiplication yields the correct time domain

expression for the coordinates of the beam at the cavity on the first and second passes.

Taking the Fourier transform of equation 2.83 and using equations 2.84-2.87 results

in,

V (ω) = W (ω)
{

Ix(1)
c (ω) + e−iωtrIx(2)

c (ω) +

eM
(r)
12 e−iωtr

2πprc
I(ω) ∗ V (ω)







(2.88)

Ix(1)
c (ω) = M

(k)
11 I(ω)xi + M

(k)
12 Iθk(ω) (2.89)

Ix(2)
c (ω) = (M (r)M (k))11I(ω)xi + (M (r)M (k))12Iθk(ω). (2.90)

The current moment in brackets in equation 2.88 can be written in terms of a beam

and kicker piece:

Ixc(ω)b + Ixc(ω)k ≡ Ix(1)
c (ω) + e−iωtrIx(2)

c (ω) (2.91)

Ixc(ω)b =
{

M
(k)
11 + e−iωtr(M (r)M (k))11

}

I(ω)xi (2.92)

Ixc(ω)k =
{

M
(k)
12 + e−iωtr(M (r)M (k))12

}

Iθk(ω), (2.93)

where the subscripts b and k indicate the beam and kicker current moments. Evalu-

ation of the convolution yields:

I(ω) ∗ V (ω) = 2πI◦
∞
∑

n′=−∞

V (ω − n′ω◦), (2.94)

so that equation 2.88 becomes:

V (ω) = W (ω) {Ixc(ω)b + Ixc(ω)k +

eI◦M
(r)
12 e−iωtr

prc

∞
∑

n′=−∞

V (ω − n′ω◦)







(2.95)
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where V (ω) is given in terms of itself evaluated at all other harmonics of the bunching

frequency. The sum in equation 2.95 can be expressed in closed form by summing

the left hand side of the equation V (ω − mω◦) over all integers m and noting that,

Ixc(ω − mω◦)b = Ixc(ω)b (2.96)

Ixc(ω − mω◦)k = Ixc(ω)k (2.97)
∞
∑

n′=−∞

V (ω − mω◦ − n′ω◦) =
∞
∑

n′=−∞

V (ω − n′ω◦) (2.98)

e−i(ω−mω◦)tr = e−iωtr (2.99)

where the final equality results from the fact that tr is an integer number of bunch

periods. The final result for the sum in 2.95 becomes

∞
∑

n′=−∞

V (ω − n′ω◦) =
{Ixc(ω)b + Ixc(ω)k}

D(ω)

∞
∑

m=−∞

W (ω − mω◦) (2.100)

D(ω) = 1 − eI◦M
(r)
12 e−iωtr

prc

∞
∑

m=−∞

W (ω − mω◦) (2.101)

and upon substitution into equation 2.95 yields

V (ω) =
W (ω)Ixc(ω)

D(ω)
(2.102)

Ixc(ω) = Ixc(ω)b + Ixc(ω)k (2.103)

where the beam and kicker terms are given according to equation 2.91. Equa-

tions 2.102 and 2.103 have the same form as equations 2.49 and 2.50 for the single pass

case except for the denominator term. Equation 2.102 shows that when D(ω) = 0 in-

stability results because of feedback due to beam recirculation. The threshold current

will be derived shortly from a zero analysis of the complex function D(ω).

The previous results are now used to calculate the current moment at the pickup.

The beam coordinates at the pickup are given according to the matrix formalism as:












xp(t)

θp(t)

pf













= M (p)


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







x(2)
c (t − tp)

θ(2)
c (t − tp)

pf













(2.104)
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M (p) =






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



M
(p)
11 M

(p)
12 0

M
(p)
21 M

(p)
22 0

0 0 1













(2.105)

where the coordinates x(2)
c (t) and θ(2)

c (t) are given by equations 2.84-2.87. The 3 × 3

dimension of the transfer matrix from the cavity to the pickup (M (p)) is retained for

consistency with previously defined matrices that include the cavity HOM kick. The

current moment at the pickup in the time domain is defined similar to that for the

single pass case (equation 2.59):

Ip(t)xp(t) ≡ I(t − tpr)xp(t), (2.106)

and

I(t − tpr)xp(t) = I(t − tpr)xp(t)b + I(t − tpr)xp(t)k +

e(M (p)M (r))12
prc

I(t − tpr)V (t − tpr) +

eM
(p)
12

pfc
I(t − tpr)V (t − tp) (2.107)

I(t − tpr)xp(t)b = (M (p)M (r)M (k))11I(t − tpr)xi (2.108)

I(t − tpr)xp(t)k = (M (p)M (r)M (k))12I(t − tpr)θk(t − tpr − tk) (2.109)

tpr = tp + tr (2.110)

where the current moment is written in terms of a beam, kicker, and two HOM terms

and tp is the time it takes for the second pass beam to travel from the cavity to the

pickup. Following the usual procedure the Fourier transform yields the frequency

domain expressions:

Ixp(ω) = Ixp(ω)b + Ixp(ω)k +
e(M (p)M (r))12

2πprc
e−iωtprI(ω) ∗ V (ω) +

eM
(p)
12

2πpfc
e−iωtp

{

e−iωtrI(ω)
}

∗ V (ω) (2.111)

Ixp(ω)b = e−iωtpr(M (p)M (r)M (k))11I(ω)xi (2.112)

Ixp(ω)k = e−iωtpr(M (p)M (r)M (k))12Iθk(ω) (2.113)
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where the first convolution is given by equations 2.94. Evaluating the second convo-

lution results in

{

e−iωtrI(ω)
}

∗ V (ω) = 2πI◦
∞
∑

n′=−∞

e−in′ω◦trV (ω − n′ω◦). (2.114)

The phase factor e−in′ω◦tr = 1 for tr equal to an integer number of bunch periods t◦ so

that equation 2.114 is identical to equation 2.94. Both single pass and recirculation

pickup current moment expressions can be written similarly in terms of beam, kicker

and HOM terms except that instability occurs when

D(ω) = 0 (2.115)

for the recirculation case.

For completeness, the above results are slightly modified when energy recovery

is analyzed. For energy recovery the recirculation time tr is some odd integer num-

ber of half bunch periods t◦/2. Equations 2.96 and 2.97 are modified because the

phase factor e−i(ω−mω◦)tr = (−1)me−iωtr . The phase factor in equation 2.114 becomes

e−in′ω◦tr = (−1)n′

. The equivalent of equation 2.102 for energy recovery has exactly

the same instability denominator so that energy recovery presents nothing essentially

new other than a slightly different recirculation time factor tr. The equivalent energy

recovery expression for the pickup current moment is modified in that the final mo-

mentum pf is smaller than the recirculated beam momentum pr–again, the instability

condition is the same except for the recirculation time phase factor.

The perturbative result for the threshold current (equation 2.39) derived while

working in the time domain can also be obtained from an analysis of D(ω). This is

expected due to the complete equivalence between time and frequency in the Fourier

transform. One further observes that a zero can only occur when D(ω) is real and

the threshold current is readily obtained by solving equation 2.115. In general a

numerical solution of equation 2.115 is performed and the current is computed for

each zero with the smallest current being the threshold current.
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The sum in equation 2.101 has an appreciable contribution from only a single

term when the kicker frequency is set according to equation 2.74. For this situation

equation 2.115 becomes:

1 − eI◦M
(r)
12 ρmAm(Ω)e−i(ωtr+φm(Ω))

prc
= 0. (2.116)

For this equation to be real, Ω and therefore ω must satisfy,

ωtr + φm(Ω) = kπ (2.117)

k = 0, ± 1, ± 2...

Equation 2.117 is a transcendental expression which must be solved numerically. An

approximate solution is obtained by observing that the threshold current occurs when

Am(Ω) is a maximum implying that Ω ∼ 1 or the oscillation frequency is very close

to the HOM frequency. We may thus write,

Ω = 1 + ∆ (2.118)

where ∆ ≪ 1. Substitution of equation 2.118 into equation 2.117 while keeping terms

first order in both ∆ and 1/Qm results in a first order expression for ∆,

∆ ∼ 1

(2Qm + ωmtr) tan(ωmtr)
. (2.119)

Substituting equations 2.119 and 2.118 into equation 2.18 and keeping only first order

terms results in the first order expression,

Am(Ω) ∼ sin(ωmtr)e
ωmtr
2Qm . (2.120)

Using equation 2.120 in equation 2.116 and solving for I◦ results in the same pertur-

bative expression for the threshold current as given by equation 2.39.

This analysis indicates that the approximate result given by equation 2.39 is only

valid for solutions of equation 2.116 where ∆ ∼ 1/Qm so that the first order expres-

sion for Am(Ω) is valid. A numerical solution of equation 2.116 using the various
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parameters of section 2.2.2 resulted in a threshold current of .25976 Amperes at a

normalized frequency of Ω = 1.0000152440 yielding a phase factor given by equa-

tion 2.117 of 813π, in excellent agreement with the tdbbu result of .260 Amperes

and in exact agreement (within roundoff error) with the numerical solution of equa-

tion 2.35 given in section 2.2.2. Equation 2.116 is therefore seen to be the equivalent

frequency domain expression to equation 2.35 derived in the time domain.

The approximate and numerical results are based on the observation that the

threshold current occurs when Am(Ω) is maximum (at the peak of the resonance)

consistent with Ω being a solution of equation 2.117. The feedback mechanism is

the displacement modulation of the beam on the second pass due to recirculation

optics resulting from a HOM kick of the beam on the first pass. The displaced

second pass beam then deposits kinetic energy into the HOM coherently at the HOM

frequency. The simple example discussed in these sections serves to illustrate the basic

physics of the multipass beam breakup instability. The analysis of the instability for

accelerators such as CEBAF with many recirculations, cavities, and HOMs per cavity

is accomplished through computer simulation. In the next section the simulation

program tdbbu is used to analyze the behavior of the recirculator built around the

main linac of the CEBAF injector. The simulation results are then compared to those

for the full five pass CEBAF recirculating linac.

2.3 Beam Breakup Simulations Using the Code tdbbu

The BBU simulations were performed using the code tdbbu for all optical settings

including energy recovery described in Chapter 3. The various optical settings were

implemented in an attempt to increase sensitivity to multipass BBU (low threshold

currents) by adjustment of the transverse recirculation optics (transverse matrix el-

ements) in a controlled way. tdbbu treats the cavity HOMs as high-Q, uncoupled

resonators with a strength given by the shunt impedance R/Q. These modes act to

deflect the beam in either the x or y plane and both planes are treated as uncoupled.

43



Frequency (MHz) R/Q (Ω) Q

1899.6 21.9 ∗90, 000

1969.6 48.1 4, 000

2086.9 13.1 10, 000

2110.5 25.6 ∗30, 000

Table 2.2: HOM parameters used in the tdbbu calculations. These modes had
the highest Q and R/Q for the CEBAF superconducting cavities. The asterisk (∗)
indicates that the HOM Q was determined from the RF measurements.

Table 2.2 lists parameters of the HOMs used in the simulations; the asterisk

indicates the Q values for these modes come from RF measurements described in

Chapter 4. Reference [Am84] lists the shunt impedance in terms of the parameter

Z ′′, which is given by

R/Q = (Z ′′/Q)

(

le
k2

)

(2.121)

where k is the HOM wavenumber and le is the effective length of the HOM in the

cavity. The code uses the first-order transfer matrix describing the recirculation path

as computed using dimad. In addition, the superconducting cavity model used in

dimad is incorporated into tdbbu to take into account cavity focussing at low energy.

Table 2.3 lists the threshold current It computed for each optics setting along with

the maximum CW current Im achieved in the experiment. Similar BBU calculations

for the full CEBAF linac indicate threshold currents in the range 11–24 mA [Kr90] so

that the injector recirculator is calculated to be more sensitive to multipass BBU by a

factor of 2 in the threshold current. For setting 1, over 200 µA CW was recirculated.

This is the CEBAF maximum design current, but is still an order of magnitude below

the calculated threshold current for setting 1. The energy recovery setting is seen to

have the lowest calculated threshold current due to large recirculation transfer matrix

elements. Beam current was limited primarily by large beam sizes on the second pass

(with energy recovery having the largest) that resulted in scraping. The beam loss
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Setting It (mA) Im (µA)

1 5.3 215

2 6.3 68

3 19.5 120

4 13.2 95

5 15.5 64

6 5.0 67

Energy recovery .4 30

Table 2.3: tdbbu threshold current and maximum beam current attained for each
optical setting.

monitoring system shut the beam off when approximately 1 µA of scraping occurred.
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Chapter 3

Recirculator Design, Modeling, and Measurements

3.1 Overview

Both multipass BBU and energy recovery experiments were accomplished using the

CEBAF injector recirculator shown in figure 3.1. The beam was recirculated once

around the injector linac so that it passed twice through each of the sixteen supercon-

ducting cavities in cryomodules 1 and 2. The experiments required that the recircu-

lator satisfy three criteria. First, it was necessary for the BBU experiment to be able

to adjust the transfer matrix for the recirculated beam. The theory outlined in Chap-

ter 2 indicated that the threshold current for multipass BBU depends strongly on the

transfer matrix elements that determine the displacement of the beam at a cavity on

the second pass resulting from a HOM kick received by the beam at the cavity on

the first pass. Adjustment of the transfer matrix was accomplished by changing the

strengths of quadrupole magnets in the straight return path of the recirculator. The

return path was adjusted to provide six optical settings (including energy recovery)

and a recirculation transfer matrix was determined for each setting by dimad. These

matrices were used in tdbbu to calculate the multipass BBU threshold current as

described in section 2.3.

The second criterion for the recirculation system was that each optical setting

provide small transverse beam spot sizes for loss-free transport through the recircu-

lator. Finally, the need for both acceleration and energy recovery of the second pass

beam implies that the recirculation path length must be easily adjustable. This was
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Figure 3.1:
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accomplished by mounting the first bend, B1, on a carriage and making a “trom-

bone” adjustment by translating the entire magnet array along the direction of the

linac axis by 7.3 cm for a total path length adjustment of 14.6 cm (nearly 75% of an

RF wavelength).

Sections 3.2 and 3.3 describe the basic design of the recirculator including the

dimad modeling of the first order optics. Appendix B goes into detail about the

sextupole fringe field model used to describe the bend dipoles. This model accounts

for the low dispersion and dispersion asymmetry measured for B1. The last three sec-

tions of the chapter describe the dispersion, dispersion suppression, and recirculation

tranfer matrix element measurements made during the course of the experiment.

3.2 Recirculator Beam Orbit Geometry

Figure 3.1 shows that the recirculation path is made up of six main optical elements:

the injection chicane; the linac, which consists of two cryomodules each containing

eight superconducting cavities; the energy recovery chicane; two 180◦ bends (B1 and

B2); and the straight return path that contains only quadrupoles. The beam orbit

geometry in the optical units that contain dipoles determines the beam energies re-

quired for transport around the recirculator. All dipoles and quadrupoles used in

the recirculator were measured to determine their integrated multipole strength as a

function of current using the rotating coil technique [Ka92]. The effective lengths of

the dipoles were inferred from these measurments. The quadrupole effective length

was taken to be the pole length plus the aperture.

The beam sizes, matrix elements and lattice functions are determined by the first-

order transport properties of each optical element. These elements will be described

in the order an electron in the beam encounters them, starting at the injection point

where the beam energy is 5.6 MeV. For both acceleration and energy recovery of

the second pass beam, the beam is accelerated to 42.8 MeV on the first pass and

recirculated. Acceleration to 80.1 MeV or deceleration to 5.6 MeV is performed for
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Figure 3.2: Injection chicane beam orbit geometry.

acceleration and energy recovery respectively of the second pass beam.

The first pass beam at 5.6 MeV initially arrives at the injection chicane shown in

figure 3.2. This chicane is used to bring both the first pass beam at 5.6 MeV and the

recirculated beam at 42.8 MeV (second pass beam) onto the axis of the cryomodules

and consists of seven small dipoles. The first four dipoles (DC1-DC4) each bend the

5.6 MeV first pass beam by 12◦ according to case 1 beam orbit geometry as described

in Appendix A. The injected beam is thereby translated off the linac axis to make

room for the 42.8 MeV second pass beam and returned to the linac axis. DC5-

DC7 bring the second pass beam onto the linac axis by making the small corrections

necessary so that the dipole DC4 common to both beams brings both on axis. The

first pass beam momentum and the bend angle in DC1-DC4 determine the magnetic

field of all injection chicane dipoles and thereby determine the second-pass (case 1)

beam orbit in DC4-DC7. Dipole D10 is considered part of the 180◦ bend B2 that

brings the recirculated beam to the linac axis for re-injection into the linac by the

injection chicane. It should be noted that DC1 is also used for energy measurment

of the first pass beam by bending it 30◦ to a beam dump.

Analysis of the beam orbit in DC4 starts with the equation of motion for an

electron in a dipole field,

Bρ =
p

e
, (3.1)

which relates the magnetic field B, the radius of curvature of the orbit ρ, and the

particle momentum p. In dipole DC4 both beams traverse the same magnetic field so

ρi

ρr

=
pi

pr

(3.2)

where ρi and pi (ρr and pr) are the radius of curvature and momentum of the first

pass (second pass) beam. Using equation A.11 for case 1 beam orbit geometry and
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equation 3.2 results in,
sin(θr)

sin(θi)
=

pi

pr
(3.3)

where θi (θr) is the orbit bend angle of the first pass (second pass) beam. For this

case θr = 12◦, pi = 5.5 MeV/c, pr = 42.8 MeV/c, and θr = 1.5◦. The effective length

of the chicane dipoles is 12.2 cm resulting in a radius of curvature and sagitta (see

equations A.11 and A.12 in Appendix A) of 58.6 cm and 1.3 cm respectively for the

injected beam and 456.3 cm and .16 cm for the recirculated beam. Using equations 3.1

and A.11, the orbit parameters require that all seven dipoles are powered so that they

each have a field of .313 kG.

After traversing the injection chicane, the first pass beam travels to the first

two cryomodules that comprise the principal component of injector linac. The su-

perconducting cavities accelerate the first pass beam to 42.8 MeV after the second

cryomodule. When the recirculator is in the accelerating mode the second pass beam

is accelerated by these same cavities to 80.1 MeV. For energy recovery the second

pass beam is decelerated back to 5.6 MeV. The cavity gradients that were used in the

experiments are listed in table 3.1. Each table lists the cavites in order from the low

energy end of the cryomodule to the high energy end. The last cavity of the second

cryomodule was not powered due to a frozen tuning mechanism that prevented the

cavity from operating at the accelerating mode resonance of 1497 MHz. This cavity

was used in the RF measurements as a pickup device to detect HOM resonances.

After acceleration in the linac, the first pass beam arrives at the energy recovery

chicane shown in figure 3.3. This chicane is designed to transmit the first and second

pass beams undisturbed when the recirculator is operated in the acceleration mode,

and to recover the second pass beam (which is back at the injection energy of 5.6 MeV)

when the recirculator is operated in the energy recovery mode. It consists of the

three dipoles DE1, DE2 and DE3. Both first and second pass beam orbits follow the

specifications of case 1 for DE1 and DE3 and case 2 for DE2 (see Appendix A). The

magnetic field of dipole DE1 is adjusted to bend the 5.6 MeV beam by 20◦ into the
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Cryomodule 1

Cavity # Energy gain (MeV)

1 2.236

2 2.290

3 2.797

4 2.184

5 1.498

6 1.852

7 2.510

8 2.754

Cryomodule 2

Cavity # Energy gain (MeV)

1 2.375

2 2.824

3 2.851

4 2.817

5 2.627

6 2.754

7 2.848

8 0.000

Table 3.1: Linac cryomodule cavity energy gain.

51



-bb-error =

Figure 3.3: Energy recovery chicane beam orbit geometry for the energy recovery
mode.

dump. Dipoles DE2 and DE3 are adjusted so that the net field integral for the first

pass beam at 42.8 MeV is zero, consequently the first pass beam continues straight

along the linac axis after DE3. Using equation 3.3 in an analysis identical to that

of the injection chicane, the bend angle of the first pass beam is found to be 2.5◦.

Using equations A.11 and A.12 and the effective length of 18.2 cm for DE1 from

magnet measurements, the radius of curvature and sagitta for the first pass beam are

414.1 cm and .4 cm; the same values are obtained for DE3 by symmetry. Similarly,

the radius of curvature and sagitta of the second pass beam in DE1 are 53.2 cm and

3.2 cm. Equations 3.1 and A.11 require that each dipole be powered so that the field

is .345 kG. DE2 is twice the effective length of DE1 and DE3 so that it has the same

field, radius of curvature and orbit saggitta as the two short dipoles by symmetry.

For the case of acceleration of the second pass beam, the three dipoles of the energy

recovery chicane are simply left unpowered letting both beams pass straight along

the linac axis.

After passing the energy recovery chicane the first pass beam arrives at the en-

trance to the first 180◦ bend (B1) shown in figure 3.4. The first pass beam at 42.8 MeV

is bent 45◦ by each dipole (D1-D4) and enters each dipole symetrically at 22.5◦ to

the pole face normal so that case 2 beam orbit geometry applies. The first pass orbit

passes through the centers of quadrupoles Q1 and Q2, which are used to eliminate

dispersion after D4. Both first and second pass beams are common to dipole B1 and

therefore their momenta must satisfy,

ρr

ρf

=
pr

pf

(3.4)

where the ρr and pr (ρf and pf) are the radius of curvature and momentum of the first

pass (second pass) beam. The second pass beam at 80.1 MeV is bent by dipole B1 by
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Figure 3.4: Bend B1 beam orbit geometry.

24.8◦ and enters the dipole at 22.5◦ (as with the first pass beam) and exits the dipole

at 2.3◦. Using the effective length of 19.1 cm along with equations A.14 and A.15,

the radius of curvature and sagitta of the first pass beam in D1-D4 are 25.0 cm and

1.9 cm. Using equations 3.1 and A.14 this requires a magnetic field of 5.717 kG for

a first pass beam momentum of 42.8 MeV/c. The sagitta of the second pass beam in

D1 is complicated by the fact that the beam orbit is neither case 1 or case 2. The

radius of curvature for a second pass beam of momentum 80.1 MeV/c is 46.7 cm.

Tracing the orbit through D1 indicates a sagitta of 3.2 cm which is the distance from

the first (and second) pass beam orbit at the entrance of the magnet from the second

pass beam orbit at the exit of the magnet. D1 was therefore positioned according

to the sagitta of the second pass beam since this orbit represents the largest orbit

excursion in the dipole.

Extraction of the second pass beam is accomplished by dipoles D5 and D6. D5 is

a small corrector dipole used to adjust the orbit trajectory to compensate for small

horizontal steering errors of the second pass beam at the entrance to D1. D6 is used

to bend the beam parallel to the linac axis into the beam dump. D6 is placed so that

the beam orbit follows case 2 with entry and exit angles of 12.4◦. For an effective

length of 19.1 cm, the radius of curvature and sagitta for the orbit in D6 are 44.5 cm

and 1.0 cm. The magnetic field required is slightly higher (6.004 kG) than that for

D1-D4 due to the slightly different orbit geometry.

The beam continues down the straight return path containing quadrupoles QR1-

QR10 to bend B2. The return path is the key element that is used to adjust the

first-order optics described in the next section. Bend B2, which consists of dipoles

D7, D8, D9, and D10 and dispersion suppression quadrupoles Q3 and Q4 (see fig-

ure 3.5), has the same orbit properties as the first pass beam in B1 (case 2 for the
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Figure 3.5: Bend B2 beam orbit geometry.

dipoles) and returns the beam to the linac axis for re-injection into the linac via the

injection chicane. The beam is then either accelerated and dumped after D6 of B1

or decelerated and dumped at the energy recovery chicane beam dump. The total

path length for the recirculated beam can be adjusted by moving the entire B1 ar-

ray of magnets along the direction parallel to the linac axis. Bellows in the vacuum

line accomodate this motion. The total motion from stop to stop is 7.3 cm, which

corresponds to 14.6 cm of path length adjustment or 262.8◦ of accelerating mode RF

phase shift of the second pass beam relative to the first pass beam.

3.3 Optical Modeling Using dimad

Optics calculations for the injector recirculator were performed using the general pur-

pose optics code dimad. The main optical requirement for the BBU experiments is

the ability to vary the transverse matrix elements (M12 and M34) of the recircula-
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tion arc. In addition, dispersion free beam transport is desired so as to avoid beam

offsets due to small energy drifts. Matrix element adjustment is accomplished using

the quadrupoles in the straight return path of the recirculation arc. The chicanes

and bends are all designed to be doubly acromatic, thereby satisfying the dispersion

requirement. The dimad code also includes the capability to model the RF focussing

of the fundamental mode of the CEBAF cavities. The first-order optical properties of

the six optical elements are described in the same order the beam encounters them,

as in the last section. The dimad calculations provide transfer matrices that describe

the recirculation optics. These matrices are used by the code tdbbu to compute

threshold currents as described in Chapter 2.

The main requirement for the injection chicane is that it pass both the injected

and recirculated beams dispersion-free onto the linac axis. The top plot of figure 3.6

shows the behavior of the dispersion as the beam passes through the chicane. The

slope of the dispersion in the horizontal (x) plane is zero at the center of each leg of

the chicane by symmetry (between DC2 and DC3 for the first pass beam and DC6

and DC7 for the second pass beam). The dispersion η and its slope η′ are both

zero at the end of the chicane as a result of symmetry. Dispersion-free transport

is therefore accomplished in practice by setting the net field integral to zero as the

beam is transported or, equivalently, by setting the magnets so both beams travel

along the linac axis downstream of the chicane. The bottom plot of figure 3.6 shows

the principle cosine and sine-like rays for both (x and y) planes (M11, M12, M33, and

M34) for the first pass beam.

The horizontal optics of the chicane is simply transport through a drift equivalent

to the arc length of the trajectory. The vertical optics includes focussing due to the

non-zero entry or exit angles of the beam orbit in the dipoles. The optics of the

second pass beam through dipoles DC4, DC5, DC6 and DC7 is virtually identical

to a drift in both planes. This is due to the fact that the bend angle of the second

pass beam is relatively small and therefore there is little y-plane edge focussing in the
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cavity is 5.6 MeV and 7.8 MeV at the exit. For comparison, the fourth cavity of the

cryomodule 1 where the beam energy on the first pass at the entrance is 12.9 MeV and

at the exit is 15.1 MeV is calculated to have a focal length of 53.9 m. It is seen that

only in the first few cavities, where the energy is below about 10 MeV, is the focussing

of any consequence. For energy recovery of the second pass beam the focussing due

to the final few cavities of the second cryomodule also is of consequence. As a final

note the linac quadrupoles at locations HVQL1-HVQL6 were left unpowered and all

focussing of the first pass beam was accomplished by backphasing the first cavity of

the cryounit and adibatic damping of the emittance as the beam accelerates.

Another non-ideal feature of the cavities that occurs at low energy is x-y coupling

between planes [Ti93]. The dimad model of the cavities does not take into account

the coupling between planes and assumes the planes to be completely uncoupled.

The uncoupled case represents the worst case scenario (results in the lowest threshold

currents) for multipass BBU.

For the energy recovery chicane, the first pass beam has very similar optical prop-

erties to that in the injection chicane. Figure 3.7 shows the dispersion function for

first and second pass beams in the energy recovery chicane. Specifically the slope of

the dispersion is zero at the geometric center of dipole DE2. By setting the magnets

so the net field integral experienced by the first pass beam is zero, both the disper-

sion and its slope are zero after dipole DE3 by symmetry. The second pass beam

is simply bent and dumped approximately one meter after DE1 so it has a nonzero

dispersion at the beam dump. As with the second pass beam in the injection chicane,

the principle ray optics for the first pass beam are essentially identical to a drift due

to the small bend angle. The second pass is simply a drift horizontally with dipole

edge focussing vertically at the exit edge of DE1.

Bend B1 is designed to transport the first pass beam dispersion-free to quadrupole

doublet QR1-QR2 on the return path. In addition, by leaving quadrupoles Q1 and

Q2 unpowered B1 was also used to measure the energy spread by first measuring

the dispersion at the end of the bend. The dispersion calculated using a simple

model for the bend dipoles was roughly a factor of two above the value measured

with quadrupoles Q1 and Q2 unpowered. In addition, the dispersion was different

depending on whether the measurement was performed by increasing the magnetic

field (in which case the beam follows the trajectory of a lower momentum particle for
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a higher central momentum setting for the bend) and recording the resulting beam

displacement or decreasing the magnetic field (in which case the beam follows the

trajectory of a higher momentum particle for a lower central momentum setting for

the bend). A more realistic model for the bend dipoles was constructed which added

a sextupole field component to the dipole end fringe fields. This model reproduced

the reduction in the dispersion as well as the measured asymmetry. The details of

the dipole model are discussed in Appendix B and the dispersion measurement is

described in section 3.4

Each bend is designed so that the dispersion η as well as its slope η′ is zero after

the bend. This is achieved by powering quadrupoles Q1-Q2 for B1 and Q3-Q4 for

B2. The quadrupole strength (each quadrupole pair is powered in series from the

same supply) that achieved dispersion suppression after B1 was determined by a

measurement described in section 3.5. A dimad computation of the dispersion with

the quadrupoles powered to the value determined by measurement indicated a small

residual linear dispersion of .77 m. An additional fit to the fringe field sextupole

strength was required to fully reduce the dispersion (and slope) to zero. The top plot

of figure 3.8 shows the dispersed ray for B1 which has a maximum at the center of

symmetry of the bend and is zero (as well as slope) after the bend. Appendix B gives

a discussion of how well the model accounts for dispersion suppression of the bend.

The bottom plot of figure 3.8 shows the principal rays for the first pass beam in

B1 (and therefore B2). The main feature of the bends shown by the principle rays is

the substantial focussing horizontally due to the large Q1 and Q2 strengths (the beam

executes a full betatron oscillation horizontally for a tune of 1.0) and edge focussing

in the vertical plane by the dipoles. The large focussing made matching out of B2

especially difficult. Ideally a quadrupole doublet would be placed after (downstream)

of B2 as in B1 for matching except that there was not enough space available on the

injection chicane table. Finally, the extraction path which includes dipoles D1, D5,

and D6 was not dispersion-suppressed and had a dispersion value of .44 m at the
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Setting # k2
F (m−2) k2

D (m−2) νx νy

1 1.16 -2.07 .5 .5

2 1.09 -1.57 .5 .25

3 1.22 -2.53 .5 .75

4 1.24 -2.71 .5 1.0

5 -1.57 1.09 .25 .5

6 -2.53 1.22 .75 .5

Table 3.2: FODO quadrupole strength and tune advance for each setting.

beam dump. As with the energy recovery chicane this small dispersion was not a

problem as the beam was dumped a short distance (∼ 2.5 m) after the first dipole

that introduced dispersion in the second pass beam.

The main optical feature of the return path is the six quadrupoles, QR3-QR8, that

are used to adjust the recirculation optics in a controlled manner. These quadrupoles

formed a FODO array consisting of QR3, QR4, QR5 as the first cell and QR6, QR7,

and QR8 as the second, where each cell begins and ends with a drift equal to half

the distance between any two quadrupoles. The first and third quadrupoles in each

cell (QR3, QR5, QR6, and QR8) are horizontally (x plane) focussing and of strength

kF and the central one at the center of symmetry in each cell (QR3, and QR7) is

vertically focussing (y plane) and of strength kD. Table 3.2 lists the quad values for

each optical setting as well as the betatron tune advance of the beam across all six

quads for each setting. The first optical setting consisted a -I (I being the identity

matrix) transformation in both planes, or, equivalently, a tune advance of .5 in both

planes. Settings 2-4 consisted of varying the y plane optics while keeping the x plane

optics fixed at -I. Settings 5 and 6 were optained by simply reversing the polarity of

the quadrupole strengths for settings 2 and 3 resulting in the x plane being varied and

the y plane kept at -I. Figures 3.9 and 3.10 show the principle rays and beta functions
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Figure 3.9:
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Figure 3.10:
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for each optical setting. The initial beta functions used for all settings were those for

the “matched” case (initial and final beta functions equal) for setting 1. The energy

recovery setting was identical to setting 1.

The following matrices were generated using dimad for all six optical settings for

the FODO array (units are meters for length and radians for angles).

Setting 1 =⇒





















−1.0 0.0 0.0 0.0

0.0 −1.0 0.0 0.0

0.0 0.0 −1.0 0.0

0.0 0.0 0.0 −1.0





















Setting 2 =⇒





















−1.0 0.0 0.0 0.0

0.0 −1.0 0.0 0.0

0.0 0.0 0.0 6.33

0.0 0.0 −.158 0.0





















Setting 3 =⇒





















−1.0 0.0 0.0 0.0

0.0 −1.0 0.0 0.0

0.0 0.0 0.0 −1.06

0.0 0.0 .944 0.0





















Setting 4 =⇒





















−1.0 0.0 0.0 0.0

0.0 −1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 1.57 1.0





















Setting 5 =⇒





















0.0 6.33 0.0 0.0

−.158 0.0 0.0 0.0

0.0 0.0 −1.0 0.0

0.0 0.0 0.0 −1.0




















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Setting 6 =⇒





















0.0 −1.06 0.0 0.0

.944 0.0 0.0 0.0

0.0 0.0 −1.0 0.0

0.0 0.0 0.0 −1.0





















The final optical consideration in the model of the recirculation path is the setting

of the quadrupole doublets QR1-QR2 and QR9-QR10 for acceleration of the beam

on the second pass as well as energy recovery. These doublets were used to match the

beam out of B1 and into B2 respectively. They are necessary because of the relatively

large horizontal and vertical focussing of the bends which causes the beam envelope

to diverge rapidly after emerging from each bend. The situation was particularly

troublesome when matching out of B2 as there is no focussing other than emittance

damping available for the second pass beam. In the case of energy recovery the

emittance actually grows as the energy decreases, causing additional difficulties with

beam scraping.

The quadrupole doublets were set up to produce the minimum spot size possible

at the B1 beam dump for setting 1 of the quadrupoles QR3-QR8. When changing to

the other settings the doublet strengths were not changed (energy recovery being the

sole exception). To realistically model the complete recirculation path, the doublet

strengths were fit to measurements (described in section 3.6) of the M12 and M34 ma-

trix elements that were measured using the correctors and viewscreens at the positions

of HVQL4, HVQL5, and HVQL6 for each optical setting (except energy recovery) be-

cause it is these matrix elements that are most important for multipass BBU. For

energy recovery the main goal of the fitting was to mimimize the matrix elements

for recirculation at the positions of quadrupoles HVQL4, HVQL5, and HVQL6. The

difficulty in the matrix element minimization underscores the fact that in practice the

energy recovery mode was the most difficult of all the optical settings to set up and

operate. Table 3.3 lists these matrix element values computed with dimad for each

optical setting. The result is that the calculations reproduce the order of magnitude of
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Setting # Location M12 (m) M34 (m)

HVQL4 2.00 1.60

1 HVQL5 7.39 -8.16

HVQL6 16.1 -28.5

HVQL4 7.80 .500

2 HVQL5 18.3 -6.02

HVQL6 10.2 -42.8

HVQL4 1.40 -.400

3 HVQL5 6.72 21.4

HVQL6 18.7 33.2

HVQL4 -.533 1.99

4 HVQL5 -3.70 -4.80

HVQL6 -3.48 -16.8

HVQL4 -3.47 2.06

5 HVQL5 -.625 13.7

HVQL6 -2.50 23.0

HVQL4 -.300 3.30

6 HVQL5 -5.64 -7.77

HVQL6 -29.4 -41.4

HVQL4 1.87 .582

Energy Recovery HVQL5 55.5 29.9

HVQL6 50.0 50.0

Table 3.3: Recirculation transfer matrix elements calculated from dimad.
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the transfer matrix elements determined by the measurements. This was most likely

due to unaccounted for non-ideal (such as non-linearities other than sextupole and

coupling between planes) optical behavior in B1 and B2, the strongly focussing bend

quadrupoles Q1-Q2 and Q3-Q4 and similarly strongly focussing matching doublets

QR1-QR2 and QR9-QR10 all of which had focal lengths of about 1 m on average for

all optical settings.

Figure 3.11 shows beta functions for transport from the end of the cryounit to

the beam dump for all six optical settings and figure 3.12 shows these functions

for the energy recovery setting. The initial beta functions used in the calculation

(βx = 40 m, βy = 27 m, αx = αy = 4 rad, and ǫx = ǫy = ǫ = 5 × 10−8 m · rad) are in

agreement with emittance measurements at 5.6 MeV. Furthermore they reproduce a

waist qualitatively observed at the position of the injection chicane on the first pass.

The difficulties in matching out of the bends manifest themselves in rather large beta

functions (in the kilometer range for two settings) and therefore beam envelopes. The

beta functions in general become large after bend B1 due to the strong quadrupole

focussing of the bend. The beta functions are also large (primarily the y plane) after

B2 through the second pass through the linac for the same reason. This limited the

beam current because scraping occurred due to 60 Hz motion on the beam and the

relatively large beam envelopes of .5 cm compared to typical apertures in the system

of 2.5 cm (the beam loss monitors were set to turn the beam off when a beam current

loss of 1 µA occurred)

Beam envelopes are given by

σx,y =
√

βx,yǫ(p) (3.5)

where βx,y is the beta function and ǫ(p) is the emittance as a function of momentum.

Table 3.4 gives the 4σ emittance as a function of the beam momentum over the

region of the arc length parameter s where the beam momentum is constant. For

acceleration in the linac (or deceleration of the second pass beam for energy recovery)

one can infer the emittance by linear interpolation in the arc length region of the

66



Setting # Energy Arc Length s Emittance (ǫ)

(MeV) (m) ×10−8 m · rad

5.6 0.0 < s < 13.8 5.00

1–6 42.8 30.8 < s < 77.9 0.64

80.1 s > 94.9 0.34

5.6 0.0 < s < 13.8 5.00

Energy Recovery 42.8 30.8 < s < 77.9 0.64

5.6 s > 94.9 5.00

Table 3.4: Beam emittance (4σ) in the recirculator.

linac for the first pass (13.8 m < s < 30.8 m) and second pass (77.9 m < s < 94.9 m)

beams.

Finally, the first-order transfer matrix describing the recirculation arc from the

exit of cryomodule 2 to the entrance of cryomodule 1 at 42.8 MeV is computed for

each optical setting. The matrices were calculated after the doublet strengths (QR1-

QR2 and QR9-QR10) were fit to the measured (using the correctors and viewscreens

at locations HVQL4, HVQL5, and HVQL6) angle to displacement matrix elements

described in section 3.6. These matrices were used in tdbbu to calculate the threshold

current for multipass BBU and were generated using dimad for all six optical settings

for acceleration as well as the single energy recovery setting.

Setting 1 =⇒





















.562 6.69 0.0 0.0

−.0705 .940 0.0 0.0

0.0 0.0 .838 −22.1

0.0 0.0 .0914 −1.22




















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Setting 2 =⇒





















2.40 10.6 0.0 0.0

−.0235 .313 0.0 0.0

0.0 0.0 .268 −8.15

0.0 0.0 .219 −2.92





















Setting 3 =⇒





















.362 7.03 0.0 0.0

−.0844 1.12 0.0 0.0

0.0 0.0 −.859 50.5

0.0 0.0 −.0256 .342





















Setting 4 =⇒





















.0986 −19.2 0.0 0.0

.0492 .563 0.0 0.0

0.0 0.0 .405 17.7

0.0 0.0 −.103 −2.04





















Setting 5 =⇒





















−1.04 −7.54 0.0 0.0

.150 .128 0.0 0.0

0.0 0.0 .634 2.52

0.0 0.0 .0148 1.64





















Setting 6 =⇒





















−.0109 −6.66 0.0 0.0

.147 −1.96 0.0 0.0

0.0 0.0 1.44 −25.8

0.0 0.0 .154 −2.05





















EnergyRecovery =⇒





















.247 24.9 0.0 0.0

.00435 4.49 0.0 0.0

0.0 0.0 .247 −4.24

0.0 0.0 .00435 3.97




















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3.4 B1 Dispersion Measurement

In preparation for this measurement, the beam was set up so that the beam energy was

45 MeV (cavity 8 of cryomodule 2 was operational at the time of this measurement).

The beam current was set to 5 µA pulsed at .5% duty factor. This resulted in an

adequate average current such that the viewscreens did not saturate when the beam

struck them. The quadrupoles Q1 and Q2 were left unpowered to maximize the

dispersion, and the beam was set up going straight into D1. The magnets were then

cycled around their hysteresis curves from 0 to 100 Amperes three times. The dipoles

in each bend were chosen based on magnet measurements to be as “identical” as

possible. Each had a field integral that varied less than .5% from magnet to magnet

on the same point on the hysteresis curve [Ka92, Se91]. A Hall probe was placed in

dipole D1 so that by measurement of its central field the field integral could be found

based on an effective length of 19.1 cm from the magnet measurements.

The relative momentum spread of a beam of particles of central momentum p

that deviate by a momentum difference ∆p traveling in a dipole field can be found

by using equation 3.1 resulting in

∆p

p
=

∆B

B
(3.6)

∆p = p − p′ (3.7)

∆B = B − B′, (3.8)

where p′ is the momentum of the highest (or lowest) momentum particle in the beam

and B′ is the magnetic field required so that the extremal particle orbit moves to

the orbit of a particle at the central momentum p. Different values of the magnetic

field can therefore be used to simulate the trajectory of off momentum particles by

changing the beam orbit.

This approach was taken in the B1 dispersion measurement. The four dipoles

were ramped (after proper hysteresis conditioning) from 0 to 100 A and then back to

0 A while the beam position on the viewscreen after D4 was recorded as a function
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of the central field of D1. Two sets of measurements were made; they are displayed

in figure 3.13. Figure 3.13 shows both the beam position on the viewscreen vs the

recorded magnetic field in D1 while going from 0 to 100 A or low to high field (high

to low simulated momentum) on the hysteresis curve and the beam position on the

viewscreen while going from 100 to 0 A or high to low field (low to high simulated

momentum) on the hysteresis curve. The viewscreen position of 0 m represents the

position of the central ray of momentum 45 MeV/c for a dipole field of 6.005 kG.

Both curves clearly show that a difference in slope exists depending on whether one

is at high field (low simulated momentum) or low field (high simulated momentum)

and this difference is not due to some unaccounted for hysteresis effect. This implies

that the dispersion, which is related to the slope of the displacement vs. field curve,

is different depending on whether the particle is higher or lower in momentum than

the central particle. The dispersion η, is defined as

η ≡ ∆x

∆p/p
(3.9)

where ∆x is the relative displacement of an off momentum particle of momentum

offset ∆p from the position of the central particle of momentum p. Using equation 3.6,

equation 3.9 becomes

η ≡ ∆x

∆B
× B (3.10)

for a relative field offset ∆B/B of the dipoles, resulting in a relative displacement of

the beam ∆x which simulates a momentum offset. The dispersion can be written in

terms of the slope of the displacement vs field curve as

η =
dx

dB
× B (3.11)

∆x

∆B
≈ dx

dB
(3.12)

where dx/dB is the slope of a best fit curve to the data.

Figure 3.13 shows the best-fit straight line to the high field > 6.005 kG (low

simulated momentum) and low field < 6.005 kG (high simulated momentum) data.
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In addition, the best linear fit to all the data for both curves is also shown. The

range of field values that these data span represents a simulated momentum bite of

∆B/B = ±.35% from the central momentum of 45 MeV/c at B ∼ 6.005 kG. The

vertical error bars represent the statistical error of σ = .0003 m in determining the

centroid of the beam using the camera/viewscreen diagnostic [Bo93].

The statistical error in the slope of the best-fit line, which was driven by the

position measurement error, was obtained using the error matrix formalism of Bev-

ington [Be69] where the diagonal terms of the error matrix ǫjj are equal to the square

of the statistical error of the coefficients σaj
of the fitting function, in this case a

line with slope a1 and intercept a◦ (j = 0, 1). Table 3.5, which summarizes the dis-

persion measurement results, clearly shows the asymmetry in the dispersion where

low momentum particles effectively experience more horizontal focussing and hence

lower dispersion than do high momentum particles. This result can be understood

in terms of a sextupole fringe field component for the bend dipoles as described in

Appendix B.

3.5 B1 Dispersion Suppression Measurement

This measurement was performed to determine the quadrupole current of Q1 and

Q2 (both powered in series from the same supply) that was required to reduce the

dispersion, η, and its slope, η′, after B1 to zero. Both sets of quadrupoles Q1-Q2 in

B1 and Q3-Q4 in B2 were chosen to be as similar in field properties as possible and

each pair differed by at most .5% in integrated field gradient at each point on their

respective hysteresis curves [Ka92, Se91]. The beam energy was set to 42.8 MeV/c

and cavity 8 of the second cryomodule was unpowered. As with the B1 dispersion

measurment, the beam current was 5 µA pulsed at .5% duty factor. Initially, the

quadrupoles were cycled from 0 to 10 A three times around the hysteresis training

cycle. As a result, the integrated quadrupole gradient can be determined from a

measurement of the quadrupole current. The quadrupole multipole constant is given
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Hysteresis Beam Orbit dx
dB

η

Ramping Cycle (Field) (m/kG) (m)

0 → 100 A > 6 kG .382 ± .018 2.30 ± .11

(Low to high field) < 6 kG .478 ± .023 2.87 ± .14

All Data .439 ± .009 2.64 ± .05

100 → 0 A > 6 kG .353 ± .017 2.12 ± .10

(High to low field) < 6 kG .502 ± .023 3.01 ± .14

All Data .419 ± .008 2.51 ± .05

Average over both > 6 kG .367 ± .025 2.21 ± .15

cycles < 6 kG .490 ± .032 2.94 ± .20

All Data .429 ± .012 2.57 ± .07

Table 3.5: Dispersion measurement summary.

by

k2 =
e

p

(

B′

lq

)

(3.13)

where B′ is the integrated gradient (that is integrated along the z or beam axis),

p is the beam momentum, and lq is the effective length of the quadrupole. The

second downstream viewscreen on the return path after B1 was used to record the

displacement of the beam (see figures 3.1 and 3.4). Quadrupole doublet QR1-QR2

was kept unpowered during the measurement so that the beam traversed a drift of

5.83 m from the exit of D4 to the viewscreen.

The measurement consisted of recording the displacement of the beam from the

central momentum position on the viewscreen as the beam momentum was varied as

a function of quadrupole current in Q1 and Q2. Displacements were measured using

the camera/viewscreen diagnostic. The beam momentum was varied by changing the

gradient of cavity 7 of cryomodule 2. The cavity gradient was both lowered and raised

to achieve an energy shift of ∆E/E ∼= ∆p/p = ±.047% at each quadrupole current
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where E and p are the beam energy and momentum. Figure 3.14 shows the resulting

net displacement for both the high and low momentum ray from the central ray as a

function of Q1 and Q2 current.

The intersection of the best fit curves in figure 3.14 with the vertical axis indicates

the quadrupole current at which B1 transports the beam dispersion free. The high

momentum curve intersects the vertical axis at a quadrupole current of 2.496 A, and

the low momentum curve at 2.367 A. The quadrupole current was set midway between

these two values at 2.432 A as being the dispersion suppressed current where η = 0.

Using the measured hysteresis curves, this current yielded a quadrupole constant

k of 2.37/m for a quadrupole effective length of .236 m and beam momentum of

42.8 MeV/c.

The vertical error bars result from the determination of the position difference

of the centroid of the central momentum from either the high or low momentum

ray. Each centroid determination has a σ = .0003 m error [Bo93] (as with the B1

dispersion measurement) resulting in a σ∆x = .0004 m error for the position difference

when each centroid position error is added in quadrature. An estimate of the error

in the dispersion as well as its slope is given in terms of the (dominant) displacement

error as:

ση ∼ σ∆x

∆p/p
(3.14)

ση′ ∼ σ∆x

dv
(3.15)

where in this case dv = 5.83 m is the drift length from the viewscreen to dipole D4 of

B1. Using the numbers previously given for the parameters in equations 3.14 and 3.15

yields:

|η| < .86 m (3.16)

|η′| < .07 mrad (3.17)

indicating the degree to which the dispersion was “suppressed.”
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3.6 Recirculation M12 and M34 Measurement

The results of this measurement were used in Chapter 3 to model the recircula-

tion optics by fitting the quadrupole strength of doublets QR1-QR2 and QR9-QR10

to the measured recirculation transfer matrix elements. The horizontal (M12) and

vertical (M34) deflection to displacement matrix elements were measured using the

camera/viewscreen diagnostic and the horizontal and vertical corrector magnets at

locations HVQL4, HVQL5, and HVQL6. Ideally one would have liked to measure the

full transfer matrix at these points. This was, however not possible due to lack of

space on the beamline to produce anything but the sine-like ray using the correctors.

Each linac quadrupole at positions HVQL4, HVQL5, and HVQL6 is placed on a

girder containing the viewscreen and correctors. Starting upstream the component

placement on each girder, in order, is a viewscreen, horizontal corrector, vertical

corrector and finally the quadrupole. The horizontal corrector is placed 12 cm and

the vertical corrector 34 cm downstream from the viewscreen. The measurement

procedure consisted of horizontally (vertically) deflecting the beam by a known angle

θ (φ) using the horizontal (vertical) corrector and measuring the net deflection ∆x

(∆y) from the undeflected “central” trajectory. The viewscreen has a 2 mm hole at

its geometric center to allow the first pass beam to pass undisturbed. The ratio of

the displacement from the central trajectory to the deflection angle gives the matrix

element. The actual displacement needed is that of the second pass beam at the

position of the corrector and not the viewscreen. The effect of the small displacement

of the viewscreens from the correctors on the net actual displacement at the position

of the corrector is small compared to the orbit length (∼ 60 m) and is therefore

neglected. The matrix element measured is therefore that for nearly the full orbit.

In terms of the measured displacements and angles, the first order angle to dis-

placement matrix elements are given by,

M12 =
∆x

∆θ
(3.18)
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M34 =
∆y

∆φ
. (3.19)

The corrector dipole geometry is that of case 1 from Appendix A so that the net

angular displacements are given by,

∆θ =
e∆Blh

p
(3.20)

∆φ =
e∆Blv

p
(3.21)

where ∆Blh (∆Blv) is the net change in the field integral for the horizontal (vertical)

corrector and p is the (first pass) beam momentum at the corrector. The ∆ notation is

adopted because the quantity that matters for the matrix element measurement is the

angular change that the corrector produces relative to its nominal setting (which is

determined by making the first pass beam travel along the linac axis). Equations 3.20

and 3.21 were derived for the case of a small deflection angle where the sine of the

angle is approximated as the angle in radians. This is valid as typical deflection angles

are ∼ 1 mrad. The change in the field integral of the correctors is given in terms of

the current change in the corrector as

∆Blh = Kc∆Ih (3.22)

∆Blv = Kc∆Iv (3.23)

where Kc is the field integral constant for the corrector and ∆Ih and ∆Iv are the

current change for the displaced ray in the horizontal and vertical corrector from the

current corresponding to the central ray. Table 3.6 shows the corrector constant for

the three sets of correctors used as well as the first pass beam momentum at the

corrector.

The error in the matrix element is found by adding in quadrature the errors in

the net position and angular displacement as
(

σM12

M12

)2

=
(

σ∆x

∆x

)2

+
(

σ∆θ

∆θ

)2

(3.24)

(

σM34

M34

)2

=

(

σ∆y

∆y

)2

+

(

σ∆φ

∆φ

)2

. (3.25)
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Figure 3.11:

-bb-error =

Figure 3.12: Energy recovery beta functions.

Corrector Location Corrector Kc (kG·cm)/Amp pfp MeV/c

HVQL4 Horizontal .43 5.6

Vertical .43

HVQL5 Horizontal .43 23.7

Vertical .43

HVQL6 Horizontal 1.72 42.8

Vertical 1.72

Table 3.6: Corrector field integral constant for each linac location. The first pass
beam momentum pfp is also shown.
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The error in the angular displacement is given by,

σ∆θ

∆θ
=

σ∆Ih

∆Ih
(3.26)

σ∆φ

∆φ
=

σ∆Iv

∆Iv
(3.27)

after combining equations 3.20-3.23. The net error in the position displacements, σ∆x

and σ∆y, is .0004 m; it is found by adding in quadrature the .0003 m error position

determination of the central and deflected ray centroids on the viewscreen. The

dominant error in the angular displacement is due to the corrector field integral error

due to the error in the corrector current. The error in each corrector current reading is

.005 Amperes corresponding to the central and deflected ray. This error when added

in quadrature results in .007 Amperes for σ∆Ih
and σ∆Iv

. This relative error in the

current differences is on the order of 5 to 10% whereas the error in the momentum is

1.8% [Ka92]. The relative error in the momentum is therefore neglected. Table 3.7

lists the matrix elements measured at each position for each optical setting.

The quadrupole doublet strengths for QR1-QR2 and QR9-QR10 were determined

by adjusting their strengths in a dimad fit to the matrix elements measured for nearly

the complete recirculation. The matrix elements for the full recirculator calculated

using these inferred quadrupole strengths are listed in table 3.3; they agree only

in order of magnitude with the measured matrix elements listed in table 3.7 for all

optical settings and locations. For settings 1, 2, 3, and 6 the fitted matrix elements at

the location of QL4 agree exactly with the measured values; for setting 4 the matrix

elements at the location of QL5 agree exactly, and for setting 5 the matrix elements

at location QL6 agree exactly. The fitting procedure was to try and minimize for

each setting the differences between the measured and fitted matrix elements at each

location in the linac. This minimum occurred when the matrix elements at one of

the locations was fit exactly to the measured values at that location consistent with

maximum beta functions for the second pass beam being as small as possible (no

larger than 103 m in order of magnitude).

The relatively poor agreement can be traced to non-ideal optical behavior in the
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Optics Setting # Corrector position M12 m/rad M34 m/rad

1 HVQL4 2.0 ± .7 1.6 ± .3

HVQL5 24 ± 6 4.6 ± 1.3

HVQL6 −6.9 ± 2.0 –

2 HVQL4 7.8 ± 1.4 .5 ± .4

HVQL5 −2.1 ± 1.1 15 ± 4

HVQL6 16 ± 3 −6.6 ± 1.4

3 HVQL4 1.4 ± .4 −.4 ± .3

HVQL5 2.3 ± .9 −2.2 ± 1.5

HVQL6 −3.9 ± 1.4 6.2 ± .8

4 HVQL4 1.6 ± .7 −.7 ± .6

HVQL5 −3.7 ± 1.6 −4.8 ± 1.0

HVQL6 −5.4 ± 2.5 −7.5 ± 6.2

5 HVQL4 −4.5 ± 1.8 1.6 ± .7

HVQL5 −9.8 ± 3.3 −5.5 ± 1.2

HVQL6 −2.5 ± .9 23 ± 5

6 HVQL4 −.3 ± .4 3.3 ± 1.0

HVQL5 17 ± 4 27 ± 10

HVQL6 34 ± 12 21 ± 4

Table 3.7: Measured matrix elements for each optical setting at each linac location
using correctors and viewscreens.

bends B1 and B2 and the difficulties this caused in matching the beam through

the linac on the second pass. The tdbbu calculations were performed using the

computed transfer matrices resulting from inclusion of the fitted doublet strengths in

a full dimad calculation of the recirculator optics for each optical setting.
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3.7 Energy Recovery Measurement

This measurement determined the final energy of the second pass beam in the energy

recovery mode. This was done by referring to the magnet measurements of dipole

DE1 of the energy recovery chicane [Ka92]. DE1 is designed to bend the second pass

beam through an angle of 20◦ as shown in figure 3.3, and the beam orbit is given by

case 1 beam orbit geometry described in Appendix A. Using equations 3.1 and A.11

the beam momentum of the second pass beam is given by,

p =
eBle
sin(θ)

(3.28)

in terms of the dipole field, effective length, and bend angle.

The procedure was to first produce a second pass accelerated beam at 80.1 MeV

with the energy recovery chicane powered to bend a beam of approximately 5.6 MeV

into the dump. The first pass beam was accelerated to the standard energy of

42.8 MeV. The value of the starting field for dipoles DE1, DE2, and DE3 was set

to approximately .35 kG based on a magnet effective length of roughly 18 cm for

DE1 and DE3 and 36 cm for DE2. B1 was then moved 1/4 the fundamental mode

wavelength (5 cm) toward the linac thereby decelerating the second pass beam. Mi-

nor adjustments were then made to the powering of the dipoles until the beam was

found on the viewscreen after DE1. Once the beam was found, the position of bend

B1 was moved slightly so as to move the beam spot as far to the low energy end of

the viewscreen as possible. When this minimum position was found, the spot was

centered on the viewscreen and the value of the magnetic field of DE1 was measured

and found to be .364 kG at a magnet current of 1.214 Amperes. This magnet current

corresponds to an effective length of 17.49 cm interpolated from the magnet mea-

surement table for DE1. Using equation 3.28, the result for the minimum second

pass beam momentum turns out to be 5.59 MeV/c for a total energy of 5.61 MeV.

Owing to the 1.8 % measurement uncertainty in the dipole field integral [Ka92], the

final energy is recorded as 5.6 ± .1 MeV. The injection beam momentum was set to
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its nominal value of 5.55 MeV/c for an injection beam energy of 5.6 ± .1 MeV. The

conclusion is that full energy recovery was achieved within experimental uncertainty

and this was done at up to 30 µA CW beam current.

The energy measured for the first pass beam was 42.8±.8 MeV as determined from

the magnet measurements. Using this value, a limit on the minimum percentage of the

energy recovered can be inferred from the measurement uncertainties. The minimum

is defined as the ratio
42.0 − 5.7

43.6 − 5.5
× 100 = 95.3% (3.29)

and is interpreted as the minimum possible energy recovered for the second pass

beam divided by the maximum possible energy gain of the first pass beam. This ratio

quantifies the statement that full energy recovery was achieved.

The linac viewscreens with ∼ 2 mm diameter holes at their centers located at

the positions of the linac quadrupoles HVQL3, HVQL4, HVQL5, and HVQL6 greatly

aided the procedure of finding the second pass beam for both acceleration and energy

recovery. The first pass beam was threaded through the hole and the second pass

beam could be seen by slightly steering it off axis using the injection chicane dipoles

DC5, DC6, and DC7. Indeed, for energy recovery it was hard to keep the second beam

on axis as it was decelerated. A major difficulty with the energy recovery experiment

was the large second pass spot sizes (on the order of a centimeter in diameter) at the

exit of the second cryomodule.
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-bb-error =Figure 3.13: Viewscreen position vs D1 magnetic field. The top (bottom) plot shows
data taken while ramping upward (downward) on the hysteresis curve.
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Figure 3.14: Beam centroid displacement vs Q1 and Q2 current.
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Chapter 4

RF Measurements

4.1 Overview

This chapter describes the RF measurements performed using the recirculator. The

measurements were performed under single-pass and recirculating conditions using a

CW beam. The primary set of RF measurements were used to investigate the multi-

pass BBU instability properties of the HOMs under the conditions of a recirculated

CW beam for all six optical settings including energy recovery. In these measure-

ments an RF stripline kicker was used to impress a known transverse modulation

on the CW beam, and cavity 8 of cryomodule 2 was used to detect the HOM signal.

From an analysis of the HOM resonance measured as a function of CW beam current,

an experimental lower limit can be set for the multipass BBU threshold current for

that particular HOM. The theoretical analysis of the data was based on the simple

single cavity recirculating linac discussed in Chapter 2. An additional RF measure-

ment was performed with a single pass CW beam using the RF kicker and a second,

identical device located after cryomodule 2 used as a pickup. This experiment in-

vestigated the practicality of measuring the impedance of the HOMs using the RF

pickup. Appendix C describes the operation of the RF stripline kickers and pickups

and their design. The first topic discussed is the injector setup procedure which was

common to all the measurements.
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4.2 Injector Operating Parameters and Setup Procedure

The injector is designed to provide a ∼ 45 MeV CW beam for injection into the first

CEBAF (North) linac by accelerating the beam from 100 keV (see figure 3.1). The

setup procedure for the recirculation experiments is described in this section. Setup

of the 100 keV gun, choppers, buncher, capture section and first two superconducting

cavities (or up to an energy of 5.6 MeV) is identical to that for the North linac. In

addition, cryomodule 1 and 2 cavity gradients are for the most part set to the same

operating point in both setups resulting in nominal 45 MeV operation. The main

difference between North linac setup and setup for these experiments is the addition

of the injection chicane which is necessary for recirculating the beam.

The electron beam originates in a 100 keV gun, and the beam is transported to the

entrance of a short, room-temperature, graded-beta capture section after chopping

and bunching at 1497 MHz. The choppers produce 60◦ bunches that are compressed

to 11◦ by the buncher and finally to 4.5◦ after acceleration by the capture section.

The capture section boosts the beam energy to 500 keV before the entrance of the

first superconducting cavity pair (cryounit). The buncher and capture section phase

was initially set based on a parmela [Kr89] calculation that gave the required bunch

length (4.5◦) at the entrance to the cryounit. The cryounit boosts the energy to

5.6 MeV and further compresses the bunch to < 1◦.

The beam is then transported to the main injector linac consisting of two cry-

omodules each containing four superconducting cavity pairs. The bunch length at

injection into the first cryomodule is checked to be < 1◦ of RF phase or < .5 mm

using the techniques developed by Yao [Ya89], Jackson, and Krafft [Ja92]. Minor

adjustments of buncher amplitude and capture section phase are made to achieve

this good bunch length since the buncher and capture section perform 93% of the

bunching (the first two superconducting cavities perform the rest). The beam is then

accelerated to 45 MeV by the two cryomodules for injection into the CEBAF north

linac. The bunch length remains the same as the beam is accelerated from 5.6 to 45
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MeV and no further bunching occurs because the electrons are relativistic. Finally,

the first superconducting cavity of the cryounit was backphased by 7.5◦ to provide

transverse focussing so that the beam required no quadrupole focussing through the

entire injector. All focussing was accomplished through the backphasing technique

and adiabatic damping of the emittance as the beam accelerates. Resulting spot sizes

through 45 MeV were less than or equal to 1 mm in radius.

For the recirculation experiments the first pass beam energy was set slightly below

the nominal 45 MeV to 42.8 MeV because cavity 8 of the second cryomodule was left

unpowered. The cavity gradients used to achieve the 42.8 MeV first pass beam energy

were given in Chapter 3 in table 3.1. The injection chicane dipoles were powered so

that both first and second pass beams traveled on the linac axis. Each bend B1 and

B2 was set up in dispersion suppressed mode and then the six quadrupoles of the

FODO array were set to the values calculated by dimad for setting 1. Quadrupole

doublets QR1-QR2 and QR9-QR10 were adjusted so that the second pass beam spot

size at the beam dump after B1 was minimum for setting 1. Setting 1 was considered

the nominal setting and the other 5 settings for acceleration of the second pass beam

were accomplished by adjustment of QR3-QR8 strengths. All other magnetic and

acceleration elements were left unchanged when going to a different setting. Energy

recovery was performed by using setting 1 for QR3-QR8 and readjusting doublets

QR1-QR2 and QR9-QR10 to minimize the spot size at the dump after the energy

recovery chicane.

The next sections describe in detail an analysis of the RF measurements that were

performed during the experiment based on the simple examples given in Chapter 2.

The RF measurements used stripline kickers and pickups along with a superconduct-

ing cavity to detect cavity HOM signals. An analysis of the HOM signal strength as

a function of beam current was performed for all recirculation optical settings as well

as energy recovery in order to set experimental limits on the BBU threshold current.

In addition, a single pass RF measurement was performed on a HOM and the data
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were used to determine its shunt impedance R/Q.

4.3 RF Measurements of Cavity Higher-Order Modes

4.3.1 Introduction

The first RF measurement consisted of using a broadband RF stripline kicker to

excite the beam and cavity 8 of cryomodule 2 to detect the HOM signal under the

conditions of a CW recirculated beam. The second consisted of using a kicker to

excite the beam and a broadband stripline pickup to detect HOM signals placed on

the beam under the conditions of a single pass CW beam. These measurements are

sometimes referred to as a “beam transfer function” measurement.

The basic physics of both of these measurements was discussed in terms of the

simple single cavity containing a single HOM “linac” in Chapter 2. This simple case is

relevant to these measurements because of the nature of the cavity impedance, which

is strongly peaked at each HOM frequency. Near a particular HOM in frequency,

the impedance is dominated by the mode at that frequency and all other modes do

not contribute significantly. We can therefore use the results of Chapter 2 as a guide

when analyzing the RF measurement data taken over the range of frequencies where

the mode impedance is peaked (roughly ωm/Qm). For the case of recirculation, the

wake potential was found to be proportional to the HOM impedance divided by a

denominator term that is zero at the threshold current (see equations 2.101 and 2.102).

For the single pass case there was no such denominator term and the pickup current

moment was simply proportional to the impedance (see equation 2.67 and 2.68).

These expressions can be written normalized to the kicker drive signal. This is

useful because the ratio of the cavity (or pickup) signal to the kicker drive signal (the

beam transfer function) can be directly measured using a network analyzer. The basic

measurement setup consists of driving the kicker (through a suitable amplifier) using

port A of the network analyzer, detecting the cavity or pickup signal using port B

and performing an S21(ω) measurement (see [Go84] for the definition of the scattering
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Figure 4.1: Recirculation HOM measurement setup schematic using a stripline kicker
and a superconducting cavity.

parameters of a two-port network). This can be thought of in terms of the kicker-

recirculated beam-cavity HOM or kicker-single pass beam-cavity HOM-pickup “black

box” two-port equivalent network on which an S21(ω) measurement is conducted.

4.3.2 Cavity Higher-Order Mode Measurement Using a Recirculated CW

Beam

Figure 4.1 (and figure 2.7) shows schematically the setup for the cavity HOM mea-

surement using a CW recirculated beam. The stripline kicker was located at the

entrance to dipole DC1 of the injection chicane and was oriented to deflect the beam

in the vertical (y) optics plane. As mentioned earlier, cavity 8 of cryomodule 2 was

used as the pickup that detected the HOM signal for this measurement. Port A of

the network analyzer drives a 25 W broadband amplifier with a center frequency of

500 MHz with a bandwidth of 900 MHz through a mixer. The stripline kicker is

driven by the amplifier through a 180◦ hybrid coupler that splits the drive signal into

two signals 180◦ out of phase and is inherently broadband (see Appendix C). It is

constructed with the same center frequency of 500 MHz and has bandwidth from

D.C. to 640 MHz. Port B of the network analyzer was connected to the cavity probe

antenna attached to the HOM load waveguide. The probe is usually used to regulate

cavity gradient and phase but also couples to the HOM fields.

The HOMs with the highest Q were found to lie in the neighborhood of 2.0 GHz.

The two modes that were measured using the setup of figure 4.1 have a frequency

of 1899 and 2110 MHz and have Q values of 90, 000 and 30, 000 respectively. These

modes were used in the BBU simulations and are listed in table 2.2. As a result,

the port B detector of the network analyzer required a frequency sweep near this
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frequency when searching for the HOMs. The mixer at the output of port A is used

to reduce the frequency of the sweep signal down to frequencies around the 500 MHz

operating range of the kicker (and kicker amplifier) by mixing the sweep signal with

the 1497 MHz bunching frequency (ωb). Via aliasing, the transverse modulation of the

beam at 500 MHz can excite the HOMs around 2 GHz in the cavity. The scattering

parameter S21(ω) is the ratio of the signal amplitude detected at port B [the cavity

signal Vc(ω)] to the sweep signal amplitude of port A [the kicker drive signal Vk(ω)]

expressed in dB.

These measurements were performed for a variety of CW beam currents for each

recirculator optics setting. The measured HOMs (at 1899 and 2110 MHz) were found

to be the highest Q objects near 2.0 GHz. These modes were also among the strongest

modes (large Q and R/Q) found in the cavity bench measurements [Am84]. The kicker

exitation frequencies corresponding to these modes were 402 and 613 MHz because

of aliasing. The kicker operating in the vertical plane was chosen because the cavity

signal was found to be maximum for vertical beam deflections.

In Chapter 2 the instability condition for multipass BBU was found in terms of

the wake potential and current moment due to the stripline kicker. Data analysis of

the BBU instability requires that the measured signal Vc(ω) and drive signal Vk(ω) be

expressed in terms of these quantities. Equations 2.6 and 2.7 define the wake function

in terms of the momentum kick imparted to the beam by the electromagnetic wakefield

and can be expressed as an integral over the wakefield. As stated in Chapter 2, the

wake function is simply proportional to the wakefield in the relativistic limit.

The wake potential is expressed as an integral over the wake function and beam

current and is the accumulated exitation of the wakefield at a given time t by the

beam that has passed through the structure. The wake potential, V (t), is defined

to be proportional to the kick imparted to the beam at time t by the wakefield.

The wake potential is therefore also proportional to the wakefield at time t and the

proportionality holds in the frequency domain. The electromagnetic wakefield in the
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frequency domain is also proportional to the cavity signal Vc(ω) so that the cavity

signal can be written directly in terms of the wake potential as

Vc(ω) = αcV (ω), (4.1)

where αc is a constant of proportionality which takes into account the effective cou-

pling to the wakefield by the cavity probe antenna and any other cable attenuation

factors. In Chapter 2 it was shown that the wake potential is proportional to the

impedance. Therefore at a given beam current below threshold the cavity signal at

a HOM resonance has the same form as the HOM impedance (shown in figure 2.3

scaled by a constant.

The kicker drive signal can be expressed in terms of the current moment due to

the kicker deflection at the cavity. The kicker current moment is given in terms of

a matrix element term multiplied by Iθk(ω) (see equation 2.93). From Appendix C

the angular kick as a function of frequency is simply proportional to the drive signal

Vk(ω), so that

IVk(ω) ∝ Iθk(ω) (4.2)

IVk(ω) = 2πI◦
∞
∑

n=−∞

Vk(ω − nω◦) (4.3)

where IVk(ω) is the Fourier transform of I(t)Vk(t). The sum in equation 4.3 collapses

to the n = 0 term because the drive signal has appreciable components at frequency

ω = ωk (there is no aliasing of the drive signal emerging from the network analyzer).

The drive signal can be written as

Vk(ω) ∝ Iθk(ω)

I◦
(4.4)

where I◦ is the average beam current. Equations 4.4 and 2.54 indicate that the kicker

drive signal is proportional to all the aliased signals placed on the beam by the kicker

scaled by the average beam current. Expressed in terms of the current moment due

to the kicker at the cavity,

Vk(ω) = αk
Ixc(ω)k

I◦
(4.5)
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where the constant αk is a constant of proportionality that takes into account the

gain of the amplifier and the optical transfer matrix elements from kicker to cavity

(see equation 2.93).

Using equations 4.1 and 4.5, equation 2.102 can now be written in terms of the

cavity and kicker drive signals as,

Vc(ω)

Vk(ω)
=

αcW (ω)

αk

(

I◦
1 − I◦/It

)

(4.6)

S21(ω) ≡ Vc(ω)

Vk(ω)
(4.7)

where It denotes the (real) threshold current. The instability denominator D(ω) =

1−I◦/It in equation 4.6 has been written as a real quantity and is zero at the threshold

current. The S21(ω) measurement near a HOM resonance is thus seen to scale like

the impedance. Taking the modulus and the logarithm of both sides of equation 4.6

yields

log |S21(ω)| = log

∣

∣

∣

∣

∣

αcW (ω)

αk

∣

∣

∣

∣

∣

+ log(I◦) − log
(

1 − I◦
It

)

. (4.8)

The network analyzer was set up to measure the amplitude (modulus) of S21(ω) in

dB as a function of average CW beam current I◦. Equation 4.8 is the most useful

way to express the measurement quantities in terms of the threshold condition.

Equation 4.8 has the form:

log |S21(ω)| = a◦ + log(I◦) − log (1 − a1I◦) (4.9)

where a◦ and a1 are parameters that can be fit to the data. The parameter a◦ contains

information about the HOM impedance and a1 is simply the inverse of the threshold

current. The fitting function given by equation 4.9 is non-linear in the parameter

a1 (linear in a◦). Furthermore the parameter a1 is constrained to be ≥ 0 because a

negative threshold current is not physically real. Therefore a constrained non-linear

fit of the data was performed which stepped the parameter a1 and found the value of

a◦ that minimized χ2 for each value of a1. The parameter a1 was stepped to a value

one step size less than the inverse of the data point representing the largest current
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value (to avoid taking the logarithm of a negative number). The miminum value

of χ2 that corresponds to the best-fit values of a◦ and a1 was thereby determined

numerically.

A similar procedure was used to determine the threshold current of cavity HOMs

in the experiment of Lyneis et al [Ly83]. Instead of using a kicker to excite the beam

which then excited cavity HOMs, the cavity was excited directly using a microwave

source at the frequency of the HOM using an input antenna coupled to the HOMs.

The HOM signal was then detected using another pickup antenna located in the

cavity. The power output of the pickup antenna for a given input power at the

exitation probe is given by

P (I◦) ∝
1

(1 − I◦/It)2
(4.10)

when a beam is recirculated through the cavity. By measuring the output power for

two average currents I◦ = 0 and I◦ = I (where in practice I is as large as possible to

get a good signal) the threshold current is given by,

It =
I

1 −
√

P (0)/P (I)
. (4.11)

The measurement in [Ly83] was done in the time domain but the same instability

denominator results as it must. For the measurements described here, equation 4.6

was fit to the data to extract It. The difference between measurement techniques is

the extra factor of I◦ in equation 4.6 due to the kicker.

Figure 4.2 shows the two HOMs that were measured using the setup of figure 4.1.

The top plot is the network analyzer scan of the 1899 MHz mode at a CW beam

current of 67 µA and the bottom plot is the scan for the 2110 MHz mode at 46 µA

for optical setting 1. Each figure shows the resonant lineshape of a HOM with a width

given by its Q. The measured Q of these modes was found to be a factor of three

higher than the values obtained in bench measurements [Am84].

Figures 4.3, 4.4, 4.5, and 4.6 show plots of the height of the peak, log|S21|, as

recorded by marker 1 shown in figure 4.2 as a function of log(I◦) for each optical
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Figure 4.2: Network analyzer frequency scan of the 1899 and 2110 MHz modes at
67 µA and 46 µA respectively. The vertical axis is |S21| in dB (20 Log |S21|) and
horizontal axis is the frequency f = ω/2π. The center and span frequencies determine
the frequency range for the horizontal axis.
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setting along with fitted curves. The data for each optical setting shows the data

for the 1899 MHz mode at a larger signal amplitude (upper curve) than that for

the 2110 MHz mode (lower curve). The vertical error bars represent an estimation

of the noise evident on the resonance curves shown in figure 4.2. The jitter is a

consequence of the noise signal incident on the network analyzer receiver at port 2

where the cavity signal enters. The solid curve corresponds to the best-fit values of

parameters a◦ and a1 which minimize χ2. The dashed curve is a plot for the maximum

value of a1 as implied by its statistical error σa1 , or the curve that corresponds to to

the quantity a1 + σa1 where σa1 was determined using the error matrix formalism of

Bevington [Be69]. The dashed curve therefore represents the minimum value of the

threshold current It as implied by the data.

Table 4.1 summarizes the fits and minimum threshold currents obtained from the

data for the two HOMs at each optical setting. A remarkable feature of the data is the

fact that for setting 4 no 1899 MHz peak was observed! The mode with orthogonal

polarization and much lower Q (∼ 7000) to this mode at 1901 MHz was measured

instead. An explanation of the vanishing 1899 MHz peak is that the effective matrix

element as given by equation 2.93 was zero (or very small) for setting 4 thereby

reducing the cavity signal and S21 to the same order of magnitude as the noise.

In general the data show no significant evidence of multipass BBU for these modes.

There are a few exceptions but the data for the most part are best-fit when the param-

eter a1 = 0 or equivalently when It = ∞. The best-fit occurs when the dependence

on S21 varies in a simple linear fashion with the threshold current. This experimental

evidence supports the conclusion of the tdbbu simulations which indicated threshold

currents on the order of a few to tens of milliamperes. Data for the energy recovery

case also shows no significant non-linear trend due to a low threshold current. The

large error results from some points which lie well away from the best-fit line. A

common problem with these measurements was that the beam was not stable and

would activate the machine loss protection system before the network analyzer could
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-bb-error =Figure 4.3: Data and fits for settings 1 and 2. The solid curve is the best-fit and the
dashed curve represents the maximum value of a1 implied by its error (minimum It).
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-bb-error =Figure 4.4: Data and fits for settings 3 and 4. The solid curve is the best-fit and the
dashed curve represents the maximum value of a1 implied by its error (minimum It).

94



-bb-error =Figure 4.5: Data and fits for settings 5 and 6. The solid curve is the best-fit and the
dashed curve represents the maximum value of a1 implied by its error (minimum It).
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-bb-error =Figure 4.6: Data and fits for energy recovery and single pass settings. The solid curve
is the best-fit and the dashed curve represents the maximum value of a1 implied by
its error (minimum It).
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Setting # HOM a◦ a1 χ2 It

(MHz) (×10−3µA−1) (µA)

1 1899 −4.08 ± .02 0 + 1 .321 > 875

2110 −5.09 ± .03 3 ± 2 3.53 > 207

2 1899 −4.153 ± .009 0.0 + 0.5 29.4 > 2183

2110 −4.87 ± .02 0 + 1 14.1 > 819

3 1899 −4.66 ± .01 0.0 + .8 5.40 > 1247

2110 −5.21 ± .02 0 + 1 8.30 > 897

4 1901 −5.36 ± .02 0.0 + 1.7 14.3 > 605

2110 −5.53 ± .03 0.0 + 2.5 14.8 > 403

5 1899 −4.10 ± .02 5.4 ± .8 9.64 > 161

2110 −5.11 ± .02 2.3 ± .7 1.30 > 334

6 1899 −3.76 ± .01 .5 + .6 2.29 > 987

2110 −4.72 ± .02 0 + 1 2.18 > 784

Energy Recovery 1899 −4.17 ± .02 0.0 + 2.5 92.0 > 401

Single pass 1899 −4.490 ± .003 0.00 + .04 73.6 > 28210

2110 −5.448 ± .009 0.00 + .09 40.5 > 11578

Table 4.1: Fitted parameters and threshold current estimates for the 1899 and
2110 MHz modes for all optical settings.

complete its sweep in frequency over the HOM resonance.

For comparison, a measurement of both HOMs was performed under the condi-

tions of a single pass CW beam after the recirculation measurements were performed.

The first pass beam was therefore identical to that for the recirculation measurements

and dumped after B1 by simply bending it using D1 and D6 powered to bend the

first pass 42.8 MeV beam by 24◦. The rest of the recirculation arc was left unpowered

except for the injection chicane. The chicane was kept powered to bend the first pass

beam through the 12◦ dogleg as in the recirculation measurements.
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For this case, the cavity signal is given by equation 2.49. In particular, there is

no instability denominator term because of the lack of beam recirculation. Therefore

the cavity signal V (ω) should simply vary linearly with current. Referring to equa-

tion 4.8, this means that the impedance (first) term and second terms appear and

the third term does not appear. For this case the effective threshold current is in

principle infinite for multipass BBU because there is no recirculation and therefore

no feedback mechanism (note that cumulative BBU can possibly occur in this case

however “threshold” currents for this type of BBU are well above the maximum CW

beam current available from the injector). In the interest of comparison with the

recirculation case, the functional form represented by equations 4.8 and 4.9 was fit to

the data shown in the bottom plot of figure 4.6. Table 4.1 does indeed show that the

best-fit to the data occurs when a1 is zero or It = ∞. The error of a1 is also an order

of magnitude less for the straight through case than the other recirculation cases re-

sulting in minimum mathematical “threshold” currents an order of magnitude above

the maximum value obtained for the recirculation settings. The data as expected is

well fit by a simple linear dependence on the average CW current I◦. Appendix D

lists the raw data (in dB) plotted in figures 4.3, 4.4, 4.5, and 4.6.

4.3.3 Cavity Higher-Order Mode Measurement Using a Single Pass CW

Beam

In Chapter 2 section 2.2.4 a theoretical discussion was presented of a HOM interaction

with a single pass beam. The beam is deflected upstream of the cavity by a kicker and

the resultant displacement is detected by a downstream pickup as shown in figure 2.6.

The measurement setup based on this physical situation is shown schematically in

figure 4.7. In this measurement the stripline pickup (see Appendix C) is used as a

HOM signal detector instead of the cavity. The pickup is broadband and has the same

characteristics as the kicker and is used to detect the aliased HOM signals placed on

the beam. The kicker circuit is the same as that for the recirculation measurements

except that no mixing down of the kicker sweep signal is required. This is because
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Figure 4.7: Single pass HOM measurement setup schematic using a stripline kicker
and pickup.

the network analyzer port B detector can be set up to detect the aliased HOM signals

around 500 MHz from the pickup. The pickup electronics consists of a broadband

(10 to 1000 MHz) 66 dB preamp and a broadband hybrid combiner used to subtract

the signals from each stripline in the pickup to determine the transverse position of

the beam.

Since there is no recirculation, there is no instability denominator that becomes

zero at the threshold current. The cavity HOM acts as a driven oscillator where the

driving signal is provided by the transverse modulation of the beam due to the kicker.

The resulting transverse beam modulation due to the HOM is then detected at the

pickup. The goal of the measurement is to extract from the data an estimate of the

shunt impedance R/Q of a HOM.

The usefulness of this measurement scheme is that the pickup measures directly

the transverse displacement due to the deflection of the beam caused by the HOM.

HOMs that are not adequately damped (and therefore have a large Q) will cause

the largest beam deflections and are therefore potentially most destructive. The

pickup produces a relatively large signal for HOMs that have the greatest coupling

(shunt impedance R/Q and Q) to the beam because these modes produce the largest

deflection. The relative size of the HOM signal detected by the pickup therefore deter-

mines the modes that are potentially most destructive for multipass (or cumulative)

BBU. Since both kicker and pickup are broadband devices centered at 500 MHz with

350 MHz bandwidth, a search in frequency was performed to find the HOMs that

produced the largest signal.

The single pass RF measurements were performed after all the recirculation mag-

nets were removed from the accelerator tunnel except for dipole DC1 of the injection
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chicane. It was retained for energy measurement purposes. The kicker was located

immediately upstream of injection chicane dipole DC1. The pickup was located at

the former position of energy recovery chicane dipole DE2. Two sets of kickers and

pickups were located at each of these positions and were oriented to deflect and de-

tect in the horizontal and vertical planes in an attempt to detect the strongest dipole

modes acting with either polarization.

The 100 keV gun, choppers, buncher, capture section, and first two superconduct-

ing cavities of the cryounit were set up to produce a beam with the same character-

istics as described in section 4.2 (ie. beam energy of 5.6 MeV, bunch length < 1◦).

The two cryomodules were set to a lower gradient so that the first pass beam emerged

from the second cryomodule at an energy of 24.6 MeV as measured by a dipole that

bent the beam by 40◦ downstream of the pickup. The lower beam energy (and hence

momentum) was used in an attempt to maximize the HOM deflection and therefore

overall measurement sensitivity. Linac quadrupoles at locations HVQL4 and HVQL6

were adjusted to make the sine-like ray zero from kicker to pickup to maximize the

sensitivity to HOM deflections as discussed earlier in Chapter 2.

Referring to equation 2.67, the ratio of current moments must first be related to

the kicker drive signal Vk and the pickup signal Vp. As with the recirculation case

the kicker current moment Ipxp(ω)k is related to the kicker drive signal according to

equation 4.5 where Ixc(ω) replaced with Ipxp(ω)k. From Appendix C, the current

moment at the pickup is given in terms of the pickup signal as,

Vp = αpIpxp(ω) (4.12)

where αp takes into account the shunt impedance of the pickup and the gain factor

of the pickup amplifier. Using equations 4.5 (inserting the pickup current moment

instead of the cavity current moment) and 4.12, the current moment ratio in equa-

tion 2.67 is written in terms of the kicker drive and pickup signals as,

Vp(ω)

Vk(ω)
=
(

αp

αk

)

Ipxp(ω)

Ipxp(ω)k

× I◦ (4.13)
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where

S21 ≡
Vp(ω)

Vk(ω)
(4.14)

is defined analogous to that for the recirculation measurements that used the cavity

as the pickup device.

Equation 2.77 expresses the ratio of the pickup to kicker current moments at the

resonance peak (ωr) in terms of the impedance through the term gk. Combining

equations 2.77, 4.13, and 4.14 yields

|S21(ωr)| =
(

αp

αk

)

I◦
√

1 + gk(I◦)2 (4.15)

for the scattering parameter at ω = ωr as a function of the average current. Taking

the logarithm of both sides of 4.15 yields,

log |S21| = log
(

αp

αk

)

+ log(I◦) +
1

2
log(1 + gk(I◦)

2) (4.16)

which has the form

log |S21| = a◦ + log(I◦) +
1

2
log(1 + a1I

2
◦
) (4.17)

a1 ≡
(

eM(R/Q)mkmQm

2pfc

)2

(4.18)

M =
M

(k)
34 M

(p)
34

(M (p)M (k))34
(4.19)

where M denotes the ratio of matrix elements in equation 2.79 and the (12) matrix

elements were replaced with (34) matrix elements because the HOM resonance mea-

sured occurred in the vertical plane for this measurement. Equation 4.18 defines the

fitting parameter a1 in terms of the parameters of gk. Determination of the fitting

parameter a1 thus yields a value for the shunt impedance (R/Q) provided the various

other parameters can be determined.

The measurement consisted of setting up a beam as described previously and

searching over the frequency range centered at 500 MHz for HOM resonances using

both horizontal and vertical kicker-pickup pair. Quadrupoles at HVQL4 and HVQL6
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were set from a dimad computation so that the sine-like ray [(M (p)M (k))34, the de-

nominator of equation 2.78] from the kicker passes through zero at the location of

the pickup. This is equivalent to minimizing the kicker current moment (Ipxp(ω)k)

and hence the pickup signal Vp so as to maximize the sensitivity to HOM deflections.

When kicker pair was changed from horizontal to vertical the quadrupole polarity

was simply reversed to maintain the same optical condition in the vertical plane.

By observing the pickup signal on a spectrum analyzer, the quadrupole strengths

were adjusted so as to minimize the peak at the center frequency of 500 MHz. The

quadrupole at HVQL1 was then used to minimize the beam envelope at the position

of the beam dump, resulting in single pass beam envelopes similar to those for the

first pass for the recirculation measurements.

A search in frequency was performed for both horizontal and vertical kicker-pickup

pairs. A HOM resonance was found at the aliased frequency of 401.849 MHz corre-

sponding to the mode at 401.849 + 1497.000 = 1898.849 MHz using the vertical

kicker-pickup pair. This mode therefore most closely corresponds to the 1899.5 MHz

mode measured during the recirculation experiment because frequency shifts of a few

MHz are observed for the HOMs from cavity to cavity. This was the only definitive

resonance seen over the bandwidth of the kickers and pickups. No other resonance

was definitively seen using the horizontal kicker-pickup pair over the bandwidth due

to the noise present on the signal. Of course a higher Q pickup would have helped in

observing the small HOM signals at the expense of bandwidth.

The top plot of figure 4.8 shows the HOM resonance observed as a function of

frequency and average beam current. The bottom plot shows the resonance on a

finer scale for I◦ = 195.2 µA. One observes from the top plot the simple logarithmic

dependence of the resonance tail as the average beam current is increased. Figure 4.9

shows a plot of the peak of the resonance as a function of beam current. The error

bars result from the noise observed at the resonance peak and generate an error in
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-bb-error =Figure 4.8: Network analyzer frequency scan of the HOM resonance measured using
an RF stripline kicker and pickup. The plots show frequency scans at various single
pass CW beam currents.
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the fitted parameters. The parameters for the best-fit are:

a◦ = −.98 ± .01 (4.20)

a1 = (5.6 ± 1.9) × 10−6 µA−2 (4.21)

χ2 = 0.25. (4.22)

The value of χ2 indicates a good fit to the data and the errors in the parameters

are calculated from the error matrix formalism [Be69]. The parameter a◦ was set via

a calibration of the network analyzer so that at 9.9 µA |S21| = 0. The calibration

is simply a matter of convenience so that frequency response of no interest in the

measurement is defined to be zero. In this case the low current response is not

interesting because the HOM signal is weakest and the response is expected to be

flat.

The most difficult parameter to estimate in equation 4.18 is the ratio of matrix

elements. It is not known which cavity HOM produced this resonance. In the absence

of this information only an estimate of the matrix element ratio can be done. The sine-

like ray (denominator term) from kicker to pickup was estimated using the vertical

corrector upstream from the kicker. It produced an approximately 10 mrad kick

resulting in no observable displacement at the viewscreen immediately upstream of

the pickup where the spot size was approximately 1 mm. This results in

(M (p)M (k))34 ∼
.001 m

.01 rad
= .1 m/rad (4.23)

as an estimate for the maximum value of the sine like ray.

An estimate of the matrix elements for the sine-like rays from kicker to cavity

and cavity to pickup was calculated with dimad using the values of the quadrupole

strengths determined empirically using the spectrum analyzer. The effective cavity

“positions” were taken to be before cryomodule 1 at the location HVQL4, between the

cryomodules at the location HVQL5, and after cryomodule 2 at the location HVQL6.

The matrix element ratio values at each of these effective cavity position will serve to

bound the shunt impedance R/Q. Table 4.2 lists the values of these matrix elements

along with the matrix element ratio M for each effective position where the beam

momentum is pf .

Using table 4.2 R/Q is calculated using the other known quantities in equa-

tion 4.18. The Q of the mode is taken to be 90, 000 as determined in the recirculation
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Effective location a1 (×10−6 µA−2) R/Q Ω

7.5 93.7

HVQL4 5.6 80.8

3.7 65.5

7.5 58.7

HVQL5 5.6 50.7

3.7 41.0

7.5 84.8

HVQL6 5.6 73.2

3.7 59.2

Table 4.3: Estimated HOM shunt impedance determined from the single pass RF
measurement using a kicker and pickup.

experiments. The wavenumber is found as usual from the measured frequency of

1898.849 MHz. The result is summarized in table 4.3 for the best-fit value of the

parameter a1 and its maximum and minimum possible values given by its statistical

error. The average value of the shunt impedance from table 4.3 for the three effective

cavity positions is R/Q = 67.5 Ω. This is about a factor of three larger than that

given in table 2.2 from the cavity HOM bench measurements in reference [Am84]

(21.9 Ω). The most difficult parameter to estimate in this measurement is the matrix

element ratio. In particular, the (nominally zero) matrix element (M (p)M (k))34 is the

most difficult to estimate and can easily by off by a factor of three.

The shape of the resonance in figure 4.8 is interesting in that it does not have

the resonant lineshape measured in the recirculation measurements. One possible

explanation is that two similar modes but perhaps different in polarization or cavity

location were interfering with each other. S21 measurements using a single cavity

driven through its fundamental coupler and using the HOM load antenna indicate
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interference effects of the dipole modes in a single cavity [Bi91]. These modes were

not seen to be isolated resonances but had “notches” which were approximate zeros in

the response due to the interference of two nearby modes. At the 1899 MHz frequency

corresponding to the measured HOM resonance, the single cavity data exhibited com-

plicated interference-like features that could be the cause of the measured lineshape.

Appendix D lists the raw data (in dB) plotted in figure 4.9.

4.4 Comparison with Theory and Simulation

The RF HOM measurement performed with a recirculated CW beam measured actual

HOM resonances present in cavity 8 of cryomodule 2. An estimate of the multipass

BBU threshold current one could expect from this mode acting on the beam was made

from a measurement of the height of the resonance peak as a function of the average

CW beam current. The form of the fitting function used in the data analysis was

based on a theory describing a simple single cavity containing a single HOM where

the beam passes twice through the cavity due to recirculation. The threshold currents

deduced from this analysis of the recirculation measurements are generally consistent

with the thresholds calculated in a full tdbbu simulation of the recirculator.

Table 4.4 summarizes results shown in tables 4.1 and 2.3. The data for the 6 optical

settings indicate that for the most part the minimum threshold current inferred from

an analysis of the RF measurements is on the order of 1 mA to within a factor of about

two. In particular, the data for optical settings 1 (1899 MHz mode only), 2, 3, 4, 6

(2110 MHz mode only), and energy recovery follow this pattern. The best-fit value for

a1 turns out to be zero, indicating a very large (infinite) threshold current provides the

best description of the data; a lower bound on the threshold current can be inferred

from the upper bound on a1 given by its uncertainty. The uncertainty in the fitting

parameters relates directly to the error bars of the raw data. An improvement of the

noise characteristics of the measurement circuit would result in an improvement in

our ability to set limits on the threshold current by this method.
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Setting # Im (µA) HOM (MHz) It (µA) It (µA)

(Actual Max. (Inferred (From

Rec. Current) from Meas.) tdbbu)

1 215 1899 > 875 5300

2110 > 207

2 68 1899 > 2183 6300

2110 > 819

3 120 1899 > 1247 19500

2110 > 897

4 95 1901 > 605 13200

2110 > 403

5 64 1899 > 161 15500

2110 > 334

6 67 1899 > 987 5000

2110 > 784

Energy Recovery 30 1899 > 401 400

Table 4.4: Threshold current comparison between measurement, calculation and max-
imum recirculated current.

Two notable exceptions to the general pattern occur, as is evident from table 4.4.

They are the 2110 MHz mode of setting 1 and both the 1899 and 2110 MHz modes

of setting 5. For these cases the best-fit value of a1 is not zero so the threshold

currents inferred are finite. Mathematically this means that there is some non-linear

curvature to the best-fit curve. For setting 1 we were able to recirculate a 215 µA

beam without observing multipass BBU consistent with the 207 µA lower limit set in

the RF measurement for the 2110 MHz mode. For all settings the main limitation to

our measurements is the absence of data at high average CW beam currents compared
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to those for the single pass case (up to 275 µA). It is therefore difficult to say that

these settings (except for the energy recovery setting) were more prone to exhibit

multipass BBU because the best-fit value of a1 was not zero. This could simply be

due to statistical fluctuations at low average current that would not continue at higher

currents. Another possibility is that a systematic error crept into the measurements

for these settings. For the energy recovery setting the best-fit value of a1 was indeed

zero and the low minimum threshold current was due to the relatively large error of

a1 for this case (which, in turn, is probably due to the relatively low current we were

able to recirculate).

The results of these measurements using the injector recirculator can be used

to estimate the threshold current for the full CEBAF recirculating linac using the

calculated tdbbu threshold currents as a figure of merit. The computed threshold

current takes into account differences such as optics and beam energy of the of the

two machines. Two approaches are possible. In the first, we simply note that we

were able to recirculate a current of 215 µA for optical setting one of our injector

recirculator. Since the tdbbu calculations indicate that the threshold for multipass

BBU in the full CEBAF accelerator is roughly twice the value of that for the injector

recirculator in this optics mode, then the fact that we could recirculate 215 µA in

the injector recirculator is good evidence that we can recirculate at least that current

(and probably at least twice that current) in the full CEBAF recirculator.

Alternately, we can use the lower bounds of the threshold currents inferred from

this experiment to estimate the lower bound of the threshold current for the full

CEBAF recirculator. Two steps are necessary. First we note that the different opti-

cal settings have different sensitivities to multipass BBU (as evidenced by the varying

threshold currents calculated using tdbbu). For the 1899 MHz mode our measure-

ments were able to set experimental bounds on the threshold current that ranged

from 1% of the theoretical current (for optical setting 5) to about 35% of the theo-

retical current (for optical setting 2) and even the full current for the energy recovery
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mode. For the 2110 MHz mode, the limits ranged from 3.9% (for optical setting 5) to

15.7% (for optical setting 6) of the calculated threshold current. Since these numbers

are all lower bounds, we can infer that the actual threshold is at least 35% of the

theoretical value for the 1899 MHz mode and at least 15.7% of the theoretical value

for the 2110 MHz mode by taking the bounds inferred from the most sensitive optical

setting for each mode (we exclude the energy recovery mode from this estimate as

the beam is running under very different conditions in this mode). The experimen-

tally determined threshold for BBU in the injector recirculator would be whichever

of these currents is lower for a particular optical setting. Because (R/Q) · Q for the

worst-case 1899 MHz mode is a factor of 2.6 larger than that for the 2110 MHz modes

the threshold limit set by our measurements of the 1899 MHz mode is, in general,

slightly lower than that set for the 2110 MHz mode. To estimate the breakup cur-

rent for the full CEBAF recirculator, we can therefore estimate that it should occur

at a current that is at least 35% of the value of the tdbbu-calculated threshold for

the 1899 MHz mode in the full recirculator. Because the calculated [Kr90] threshold

current for the full recirculator is 11 mA, our experiment implies that we should be

able to recirculate at least 35% of that current, or 3.8 mA. This is roughly an order

of magnitude above the maximum CEBAF design current of 200 µA.

It must be noted, of course, that all of these estimates are based on the assumption

that the theoretical description of BBU in the two recirculating accelerators by tdbbu

is valid. Since we were unable to observe the beam breakup threshold, our experiment

can only state unequivocally that the actual BBU threshold in the injector recirculator

is: a) above 215 µA for optical setting 1; and b) a substantial fraction of the threshold

currents calculated by tdbbu for a broad variety of optical conditions.

Finally, it is noted that the data analysis of the HOM measurement is based on

the assumption that the HOMs are isolated resonances in a single cavity. This is the

case for the CEBAF/Cornell superconducting cavities which have HOM Q values on

the order of 104. In principle the measurement should be performed on all important
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HOMs in all the cavities for all (recirculation) optical conditions to be sure to identify

the HOM that is limiting in the sense of multipass BBU. In this experiment the two

highest Q modes at 1899 MHz and 2110 MHz were measured for a single cavity for

various optical conditions and the measured Q used in the tdbbu simulations.

The tdbbu simulations do take into account the full dynamics of all the cavities

and HOMs interacting with a recirculated beam. They indicate that coherent behav-

ior of the same mode in two or more different cavities in the linac can occur because

the modes have nearly identical growth rates (the imaginary part of the oscillation

frequency that gives rise to exponential growth). The present experiment would be

directly sensitive to these coherent effects. The single cavity HOM data analysis

would simply yield a threshold current smaller than that for a single HOM acting

alone because the multiple HOMs would act roughly as a single giant HOM with a

shunt impedance approximated as the sum of the individual HOM shunt impedances

resulting in lower threshold currents for given recirculation optics.

The single pass measurement using both kicker and pickup was performed to

investigate the possiblility of using this technique to obtain the shunt impedance of

the HOMs. The shunt impedance obtained was an order of magnitude estimate due

the difficulty in determining the matrix element ratio. Part of the difficulty arises

because the exact nature of the HOM resonance is unknown. It may be due to a single

HOM in a single cavity or to more than one acting coherently. The theory developed

in Chapter 2 needs to be extended to treat coherent effects between cavities.

Compared to traditional bench measurements, this technique gives direct indica-

tion of the most important and potentially destructive HOMs in any superconducting

or room temperature structure under study. This is a result of the fact that the ac-

tual deflection of the beam due to the HOM (or some combination of modes acting

coherently) is detected. In a bench measurement of a complicated cavity structure,

the possibility exists that an important HOM is not noticed because of difficulties

in coupling to the mode using traditional probes and antennas. The mode would
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therefore only show up as a beam deflection. As a final remark, if the cavity and

pickup are some multiple of π phase advance apart (in other words, for this experi-

ment M
(p)
34 = 0) the HOM deflection could not be detected at the pickup because the

pickup detects net off-axis displacement and not deflection angles. This is equivalent

to the case of insensitivity due to inadequate probe coupling in a bench measure-

ment. The situation could be corrected by careful beamline optical design and/or

using more than one pickup to detect the HOM signals. The optics could be changed

using quadrupoles to provide adjustment of the phase advance over some reasonable

range.
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Chapter 5

Discussion and Conclusion

The experimental study of multipass BBU in this thesis was undertaken to determine

possible machine performance limitations for accelerators that use superconducting

cavities. The specific accelerator used was the CEBAF superconducting linac. The

primary experimental tool used was the RF measurement of the cavity HOMs which

indicated no substantial evidence of multipass BBU in the CEBAF injector. The pri-

mary theoretical tools used for comparison were the dimad calculations of the optics

and the tdbbu simulations of multipass BBU. The simulations also indicated that

multipass BBU would not occur in the CEBAF injector where the beam conditions

are most favorable for it to occur (low energy and large recirculation transfer matrix

elements). In addition, an estimate of the shunt impedance R/Q of a HOM was made

using a single pass RF measurement using a stripline pickup. This estimate was in

order of magnitude agreement with HOM shunt impedances calculated in the bench

tests of the cavities [Am84] for the most important TM110 like modes. The main

conclusion for CEBAF is that multipass BBU should not limit machine performance.

Practically this means that the full design CW current of 200 µA can be accelerated

in the linac with no beam loss due to multipass BBU. At 4 GeV this represents a

beam power of 800 kW!

The analysis of the recirculation RF measurements was done by fitting the results

of the relatively simple recirculating linac model discussed in Chapter 2. The lower

bound on the threshold currents resulting from these fits were below the values cal-
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culated in the simulations which used fits to measured recirculation transfer matrix

elements. This was primarily due to the noise evident on the measured peak of the

HOM resonance. Reduction of this RF noise would be the aim of improving the

measurement technique in the future. Alternatively, one can improve sensitivity by

extending the measurements to higher CW beam currents through improvements in

recirculation optics (primarily in bends B1 and B2).

For the optics measurements the discrepancy between the measured matrix ele-

ments and the calculated values was primarily due to the non-ideal optical behavior

of bends B1 and B2. As was pointed out, the dispersion was found to be a non-linear

function of momentum and roughly a factor of two smaller than the linear computa-

tion so that by inference the sine and cosine like optics is also a non-linear function

of momentum and different than the simple linear theory. A non-linear theory based

on a sextupole contribution in the end field of the bend dipoles was developed to

take into account this behavior. The basic problem with the bends was that the

dipoles used were simply not designed to bend the beam by 45◦. Coupled with the

difficulties of matching the beam through the second pass which resulted in large β

functions, it is reasonable that the computed and measured matrix elements were not

in agreement. Improvement in the matrix element measurement would have resulted

from better readback accuracy for the values of the corrector current. This was the

largest error in determining the deflection angles. Another improvement would have

been to use the linac RF beam position monitoring system to record beam centroid

offsets instead of the camera/viewer stopgap diagnostic used. This system is designed

to measure the beam centroid to .1 mm; unfortunately it was not functional at the

time of the recirculation experiment.

Finally, an interesting application of the RF measurement techniques used in these

experiments is in feedback stabilization of the beam. Instead of using the kickers and

pickup to measure HOMs and beam resonances, a feedback circuit could be designed

between kicker and pickup to actively damp resonance motion of the beam. Ideally
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such a system would detect a HOM kick using a pickup and apply an appropriate

kick to the beam instantaneously proportional to the HOM kick using a kicker. The

net result of such a system would be to actively damp any growing oscillation of the

beam. Of course no electronics system has infinite bandwidth, so the HOM kick must

be anticipated for bunches about to arrive at the kicker by using the transport matrix

that describes the accelerator. Interesting questions arise concerning gain, bandwidth,

kicker and pickup design and power requirements of such a system. Reference [Ga92]

describes general aspects of this kind of feedback control of a charged particle beam.
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Appendix A

Dipole Beam Orbit Geometry

The general beam orbit geometry in a parallel faced dipole magnet is described in

this appendix. Figure A.1 shows the circular beam orbit in a dipole of effective length

le, total bend angle θ, and entrance and exit edge angles α and β respectively. From

the geometry,

γ =
π − θ

2
(A.1)

γ + β + δ =
π

2
(A.2)

γ − δ + α =
π

2
. (A.3)

The angles δ and θ can be expressed in terms of the entrance and exit edge angles:

δ =
α − β

2
(A.4)

θ = α + β. (A.5)

Equation A.5 indicates that specification of at least two of the three angles α, β or

θ is required to specify the orbit. Using the law of cosines on the isosceles triangle

where two sides have length ρ and one side has length h results in

h2 = 4ρ2sin2(θ/2) (A.6)

The hypotenuse h is given by

cos(δ) =
le
h

(A.7)
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Figure A.1: Beam orbit geometry for a parallel faced dipole magnet.

and using equation A.6 the radius of curvature is

ρ =
le

2 sin(θ/2)cos(δ)
. (A.8)

The beam orbit in the dipole is thus determined completely by two of the three angle

parameters and the magnet effective length through equations A.4, A.5 and A.8.

Two specific cases of the geometry are important for the dipoles used in the

recirculation arc. The first, which corresponds to a normal entrance angle, is

α = 0 (A.9)

β = θ (A.10)

ρ =
le

sin(θ)
(A.11)

s = ρ {1 − cos(θ)} (A.12)

and is denoted as “case 1”. The second, which corresponds to equal entrance and

exit angles, is

α = β =
θ

2
(A.13)

ρ =
le

2 sin(θ/2)
(A.14)

s = ρ {1 − cos(θ/2)} (A.15)

and is denoted as “case 2”. The quantity s is the sagitta defined to be the maximum

lateral extent the beam travels as it passes from entry to exit of the dipole. The

beam orbit is made to pass through the dipole such that the sagitta is centered.

Mathematically this means that for a magnet pole of width W ,

w =
W − s

2
(A.16)
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for both cases. The dipoles that make up the injection chicane, energy recovery

chicane, and bends B1 and B2 are designed to transport the beam according to case

1 or case 2.

The sagitta of the orbit in the bend dipoles (∼ 1.9 cm for a bend angle of 45◦) was

an issue because of the small width of the pole piece (∼ 8.1 cm). This sagitta was a

factor of three larger than the orbit the bend dipoles were designed for (∼ .6 cm for a

bend angle of ∼ 15◦) in the MUSL-2A microtron. The beam therefore travels a longer

distance in the dipole end fringing fields and closer to the dipole edges. The measured

dispersion asymmetry and low dispersion value can be traced to the large sagitta in the

recirculator dipole application. In modeling the bends, a sextupole contribution was

added to the dipole fringe fields in an attempt to explain the dispersion measurement

and is described in Appendix B.
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Appendix B

Dipole Sextupole Fringe Field Model

The bend model was based on a dipole model that resulted from an analysis of the B1

dispersion measurements (the details of this measurement are discussed in Chapter 3,

section 3.4). The initial measurement analysis along with dimad calculations are

described fully in reference [Do91]. The dispersion was measured with a first pass

beam at 45 MeV and with quadrupoles Q1 and Q2 unpowered. The dipoles were

cycled to eliminate hystesis effects. The dispersion at the exit of B1 (the viewscreen

after D4) was found to be 2.21 m when increasing magnetic field of the bend dipoles

to simulate a low momentum particle and 2.94 m when lowering the magnetic field

of the dipoles to simulate a high momentum particle. The average linear dispersion

derived from the complete set of data (both from raising and lowering the beam

energy) was 2.57 m. The dimad calculation of the linear dispersion using a simple

dipole model resulted in 5.52 m for the dispersion at the end of the bend, as shown in

figure B.1. This value deviates significantly from the measured values implying that

a more realistic model must be used for the bend dipoles. The new model must take

into account not only the factor of two difference in the value but also the asymmetry

in the value depending on particle momentum.

Measurements of the field integral of bend dipole D1 indicated a quadratic varia-

tion in the field integral of ∆Bl/Bl = −.5% from the center of the pole to ±1.5 cm

on either side of center. This was taken into account in the dipole model by adding

a sextupole field variation according to,

∆Bl

Bρ
= kd

2x
2 (B.1)

∆Bl

Bρ
=

∆Bl

Bl
× le

ρ
×
(

x

.015 m

)2

(B.2)

where kd
2 is the sextupole multipole strength, ρ is the radius of curvature, le is the

effective length of 19.1 cm, and x is the horizontal coordinate. The sextupole repre-

Figure B.1: First pass linear dispersion in B1 and B2 for the various stages of dipole
model development.
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kd
0 = kd

2x
2
◦

(B.4)

which is simply the value of the slope (quadrupole contribution) and magnitude

(dipole contribution) of the sextupole contribution at the location of the design or-

bit at each end of the dipole which in these dipoles is half the sagitta (since the

sagitta is split symetrically about the centerline of the dipole) given by case 2 in Ap-

pendix A (x◦ = −.0095 m). Using these parameter values yields a sextupole strength

of −17.0/m2, a quadrupole strength of .32/m, and a dipole strength of .0015. These

strengths resulted in a calculated linear dispersion of 3.85 m from dimad, much closer

to the measured value of 2.57 m, and is shown in figure B.1.

Using the “detailed chromatic analysis” feature of dimad, a simulation of the

orbit displacement at the exit of B1 for both raising and lowering the beam energy

by the same momentum bite used in the dispersion measurement (δp/p = ±.35%)

was performed. The dispersion computed when lowering the energy was 3.39 m

and when raising the energy was 4.40 m indicating qualitative agreement with the

observed asymmetry. A modest increase in the sextupole strength by a factor of 1.83

above that based on the measurements in an attempt to fit the measured dispersion

when lowering the beam energy yielded a linear dispersion value of 2.76 m shown in

figure B.1 and a dispersion asymetry of 2.21 m when lowering the energy and 3.51 m

when raising the energy.

Though not perfect, the sextupole fringe field model of the dipole does a reasonable

job at accounting for the reduction of the original calculated linear dispersion of 5.5 m

due to non-linear focussing of the dipole fringe fields. Furthermore it also explains

the observed asymmetry in the dispersion when raising or lowering the energy. The

dipoles in B1 and B2 (except the small corrector D5) were all used in the MUSL-2A

microtron as approximately 15◦ bends of case 2. The orbit sagitta was therefore a

factor of three smaller than in the present application in the recirculation arc. This

boils down to the fact that the beam travels a larger distance in the dipole fringe field

and most importantly passes closer to the pole edges at the ends of the dipoles in B1
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and B2 in the recirculator than it did in the original use of the dipoles in MUSL-2A.

In terms of the sextupole fringe field model of the dipoles, the asymmetry in

the calculated dispersion is qualitatively understood in terms of the focussing the

beam experiences as it traverses the end field region of the dipoles where there is

a significant magnetic field gradient. A low momentum particle is bent more and

arrives at each dipole entrance (and exit) displaced farther from the centerline than

the nominal particle; it therefore experiences a larger field gradient and hence stronger

focussing. The opposite is true for a high momentum particle. The stronger focussing

experienced by the low momentum particle manifests itself as a systematic reduction

in the dispersion from the average linear value as compared to that for the high

momentum particle.

The next step in the analysis is to calculate the effect of Q1 and Q2 focussing

on the calculated B1 dispersion using the sextupole model of the dipole fringe fields.

The sextupole strength initially used is obtained from the fit to the dispersion mea-

surement (see figure B.1). The measurements described in Chapter 3 indicate that

the dispersion was zero (both slope and magnitude) when the quadrupoles were set to

a strength k = 2.37/m. Using this value in a linear dispersion computation using the

sextupole strength fit to the dispersion measurements results in .77 m of dispersion

at the end of the bend on the first pass as shown in figure B.1 indicating incomplete

dispersion suppression. To model the dispersion-suppressed mode of the bend, the

sextupole strength was used to fit the linear dispersion as well as slope to zero at the

end of B1. This fit required that the sextupole strength be increased by a factor of

4.23 to model the measured dispersion-suppressed mode of the bends and is shown

in figure 3.8 of Chapter 3. The bends were normally run in the dispersion suppressed

mode except when B1 was used to measure the energy. The same dipole model was

included in the description of bend B2 dipoles D7, D8, D9 and D10 so that the first

order optics in the dispersion suppressed mode are identical to that of B1.
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Appendix C

Kicker and Pickup Operation and Design

The kicker and pickup devices used in the RF measurements were designed to produce

transverse beam deflections and detect transverse beam offsets over a wide range of

frequencies. These broadband requirements are met by the stripline type of kicker

or pickup shown respectively in figure C.1. These devices are based on two stripline

electrodes that support TEM waves along their length as shown in the figures. The

figures show the kicker and pickup connected to the circuit used to operate each in

the transverse sense (both kicker and pickup have an equivalent longitudinal mode of

operation). This appendix is not meant to be an exposition of the complete theory of

kicker and pickup operation. The devices are discussed in the context of the applica-

tion used for these experiments. Reference [Go92] gives an extensive discussion of the

theory of the important kicker and pickup devices in use at accelerators presently.

The kicker setup in figure C.1 shows the kicker driven from a source signal Vs which

is split into two signals V+ and V−. Each signal then travels along the transmission

line of impedance ZL formed by each stripline electrode. Each stripline is terminated

in some standard impedance Zc which for these experiments was 50 Ω. The signal V+

is phase shifted by the hybrid coupler 180◦ relative to V−. The beam enters from the

-bb-error =

Figure C.1: Kicker and pickup setup schematic.
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left on axis and is assumed to follow a straight line trajectory at constant velocity

through the kicker–a good approximation for electrons above 5 MeV. Assuming a

straight line trajectory is justified because the transverse kick is small compared to

the longitudinal momentum of the beam.

The paradox in understanding kicker operation lies in the fact that the striplines

support TEM waves. Relativistic electrons should not be deflected at all by a TEM

wave because the v × B force on the particle is exactly canceled by the force due to

the electric field E. The answer lies in a remarkable theorm known as the Panofsky-

Wenzel theorm which relates the transverse momentum kick imparted to the beam

to the transverse gradient of the longitudinal energy change of the beam due to the

kicker. The theorem is written in phasor form as,

p⊥ =
i∇⊥(∆E)

ω
(C.1)

∆E ≡
∫ z◦+l

z◦
Ez(x, y, t)dz (C.2)

where ⊥ denotes the dimensions transverse to z, l is the kicker length, and the complex

factor i indicates that the transverse kick is 90◦ out of phase with the longitudinal

electric field produced by the kicker. The theorem results from substitution of Fara-

day’s law into the Lorentz force equation and a bit of rearranging. For the situation

of the stripline kicker, the only component of the electric field longitudinal to the

beam direction occurs at the ends of the electrodes. The electrodes are driven 180◦

out of phase so as to produce the maximum transverse gradient of the longitudinal

electric field thereby maximizing the kick p⊥. The origin of the kick is now clear,

the transverse gradient of the time varying longitudinal electric field produces a time

varying magnetic field at the electrode ends according to Faraday’s law. The induced

magnetic field produces a net kick at the electrode ends. Driving the two electrodes

in phase would produce a longitudinal kicker. No transverse kick would occur in

this case because the longitudinal electric field at the electrode ends would have no

transverse gradient.
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The final consideration for the kicker design is computation of the kick given

by equation C.1. This is in principle accomplished by solving the boundary value

problem for the time varying longitudinal electric field and inserting the result into

the Panofsky-Wenzel theorem. This has been done [Go92] and the result is quoted

here in terms of a figure of merit known as the transverse kicker shunt impedance

defined as,

R⊥ ≡ |p⊥c/e|2
2Pi

(C.3)

where Pi is the total power input to the hybrid coupler. For the stripline case this

quantity is given by

R⊥ = 8ZL

(

g⊥l

h

)2 (
sin(kl)

kl

)2

(C.4)

g⊥ = tanh
(

πw

2h

)

(C.5)

where g⊥ is a geometric factor arising from the specific electrode geometry and k is

the wavenumber of the kicker electromagnetic field. The quantity of interest is the

maximum transverse angular kick for a given longitudinal beam momentum and is

defined by

θ◦ =
|p⊥|
pi

, (C.6)

where pi = 5.6 MeV is the beam momentum at the entrance of the kicker. Using

equations C.3 and C.4 in C.6 yields,

θ◦ =
4e
√

PiZL

pic

(

g⊥l

h

) ∣

∣

∣

∣

∣

sin(kl)

kl

∣

∣

∣

∣

∣

(C.7)

for the angular kick in terms of the known parameters of the system.

Equation C.7 is now used to explain the choices made for the kicker parameters

used for this experiment. The first parameter to choose is the kicker center frequency.

Noting that the function |sin(kl)/kl| in equation C.7 is maximum at k = 0 (or equiv-

alently at DC exitation fk = 0) the center frequency of choice should be placed as

near to this maximum as possible. This can also be seen from the Panofsky-Wenzel
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theorm which shows that the kick varies inversely as the frequency. Kickers therefore

become more efficient at lower frequencies. Another reason for going to as low a

frequency as possible is that broadband power is expensive and costs increase with

center frequency.

A good choice for the center frequency is when the factor sin(k◦l) = 1 or k◦l = π/2

resulting in l = λ◦/4. The length of each electrode is then set to a quarter of the

wavelength at the center frequency of exitation of the kicker. For these experiments

the HOMs of most interest lie in the neighborhood of 2.0 GHz so that a kicker of

with a center frequency of 500 MHz can be used to excite these modes by virtue of

aliasing due to the bunched beam at 1.5 GHz. For the kicker used in this application

l = 15.0 cm.

The effective bandwidth can be found by determining the point at which the

angular kick is a factor of 1/
√

2 down from its value at the center frequency (3 dB

point) or when
∣

∣

∣

∣

∣

sin(kl)

kl

∣

∣

∣

∣

∣

=
1√
2

∣

∣

∣

∣

∣

sin(k◦l)

k◦l

∣

∣

∣

∣

∣

(C.8)

at a value for k above k◦. Equation C.8 reduces to the trancendental equation

∣

∣

∣

∣

∣

sin(kl)

kl

∣

∣

∣

∣

∣

=

√
2

π
(C.9)

which results in kl = 2.01 corresponding to a maximum frequency of fk = 639.8 MHz.

The kicker can therefore be considered to have an effective 3 dB bandwidth from DC

up to 639.8 MHz for a design center frequency of 500 MHz. As a practical matter

the power amplifier was rated from 100 MHz to 1.0 GHz so not all of the bandwidth

available from the kicker was used.

The flatness of the kick response for the two HOMs that were measured (using

a kicker frequency of 402.5 MHz for the 1899 MHz mode and 613.5 MHz for the

2110 MHz mode-see figure 4.2) is estimated by making use of equation C.7. The

flatness over the range of frequencies that the HOM response is appreciable is defined

as the ratio of the maximum kick at the low frequency end of each range to the
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minimum kick at the high frequency end of each range where the ratio is expressed

in dB. Performing these calculations by using equation C.7 results in a flatness of

.001 dB for the 1899 MHz mode and .01 dB for the 2110 MHz mode. This is indeed

very flat and indicates that for the worst case (the 2110 MHz mode) the variation in

the angular kick over the range of frequencies of a typical CEBAF HOM is on the

order of .1 %.

The geometric factors w = 2.5 cm and h = 1.7 cm were set to maximize g⊥

consistent with the beam pipe diameter and other mechanical constraints. Using

these parameters and a typical stripline impedance ZL ∼ 75 Ω and amplifier power

Pi of 25 W in equation C.7, the angular kick at the center frequency of 500 MHz and

a beam momentum of 5.6 MeV is

θ◦ = .17 mrad (C.10)

or somewhat smaller than typical phase space angles of the particles in the beam.

As a final remark, the kicker is a directional device in the sense that no net

kick is imparted to the beam if the beam direction is reversed from that shown in

figure C.1. This directional effect can be understood by considering the kicker excited

at its center frequency of 500 MHz and the beam is assumed to travel at the speed

of light (certainly the case for these experiments). The beam is kicked as it enters

the upstream gap and subsequently travels downstream which takes a time equivalent

to a π/2 phase shift at 500 MHz. By the time the beam arrives at the downstream

gap the traveling wave of the kicker has also undergone a π/2 phase shift because

it is traveling upstream. There is an additional phase shift of π due to the opposite

polarity of the field between downstream and upstream electrode ends for a grand

total of 2π phase shift between the kick recieved at the upstream end from that at

the downstream end. The kicks for this case are therefore in phase and there is net

deflection. For the case where the beam and traveling wave of the kicker travel in

the same direction (beam direction opposite to that in figure C.1) there is only a net

π phase shift between downstream and upstream electrode ends due to the polarity
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difference. This results in no (or very little) net deflection due to cancelation of the

upstream and downstream kicks. The kicker when operated as a pickup also exhibits

this type of directionality.

Figure C.1 shows the setup for operation of the stripline device as a pickup. The

beam enters displaced by an amount x off axis thereby generating a pulse on the

upstream end of each electrode. For each electrode, the pulse divides and half travels

out to the hybrid combiner and the other half travels to the downstream end of the

electrode. At the downstream end the beam induces a pulse of opposite polarity to the

pulse generated at the upstream end. Half the negative pulse cancels the positive pulse

that traveled with the beam downstream and the other half travels upstream and out

to the hybrid combiner. The net signal out of each electrode is bipolar with each peak

separated in time by 2l/c. The impedance Zc is not necessary in principle because

of the signal cancelation between the pulse generated at the upstream gap and the

that at the downstream gap. It is included in practice to absorb spurious reflections

generated in the circuit from impedance mismatches. The pulse cancellation at the

downstream end explains why the pickup is directional. If the beam direction were

reversed from that shown in figure C.1 no signal would emerge from the striplines

because of the downstream cancellation effect.

The relative magnitude of the pulses generated on each stripline electrode depends

upon the fraction of the beam image current intercepted by each electrode. The image

current fraction depends upon the transverse dipole moment (or current moment) of

the beam Ix. Subtracting each electrode signal using the hybrid combiner results in a

difference signal Vp that is proportional to the current moment. The proportionality

constant is known as the transverse transfer impedance and is defined by

Z⊥ ≡ Vp

Ix
. (C.11)

The transfer impedance has been calculated for the pickup geometry as with the
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kicker geometry [Go92] and is given by

Z⊥ =

√

ZcZL

2

(

2g⊥
h

)

ei(π/2−kl)sinkl. (C.12)

The power out of the hybrid for a given current moment Ix is given by

Po =
|Vp|2
Zc

(C.13)

and is expressed in terms of the pickup parameters by inserting equations C.11

and C.12 into equation C.13. The result is,

Po =
ZL

2

(

2g⊥
h

)2

(Ix)2 sin2(kl). (C.14)

Equation C.14 indicates that by selecting a quarter wave stripline electrode the re-

sponse is maximized. Constructing the pickup identically to the kicker with a center

frequency of 500 MHz will therefore be optimal for detecting HOM signals aliased

down from 2.0 GHz. Note however that the precise frequency response of the kicker

and pickup differ significantly. The pickup has a simple sin2(kl) response, whereas

the kicker has a (sin(kl)/kl)2 response.

Using equation C.14 for the pickup with center frequency at 500 MHz, the 3 dB

points occur at frequencies of 250 and 750 MHz for a total bandwidth of 500 MHz.

The same analysis as was done with the kicker is now used to determine the flatness

of the pickup response. Performing the calculations using equation C.14 results in a

flatness of .0009 dB for the 1899 MHz mode and .005 dB for the 2110 MHz mode.

This is also very flat and indicates that for the worst case (the 2110 MHz mode) the

variation in the pickup response over the range of frequencies of a typical CEBAF

HOM is on the order of .06 %. This is somewhat better than that for the kicker

because of the difference in frequency response when the kicker is used as a pickup.

An important parameter to estimate is the amount of noise power generated by the

pickup when a beam is present. Equation C.14 can be used to determine this power

by assuming a minimum detectable curent moment Ix. To estimate this current
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moment this analysis borrows from experience gained with the CEBAF arc beam

position monitors which are essentially the same device as the stripline pickup except

that they use wire electrodes and are a quarter wavelength long at 1.5 GHz. The

main result for the arc monitors is that they are sensitive to current moments down

to Ix = .1 mm ·µA. Using the same parameters for the kicker in equation C.14 (both

kicker and pickup are mechanically identical) and assuming the pickup is excited by

a .1 mm · µA current moment modulation at the center frequency of 500 MHz, the

power output from the pickup is

Po = 5 × 10−15 W = −113 dBm. (C.15)

This is indeed a very small power and corresponds to a pickup output voltage

Vp = 3.5 µV into Zc = 50 Ω. To increase the output power right at the pickup, a

pre-amplifier was mounted in the accelerator tunnel approximately half a meter away

from the pickup at the output of the hybrid combiner. The pre-amplifier consisted of

three broadband (.01 to 1.0 GHz) low noise preamps with a gain of 22 dB each. The

preamps combined in series had a total gain of 66 dB. The preamps effectively raised

the noise floor from −113 dBm to a “comfortable” −47 dBm which corresponds to

∼ 20 nW or equivalently 7 mV into 50 Ω. The preamps were necessary because the

noise floor of the network and spectrum analyzers was −100 dBm which is an order

of magnitude above that for the pickup itself.
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Appendix D

RF Measurement Raw Data

Setting 1

HOM frequency (MHz) CW Beam Current (µA) |S21| (dB)

1899 10.0 -61.3 ± .8

1899 17.0 -57.0 ± .6

1899 27.3 -52.9 ± .5

1899 37.9 -49.9 ± .5

1899 47.2 -48.1 ± .4

1899 57.0 -46.3 ± .4

1899 67.4 -45.1 ± .4

2110 10.0 -80.9 ± 1.0

2110 17.1 -76.6 ± .9

2110 27.3 -72.9 ± .9

2110 37.9 -70.1 ± .8

2110 46.1 -67.1 ± .9

2110 56.8 -64.6 ± .9

Table D.1: RF measurement raw data for setting 1.
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Setting 2

HOM frequency (MHz) CW Beam Current (µA) |S21| (dB)

1899 10.0 -62.2 ± .2

1899 20.0 -56.6 ± .2

1899 30.6 -53.1 ± .2

1899 40.1 -51.2 ± .2

1899 51.7 -49.2 ± .2

1899 61.7 -47.4 ± .2

1899 70.3 -46.8 ± .2

2110 9.9 -76.3 ± .5

2110 20.1 -70.9 ± .3

2110 29.9 -67.9 ± .3

2110 40.1 -66.0 ± .2

2110 50.8 -63.4 ± .4

Setting 3

1899 10.0 -72.9 ± .3

1899 20.0 -66.9 ± .3

1899 30.2 -63.6 ± .3

1899 40.1 -61.2 ± .3

1899 50.3 -59.5 ± .3

1899 60.0 -58.2 ± .4

2110 5.0 -88.8 ± .6

2110 15.0 -80.0 ± .6

2110 24.8 -76.1 ± .5

2110 35.2 -73.5 ± .4

2110 45.6 -71.2 ± .3

2110 55.0 -69.8 ± .3

Table D.2: RF measurement raw data for settings 2 and 3.
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Setting 4

HOM frequency (MHz) CW Beam Current (µA) |S21| (dB)

1901 5.0 -91.6 ± .5

1901 15.0 -84.3 ± .6

1901 25.0 -79.2 ± .7

1901 35.0 -77.3 ± .6

1901 44.9 -74.6 ± .8

1901 50.2 -73.4 ± .7

2110 5.0 -94.9 ± .6

2110 9.9 -90.0 ± .8

2110 20.3 -85.8 ± .6

2110 30.0 -81.9 ± .8

2110 40.0 -79.0 ± .7

Setting 5

1899 12.1 -59.2 ± .6

1899 22.4 -54.0 ± .4

1899 32.5 -50.7 ± .3

1899 43.7 -46.4 ± .2

1899 52.8 -44.8 ± .2

2110 12.2 -79.7 ± .7

2110 22.3 -74.9 ± .4

2110 32.1 -71.7 ± .5

2110 43.7 -68.4 ± .5

2110 53.1 -66.9 ± .5

2110 64.8 -64.7 ± .5

2110 74.3 -63.2 ± .6

2110 83.2 -62.0 ± .4

Table D.3: RF measurement raw data for settings 4 and 5.
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Setting 6

HOM frequency (MHz) CW Beam Current (µA) |S21| (dB)

1899 12.9 -52.7 ± .3

1899 23.4 -47.8 ± .3

1899 33.9 -44.5 ± .2

1899 43.5 -42.3 ± .2

1899 53.6 -40.2 ± .2

1899 63.9 -38.8 ± .2

2110 12.9 -71.5 ± .6

2110 23.5 -67.2 ± .3

2110 33.8 -63.8 ± .3

2110 43.4 -61.7 ± .4

2110 53.7 -60.0 ± .3

Energy Recovery

1899 5.0 -64.6 ± .7

1899 9.9 -62.6 ± .6

1899 15.0 -62.8 ± .6

1899 20.5 -57.9 ± .5

1899 23.0 -55.2 ± .4

1899 24.9 -55.5 ± .5

1899 31.4 -55.2 ± .5

Table D.4: RF measurement raw data for setting 6 and energy recovery.
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Single Pass (Using the Cavity as a Pickup)

HOM frequency (MHz) CW Beam Current (µA) |S21| (dB)

1899 9.9 -68.7 ± .5

1899 19.8 -63.3 ± .2

1899 29.8 -59.9 ± .2

1899 39.5 -57.7 ± .1

1899 50.3 -55.6 ± .1

1899 57.8 -54.3 ± .1

1899 69.8 -52.8 ± .1

1899 79.6 -51.8 ± .1

1899 100.0 -49.7 ± .1

1899 119.0 -48.2 ± .1

1899 135.0 -47.1 ± .1

1899 161.0 -45.5 ± .1

1899 179.0 -44.7 ± .1

1899 199.0 -44.0 ± .1

1899 218.0 -43.1 ± .1

1899 239.0 -42.5 ± .1

1899 260.0 -41.8 ± .1

1899 275.0 -41.5 ± .1

Table D.5: Single pass RF measurement raw data using a kicker and a superconduct-
ing cavity.
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Single Pass (Using the Cavity as a Pickup)

HOM frequency (MHz) CW Beam Current (µA) |S21| (dB)

2110 9.9 -86.2 ± 1.0

2110 19.8 -81.7 ± .6

2110 29.8 -78.2 ± .5

2110 39.5 -76.4 ± .5

2110 50.3 -74.5 ± .5

2110 57.8 -73.5 ± .5

2110 69.8 -71.7 ± .5

2110 79.6 -70.7 ± .4

2110 100.0 -68.4 ± .4

2110 119.0 -67.4 ± .4

2110 135.0 -65.9 ± .4

2110 161.0 -64.5 ± .4

2110 179.0 -63.7 ± .2

2110 199.0 -62.9 ± .2

2110 218.0 -62.1 ± .2

2110 239.0 -61.4 ± .2

2110 260.0 -60.9 ± .2

2110 275.0 -60.5 ± .1

Single Pass (Using an RF stripline pickup)

1899 9.9 0.0 ± 1.3

1899 49.6 14.1 ± .6

1899 105 21.1 ± .1

1899 150.9 24.5 ± .3

1899 195.2 27.0 ± .1

Table D.6: Single pass RF measurement raw data using a kicker and a superconduct-
ing cavity and a kicker and pickup.
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Beam breakup (BBU) instabilities in superconducting linacs are a significant issue

due to the potentially high Q of the cavity higher-order modes (HOMs). The CEBAF

accelerator, which employs five pass recirculation through two superconducting linacs

to accelerate high CW current (up to 200 µA), poses unique instability problems. An

experimental investigation of multipass BBU at CEBAF has been completed using a

single recirculation through the CEBAF injector linac. This recirculator is calculated

to be more sensitive to the instability than the full CEBAF accelerator. Successful

recirculation through the injector of a beam with greater than 200 µA average current

from an injection energy of 5.6 MeV to a final energy of 80.1 MeV indicates that BBU

should not be a problem in the full CEBAF accelerator. In addition, we were able

recover all the energy from a 30 µA 42.8 MeV first pass beam by recirculating it out

of phase and decelerating it to a final energy equal to the injection energy (5.6 MeV).

The recirculator constructed in the CEBAF injector was designed so that the

recirculation leg optics could be changed in an attempt to induce multipass BBU.

The various optical settings were modeled using the computer code dimad and the

resulting recirculation transfer matrices were used in the multipass BBU code tdbbu.

Threshold currents for the onset of multipass BBU were calculated using tdbbu for

each optical setting. The computed threshold currents were found to be at least

an order of magnitude larger than the maximum average current available from the

CEBAF injector (∼ 200 µA).

The primary experimental investigation of multipass BBU consisted of a series

of RF measurements using a stripline kicker to deflect the beam to excite cavity

HOMs and a superconducting cavity as a pickup device to detect HOM signals. The
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(normalized) amplitude of the cavity HOM signal was measured as a function of

the average CW beam current for each optical setting. These data were analyzed

in terms of a simplified model of a recirculating linac. Based on an analysis of the

simple model, a lower bound on the threshold current was determined from the data

for each optical setting. The lower bound on the threshold current inferred from

the data for the majority of recirculator optical settings was beyond the currents

available from the CEBAF injector. The RF experiment combined with the results of

the tdbbu calculations indicate that the full CEBAF superconducting linac should

not be limited by multipass BBU for CW beam currents well above the maximum

design current of 200 µA.

In addition, a single pass measurement was performed using a stripline pickup

(identical to the kicker device) to detect the HOM deflection of the beam. In this

experiment, the actual deflection of the electron beam due to a HOM was observed

using the pickup. The data obtained in this experiment were used to estimate the

value of the shunt impedance R/Q of the HOM detected.
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