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Abstract

A high power infrared free-electron laser (IRFEL) facility driven by a recirculating superconduct-
ing accelerator has been built and commissioned at Thomas Jefferson National Accelerator Facility.
The system is principally composed of a 10 MeV photoinjector capable of delivering a high charged
(60 pC) short bunch (1 ps) electron beam which is injected in a superconducting linac and accel-
erated up to 48 MeV prior to the lasing system consisting in a planar wiggler whose spontaneous
radiation is amplified with a resonant cavity.

The present report details the diagnostics that have been developed and implemented in the IRFEL
driver-accelerator for characterizing both transverse and longitudinal phase space. We also report
on the use of the developed instrument and related techniques to study and try to understand some
Beam Dynamics problems in the driver-accelerator. When possible, we have tried to benchmark
measurements with numerical simulations.

Keywords: Electron beam dynamics, Phase space, Emittance, High-brightness beam, Free-electron
laser, Bunch length characterization, Coherent radiation, Optical transition radiation.

Résumeé

Un laser & électrons libres infrarouge (IRFEL) utilisant un accélérateur supraconducteur avec sys-
teme de recupération d’énergie a été construit et récemment mis en route & Thomas Jefferson
National Accelerator Facility. Le systeme se compose principalement d’un injecteur, dont la source
d’électrons est basée sur 'effet photoélectrique. Cette source peut produire des paquets d’électron
fortement chargés (60 pC) ultra-court (1 ps), ayant une énergie de l'ordre de 10 MeV. Ces élec-
trons sont ensuite injectés dans un accélérateur linéaire ou ils sont accélérés jusqu’a une énergie
pouvant atteindre 48 MeV. Le systéme de production de lumiere se compose d’un onduleur plan
dont I’émission spontanée est amplifiée grace a une cavité optique résonnante.

Le présent rapport décrit les diagnostics qui ont été developpés afin de caractériser les espaces de
phase transversaux et longitudinal du faisceau d’électron de 'accélérateur. Nous décrivons aussi
les applications de ces diagnostics a quelques problemes de dynamique de faisceau. Quand cela fut
possible nous avons tenté de comparer les résultats de nos mesures avec des simulations numériques.

Mots-Clefs: Dynamique de faisceau d’electrons, Espace de phase, Emittance, Faisceau d’électrons
a forte brillance, Laser a électrons libres, Mesure de la longueur de paquets d’électrons, Rayon-
nement cohérent, Rayonnement de transition optique.
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Chapter 1

Introduction

In recent years, there has been a growing interest in coherent light sources driven by electron (or
positron) accelerators. Such light sources have proven to be capable of generating photon in deep
UV domain and are planned to generate X rays. They have found many applications ranging
from fundamental sciences (biology, crystallography, etc...) to industrial applications (e.g. nano-
electronics).

The generic configuration consists of, e.g., an electron beam accelerator that generates and prepares
(i.e. accelerates, bunches and transversely shapes) the electron beam before sending it in a periodic
magnetic field created by an undulator magnet which causes the electrons to oscillate transver-
sally. As an electron bunch oscillates, it creates a (spontaneous) synchrotron radiation pulse that
mirrors its characteristics (i.e bunch length, shape,..). Two schemes are generally used for such
light sources: the storage ring and the free-electron laser (FEL). In the former case, the particle
beam is stored in a ring and periodically goes through an undulator magnet, while in the latter
case the beam is generated by a linac and passes though the undulator once. The free-electron
laser has generated much more interested in the recent years because of their unequaled ability to
produce high brightness photon beam compared to storage ring. Furthermore brightness of storage
ring tends to worsen at low energy, due to Touschek intra-beam collision, and high energy because
of the importance of quantum fluctuations. In a resonator-based FEL the undulator magnet is
inserted between two mirrors which constitutes a resonant optical cavity that recirculates the pho-
ton pulse coincidently with the next incoming electron bunch. It ideally generates a photon pulse
coherently superimposed to the former photon pulse. In such an oscillator FEL the mechanism is
quite similar to conventional laser, the “free” electrons acts as medium that amplifies a sponta-
neous radiation created via synchrotron emission. In a SASE (self amplified spontaneous emission)
FEL, the undulator is made long enough so that lasing arise “naturally” from self amplification
of the incoherent synchrotron emission. This latter type of FEL is especially suited to generate
ultra-short wavelength (e.g. X-rays) coherent light since for such wavelengths a mirror might not
be available thereby preventing the resonator configuration. A main feature of the FEL-based light
source is their ability to provide laser light over a continuous tunable range of wavelength, that can
be substantial, by varying the magnetostatic field of the undulator or the energy of the incoming
electron beam.

Generally the driver accelerator consists in room temperature cavities that do not allow simultane-



ously high accelerating gradient and high electron bunch repetition rate. Hence the common light
source can produce high peak power because of the high charge that can be stored in a bunch, but
cannot easily produce high average power light needed by certain application such as power beam-
ing, micro-machining, etc... An alternative scheme, that has been used in the driver-accelerator
considered throughout this thesis, is to use superconducting accelerating cavities which offer low
wall losses via Joules effect thereby allowing the operating of the cavities at high continuous wave
(cw) gradient. A comparison of the average power that can be produced by such superconduct-
ing linear accelerators (e.g. the IRFEL from Jefferson Lab), with conventional high average power
source generally used (e.g. excimer and carbon lasers) is depicted in Figure 1.1. A maximum output
power of the order of 2 kW can be expected from the Jefferson Lab superconducting free-electron
laser, and recently we achieved 1.7 kW experimentally.

Another concern that has arisen, especially in our project where the main motivation is to develop
a light source for industrial application, is cost efficiency. This cost is mainly impacted by the input
power demand to accelerate the beam. This demand was reduced in the JLAB IRFEL by recir-
culating and decelerating the beam using the same linac. The deceleration-induced voltage in the
cavity directly supplements the input power provided by the klystron to accelerate higher average
current electron beam for a given beam energy thereby reducing the demand on input power from
klystron.
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Figure 1.1: Comparison of the expected power of the IR cw free-electron laser of Jefferson Lab with
common high average power source.

The superconducting FEL that served as experimental platform for this thesis is dedicated to study
the possible application of high-power cw FEL’s. It is an infrared demo FEL capable of provid-
ing continuous photon beams in the infrared spectrum (3 pm-6 pm) with high-average power of
approximately 1 kW. Though this FEL is an user-oriented facility, it is also devoted to study the
technologies required for high-power free-electron lasers especially the beam dynamics aspects in
the driver-accelerator.

The driver-accelerator needs to provide a high-brightness, ultra-short bunch, low transverse-emittance,
electron beam. Because of the high-charge concentrated in the bunch of electrons, effect such as



space-charge in the low energy regime, and wakefield (for short bunch) can lead to beam instabil-
ity. Another potential problem that can arise with such beam parameters is the self interaction of
a bunch via coherent synchrotron radiation (CSR) emitted as the bunch passes through dipoles.
CSR leads to an increase in energy spread which in turn couple via dispersion to the transverse
phase-space yielding an emittance growth in the bending plane.

The beam parameters we need to measure acurately are: the bunch length, the beam transverse
density, the transverse emittance and the beam energy spread. The present report deals with several
aspects concerning the development of the Beam Instrumentation required to properly characterize
the electron beam and perform some Beam Physics studies in the Jefferson Lab IRFEL. In Chapter
Two we will review radiations emitted by electrons and explain the principle of FEL oscillator by
using as an example the IRFEL and try to understand what are the specification on the IRFEL
electron beam parameters. Chapter Three presents the FEL-driver accelerator along with some op-
tical lattice characterization that were crucial for understanding and setting up the energy recovery
scheme. In Chapter Four, we describe the transverse phase space instrumentation we have devel-
oped to characterize beam in both emittance and space-charge-dominated regime. The Chapter
Five presents our work for characterizing ultra-short (sub-picosecond) bunch. In Chapter Six we
will present some beam dynamics studies of the injector, and in the recirculator with an attempt
to measure the emittance growth in the recirculation arc of the IRFEL. We will then conclude in
a Chapter Seven.



Chapter 2

Electron Radiation and Free-Electron
Lasers

2.1 Introduction

There are many processes among which electrons can emit radiation. Most of them are due to
change in the electron environment. To name few of them, synchrotron, transition, Smith-Purcel,
and diffraction radiations have been widely studied in literature. Though these types of radiation
can be used to generate intense light pulse over large domain of wavelength, they can also be used
to infer certain characteristics of the electron beam that produced them. In the present Chapter
we will recall few properties of the two types of radiation that will be considered in this report:
synchrotron and transition radiation. We will then discuss undulator radiation and its amplification
in free-electron lasers such as the one used as experimental platform in the report. In a last section
we will present the required electron beam parameter to drive the desired FEL.

2.2 Single Particle and Multi-particle Emission

In this section we derive the expression for the total radiation emitted by an ensemble of particle
and introduce the bunch form factor.

Radiation emitted by electrons depends on the electron’s density distribution. For pure continuous
beam (DC), no radiation is theoretically emitted (the field Fourier transform [ E(t) exp(—iwt)dt
is zero). Indeed, experimentally there is an incoherent radiation resulting from Schottky noise
that induces temporal fluctuation dependence on the electron motion. In high energy particle
accelerator, acceleration is provided by radio-frequency wave: the beam must consist of a series of
bunches and therefore electromagnetic waves can be radiated.

When an electromagnetic field is radiated by a collection of electron, the total field detected by an
observer located in P (see figure 2.1) is the superposition of the field at this point generated by



each electron [2, 3] L:

Er(P)= X :——J#gilﬁle(we-i i, (2.1
oo |5 A (R AV
where k; V; and X are respectively the wavevector of the electric field emitted by the j-electron,

?j its the velocity, and Yj is the position vector that locates the j-th electron with respect to the
bunch center.

Under the far-field approximation, we can, without significantly changing the results, replace the
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Figure 2.1: Geometry of the problem. In the case of synchrotron emission (A), the optical pulse
reference coordinate are the one of the electron bunch at the retarded time. For backward transition
radiation (B), the reference coordinates are the specular reflection of the electron bunch coordinate
as it stroke the aluminum radiator.

wave vector k; by 27 /A = w/c where A (resp. w) is the wavelength (resp. frequency) of observation
and 7 is the unit vector pointing from the center of the charge distribution toward the point of
observation P. Introducing the normalized velocity, 3;, the former equation takes the form:
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The total density power radiated at the location P is then EpFE%; it writes:
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The first term, proportional to the number of particle in the bunch, is the incoherent contribution to
the power. It can be written as the product N x d?P/(dwd?)|1. where d? P/(dwd?)|. is the power
spectrum generated by a single electron. The second term describes the coherent contribution.
Henceforth, we shall only concentrate on this latter “coherent” contribution that we will design_&;te
INCIN )

as coherent power. Let’s introduce the function v of the reduced velocity: ﬁ(@}) = —— 0
[nA(mAL;)]

'In this report the vectorial product is designated with A symbol



then the coherent power simply rewrites as:
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where we have used the properties of the Dirac §-functions. Let’s consider the spatial and angular
distributions respectively S(?) =(1/N) > nO(X = X;) and A(ﬁ) = (1/N) =1 n0(B=05)).
Using these definitions, we can rewrite the previous expression for the coherent power as an integral
over the continuous extension of S and A. Therefore the ratio Z(w, n) of coherent power over single
particle emission power is:
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This latter equation defines the bunch form factor (BFF): f(w,n) =l E(w)/(N(N = 1)). Itis

worthwhile to mention the two limits of Z(w,7) assuming that the factor | [*° A(ﬁ)qb(ﬁ)dﬁﬁ is
unity?:
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Hence the coherent power is proportional to N? for practical number of electron in a bunch, and
coherent enhancement is observable in the high frequency limit. In this coherent regime, the bunch
radiates as a “particle” of charge Ne. Using the above notation we can write the total power
emitted by a collection of electrons with a continuous density distribution S(7) is:
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total le

This formula was first introduced by Nodvick and Saxon [4].

2.3 Transition Radiation

Transition radiation is used throughout this report to measure different properties of an electron
beam. We briefly remind the essential properties of this radiation in the present section. Transition
radiation (TR) is produced when uniformly moving charged particles experience a discontinuity of
dielectric constant of the surrounding environment, e.g. when crossing a boundary between two
media with different electric properties. TR was first predicted and first studied by Ginsburg and
Frank [5]. The use of transition radiation as particle beam diagnostic was first demonstrated by
Warsky [6] to measure beam transverse distribution and beam energy. Qualitatively transition
radiation is emitted because the electric fields in the two different media have different properties,
and somewhere, i.e. at the interface, the electric field needs to reorganize.

For the most general case, i.e. the emission of transition radiation as an electron crosses the

2this assumption will be discussed when we will treat the longitudinal phase space characterization in Chapter 5.



boundary between vacuum and a medium of relative dielectric permittivity € = €upsoiute/€0 (Where
€0 is the vacuum electric permittivity), the problem consists of solving the scalar and vector potential

equation
.| @ Lo @ | 1 5(7,t)
v [X]‘zﬂﬂ—‘gelﬁamol (28)

in the two media i.e. vacuum (by letting ¢ = 1) and in the media with permittivity e. The homo-
geneous solution of the latter equation gives the radiation field (®pnoton, A photon). The obtained
electromagnetic field solution of Eqn.(2.8) must be matched with the proper boundary condition
at the media interface: the following components of the electromagnetic field must have continuity:
Ey, B, H), and D} (“”” and “,” corresponds to the components parallel and perpendicular to
the interface surface). Moreover the electric field solution of the homogeneous equation (i.e. the
radiation potentials) must satisfy V-ﬁradiation = 0 everywhere. When solving this problem two
types of radiation are found: a forward radiation which is emitted in the direction centered around
the direction of motion of the electron, and a backward radiation emitted around the specular axis
of reflection of the interface. The most general expression for the transition radiation emitted in
the backward direction by an electron moving from vacuum to a medium of permittivity e with
an angle of incidence 1 (defined in the plane # — z) with respect to the interface normal direction

is [7]:
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Zy = 1207  is the vacuum free space impedance, and the different angles are presented in fig-
ure 2.2. The dependence on 9 is in §, = Fsin(v) and 3, = Fcos(v) and 6, , are the angles between
the direction of observation and the z or y axis. These angles are defined by cos(6,) = sin(f) cos(¢)
and cos(#,) = sin(f)sin(¢), ¢ is the azimuthal angle in the 2-y plane and ¢ is the incidence angle
referenced w.r.t. the z axis.

A priori transition radiation spectrum has no direct dependence on the frequency w of observation;
in reality this dependence is coming from the electric permittivity € = e(w).

(2.10)

Under normal incidence, i.e. ¢ = 0 (8, = 8, = 0), only the "\ component remains, and the
spectral energy distribution emitted in the backward direction via transition radiation reduces to:

2w €25 sin? () cos? (8) (e—1) (1 — B2+ ByJe— sin2(0)) :

dwd ~ w2e(l— f2cos?(4))? (1 + Byfe - sin2(0)) (e cos(8) + /e — sin2(0))

(2.11)
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Figure 2.2: Definition of the angles used in equations (2.9) and (2.10).

This case is of importance for our discussion on the elaboration of a non interceptive TR-based
density measurement where we used carbon to produce transition radiation.

Finally, another important case is the one of a perfect conductor (i.e. ¢(w) — oo, Vw). For such
class of material, and under normal incidence, the latter Eqn.(2.11) reduces to the well known

relation 2:

e B Zoe? 3 sin2(0) (w>>1_,€<<1) Zoe? 62
dwdQ  Axtc(l — 5% cos?(h))? 473 (y72 4+ 62)2

(2.12)

The Eqn.(2.12), in the limit of an ultra-relativistic electron (i.e. ¥ — o0) is also valid in the case
where the electron incomes on the interface with a 45 deg incidence; the angle 6, in this case, being
referenced with respect to the specular axis.

The configuration generally used to generate transition radiation in a particle accelerator is to
intercept the electron beam with very thin foil. In our case, the foil is made of aluminum or car-
bon. This type of configuration allows to generate both backward (at the vacuum-to-aluminum
interface) and forward (at the aluminum-to-vacuum interface) transition radiation. A typical an-
gular distribution of backward TR, for the case of an aluminum interface, generated by an electron
under normal incidence is presented in figure 2.3(A) for three different values of the Lorenz factor
~. As the electron energy increase, the maximum of the angular distribution get larger and occur
at smaller angle since it is 1/(37)% In the extreme case where ¥ = v/2 the maximum occurs at
angle of 90 deg w.r.t. the specular axis. In figure 2.3(B), we compare the renormalized (compared
to its maximum value) TR angular distribution emitted by in the forward direction by an electron
normally incident on a carbon and aluminum foil. Typical radiation pattern are presented in the
antenna diagram in figure 2.4 for the case of normal and 45 deg incidence of the electron beam on
the foil. In the case of normal incidence, the pattern is symmetric with respect to the electron axis.

In fact this relation can be derived directly, without solving the wave equation, by using the method of image
charge usually use to render easier the treatment of boundary values problem. In the present case, the problem of an
electron moving toward an infinite perfectly conducting plane can be reduce to an electron and its electromagnetic
image traveling toward each other. The passage from the electron into the perfect conductor is then equivalent to the
collision of the electron with its image, formalism to treat such “collapsing dipole” is readily available (see reference [8]

Chap.(15)).
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Figure 2.3: Distribution of forward TR radiation for different value of v (mentioned close to the
appropriate curve) as an electron passes from the interface vacuum-aluminum (A). Comparison of
the renormalized TR forward angular distribution emitted by an electron passing through a vacuum-
aluminum (solid line) and vacuum-carbon (dashed line) interface (B). For carbon the permittivity
is assumed to be 5.7. (Carbon or more exactly graphite has two different electric permittivity for its
two different crystal direction. The 5.7 value is the smallest permittivity. Private communication

from Goodfellow Inc., London, U.K.).

However in the case of non-normal incidence there is a dis-symmetry in the lobes amplitude. This
dis-symmetry tends to be reduced as the electron energy is increased, and becomes insignificant,
in the case of 45 deg incidence, for ultra-relativistic electrons. Let’s study how the radiation, in
term of energy, is distributed around its maximum. For such a purpose we need to evaluate the
integrals:

dW 2
- /de a2~ o d(b/ ded d9
54 (L Pargtanh(s) |
26
23(5% — 1) cos(#) — (14 B*argtanh(3 cos(6)) (=2 + 25% + 5% cos(26))
263(—2 4 3? + cos(26))

(2.13)

Therefore the total energy radiated in the hemisphere is obtained setting the upper limit of the
above angular integral to 0 = 7 /2:

(2.14)

[dﬂ] B % 2log (125)
dw 1ot 26

Firstly we note that for ultra-relativistic electron the total energy emitted in the hemisphere has a
logarithmic dependence on the energy in log(4+?).

In figure 2.5(B) we present the dependence of the fraction of the total energy encompassed in the
1/4-cone versus the energy of the incident electron. We note that for ultra-relativistic electrons,
most of the energy is located outside this 1/y-cone. Despite transition radiation has a sharp
maximum located at the 1/v-cone, its power is not, like for instance for synchrotron radiation,
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Figure 2.4: Polar plot of the normalized radiation pattern for an aluminum foil with an electron
under normal incidence (i.e. ¥ = 0 deg in Eqns.(2.9) and (2.10)) (A) and with a 45 deg incidence
(B) (i.e. ¥ =45 deg in Eqns.(2.9)) and (2.10). For these plots the Lorentz factor was chosen to
be v = 10 for clarity of the figure, and the equations (2.9) and (2.10) were renormalized to their
maximum value.

located within this cone: most of the power is in fact in the tail of the distribution. Therefore
we should be careful when detecting transition radiation to optimize the angular acceptance of the
detection system as a function of the electrons energy that produce the radiation. For such purpose
we have plotted in figure 2.5(A) the fraction of the total energy versus the angular acceptance for
the different electron energy we will consider in the present dissertation.

2.4 Synchrotron Radiation

The electromagnetic radiation emitted by a charged particle with non-zero acceleration is histor-
ically termed “synchrotron radiation” after its first visual observation nearly fifty years ago in a
synchrotron accelerator. Such radiation is typically emitted in presence of a magnetic deflecting
field such as the one generated by dipole magnets, because of the centrifugal acceleration associated
with uniform circular orbit. Synchrotron radiation (SR) and the associated energy loss has first
been known as a limitation to operate circular accelerators above the 100 GeV regime to accelerate
electrons. Nowadays it is a common mechanism on which accelerator-based light source are work-
ing. Also, since SR is generated “for free” in accelerator, examination of the SR properties emitted
by a electron bunch can reveal information on the bunch properties as we will see in Chapter 5.
The purpose of this section is to expose few basic properties of SR. Since it has been widely treated
in many textbook (e.g. see [8]), we will not derive any of its properties and only reproduce the
results we feel necessary for the present discussion.

An important quantity is the spectral angular distribution of the synchrotron radiation which is
given by (extended from [8]):

“ 202\2 -2
Tod0 X (L+7707)" x | K5 5(8) +

-2
1673¢ wg 92 1(1/3(5) (2'15)
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Figure 2.5: Fraction of the total transition power emitted into the hemisphere that is concentrated
within a cone of semi-angle # (A) and contains within a cone of semi-angle 1/v (B).

where &€ = 1/2 x w/w.(1 + 726%)3/%, w. is the critical frequency as defined in the synchrotron
radiation formalism ( w, = 2/3 x ¢7v?/p), Zy is vacuum free space impedance, m. the electron mass
and r. = e*/(4wegmec?) is the classical electron radius. The first term in the bracket (< K23 ,()) is
the power associated with the o-polarization of the electric field i.e. the component in the plane of
the electron trajectory while the second term (o 1(12/3(5)) corresponds to the m-polarization i.e. the
electric field component parallel to the deflecting magnetic field. As one can notice from figure 2.6,
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Figure 2.6: Angular and frequency distribution of synchrotron radiation for the 7 (A) and the o
(B) polarization.

the angular distribution of the two polarizations very strongly depend on the frequency. For instance
the angular opening of the o-mode radiation gets narrower as the frequency is increased.

Because we generally deal with relativistic beam (y > 1), i.e. when the radiation is very collimated
and therefore when most of the lobe can be captured by a detector, one quantity of interest is the

total synchrotron radiation power spectrum integrated over the whole solid angle which is given
by [10]:

[dP] P
le

- S(w/we) (2.16)

We



where P, is the instantaneous total SR power emitted: in practical units (GeV/s), Py, = 8.8575
107°cE*/(2mp?), where the numerical factor is the Sand’s definition of the radiation constant F
and p are the electron energy in GeV and the radius of trajectory curvature in meters. S(z)
in Eqn.(2.16) is the so-called Universal function, S(z) = %éx [.° Ksy3(z)dz, which is plotted
in figure 2.7. It is worthwhile to mention that the point & = 1 is the mid-total integral point:
[ S(x)de = [{°S(x)de = 1/2 [5° S(z)da.

1t

Figure 2.7: Plot of the Universal function S(w/w.). The frequency distribution of the total syn-
chrotron radiation is proportional to the Universal function.

2.5 Rudiments on FEL-oscillator Theory

Despite the fact the present report does not specifically deal with the photon beam generated
by the IRFEL, we briefly explain the bases of FEL theory since they will enable the reader to
understand better the requirements on the driver-accelerator electron beam parameters. First of
all, we should note that the word free in free-electron laser does not mean that the electrons are
free, indeed it means they are unbounded (contrary to conventional laser) but there are confined in
a magnetostatic region since the free electrons will not radiate unless they are experiencing some
kind of acceleration.

As in a conventional laser, FEL consists in three main processes: (i) a spontaneous emission is
provided by synchrotron radiation emitted as electrons wiggle in a magnet; (ii) the so-generated
radiation is recirculated in a resonator; (iii) and is amplified as it copropagates with the electron
beam (stimulated emission).

2.5.1 Undulator Radiation

In a FEL, the spontaneous emission is generated as the electrons are injected into a wiggler,
a magnet that generates a spatially periodic magnetostatic field. In the case of the IRFEL of
Jefferson Lab, the undulator is a planar one: it consists in two rows of N, permanent magnets
of opposite polarities stacked together with a period A,; the row are separated by a fix gap as
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Figure 2.8: FEL-oscillator principle (Courtesy J. Martz, Jefferson Lab).

schematically described in figure 2.8. In such configuration the generated magnetostatic field is
transverse with respect to the electron velocity. As electrons travel in the wiggler, they are slightly
deflected alternatively up and down (see Figure 2.8) and thereby spontaneously emit synchrotron
radiation that is linearly polarized (in the case of a planar wiggler).

In the case of IRFEL, the undulator produces a weak magnetostatic field of typically 0.4 Tesla.
The electron trajectory when it is located within the undulator poles is described by:

y=—acos(2rz/A\,) (2.17)
dy 27a
- cos(2mz/Ay)

The force on the electron at the maximum curvature p corresponds to the peak value of the
magnetic field B: p =vym.Bc/(eB). It is common to characterize the undulator magnet by the so
called deflection parameter K defined as K = ydy/dz|max = 27y A.a. Together with the relation
(27 /A\)%a = eB/(ym.c), K takes the form:

eB\,

K= 2.18
2Tmec ( )

this deflection parameter is the maximum angular excursion of the beam in units of 1/y. It is
interesting to compute the maximum amplitude in the case of the IRFEL: a« = KA, /(277y) ~ 60 um
which is smaller that the electron beam sizes at this location (¢, ~ o, ~ 200 pm).

The wavelength of the radiation emitted by the undulator is determined by the time contraction
factor dt/dt’ = 1— [ cos 8, t being the time reference in the moving frame whereas t’ is the laboratory
(i.e. undulator) time. In the electron rest frame, the electron “sees” the N, periods of the wiggler



as an N, counter-propagating radiation field with a Lorentz-contracted wavelength A/, = % Thus
it oscillates N, times along a vertical line perpendicular to the wiggler axis, thereby emitting a
radiation pulse of length N, /. centered on the wavelength A, ~ X/ . In other terms, the electron
acts as a relativistic mirror and reflect the incoming radiation via Compton back-scattering. In fact
AL is also shifted by the Compton wavelength, but this shift is negligible for relativistic electrons
provided we observe wavelength that are larger than the Compton wavelength Acompion = WZ—CCQ,
a good assumption in the case of IRFEL. Therefore the fundamental wavelength of the undulator
radiation is:

A1 = Ay (1 = () cosb) (2.19)

where @ is the angle of observation referenced to the axis of the undulator.
Using the average z-velocity G{cos W) = (1 — % + O(K%)) (¥ is the trajectory deflection angle),
one finds that the fundamental wavelength is:

A K?
A= 2 (14 — +~%? 2.2
1 272( + 5 + v40%) (2.20)
In fact all the harmonic are also present i.e. the wavelength A, = A{/n with n € N. The

wavelength represents the wavelength of the field component that interfere constructively. Other
wavelengths are suppressed. If the undulator would have a infinite number of period, the line
width will have the limitAA/A — 0 Since the electron only makes N, oscillations in the undulator
the generated radiation contains the same number of wavelengths and therefore the duration of
the pulse is T' = NyA/c. The Fourier transform of a plane wave truncated after N, oscillations
is sinc-function* , hence the frequency spectrum of the spontaneous undulator radiation has the
frequency dependence:

d2W - Y%n
Toda = sinc? (ﬂ'Nuw wnw ) (2.21)
Which means the radiation is peaked at the frequency w, = 27¢/A,. The width of the spectrum
is about % = NLM It is important to note that in the case of the FEL-oscillator, since only the
on-axis (# = 0) component is of interested, i.e. is amplified, the fundamental wawelength reduces
to:
A K?
A= (14— 2.22

Finally we need to elaborate the power density spectrum. We have qualitatively explained the
sinc dependence but there are many other properties that have been derived (see for instance
reference [9]) and are worth mentioning in the present discussion. The optical wave generated from
an undulator can be well approximated, if N, is large enough, by a pure TE wave. In such case,
the on-axis radiation only contains odd harmonic. The power spectral angular distribution is of
the form [9]:

d*wW

7k ok K - % 2 de
e o MK (1= K2/2) [J i) 2 (mE2/4) = Sy 2 (mE2/4)] =)

= Q (2.23)

with K K/ /T- K2/2.

The latter equation is plotted in figure 2.9 for the two different values of K that are considered

4The cardinal sinus function is defined as: sinc(z) = %ﬂ



for the IRFEL operation (K = 1.00 and optionally 1.39). In this figure one sees that spontaneous
emission associated with the third harmonic can be almost as powerful as the emission at first
harmonic with proper choice of the K value which can be set by changing the undulator gap®.
Such feature is very interesting for producing shorter wavelength light. In the IRFEL operation at
the third (A = A;/3) and fifth (A = A;/5) harmonic has been achieved.
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Figure 2.9: Normalized power of the on-axis undulator radiation for the two different value of K
considered for the IRFEL.

2.5.2 Amplification of the Spontaneous Undulator Radiation

Once a radiation pulse at the wavelength given in Eqn.(2.22) has been established via the interac-
tion of an electron bunch with the magnetic field of the undulator, it is recirculated in a resonator
cavity that consists in two spherical dielectric mirrors. One of them is a total reflector while the
other is a partially reflector and out-couple radiation through a small aperture with a diameter
of the order of the wavelength. The spacing between the two mirrors is chosen so that the pulse
will copropagate with the next incoming electron bunch and therefore the length of the cavity is
L = ¢/(27) (where T is the temporal spacing between two consecutive electron bunches) and should

be a sub-multiple of 8.003 m in the case of the IRFEL. For electrons injected at the resonant energy

_ 1 A
Yr = 3V A

pulse will, in principle, remain constant. Since the electron beam velocity has a non zero com-

(14 K?) , the relative phase between the electrons and the copropagating radiation

ponent parallel to the optical pulse electron field, the scalar product of an electron velocity and
radiation electric field (7. F) is non-zero and slowly varying so that there can be a net exchange
of energy between the electron and the radiation. Hence, depending on the value of the relative
phase, each electron in the bunch can (i) give energy to the field and decelerate, that is “stimulated
emission”; (ii) take energy from the radiation field and accelerate, that is, “absorption”. Thus if we
consider a bunch of electron whose center energy is resonant energy, we could easily imagine that

5The K value dependence on the gap d is of the form K o exp(—nd/A.)



half of the electron is decelerated while the other half is accelerated resulting in a null amplification.
This is true in the first period of the wiggler but in very short time, the more energetic electrons
catch up to the less-energetic, introducing an energy modulation within the electron bunch which,
in turn, leads to a longitudinal density modulation or micro-bunching: the electron beam that
has an initial distribution depending on the previous dynamics, soon consists in a sub-bunches of
electrons spaced at the spontaneous wavelength. It turns out that if the electron energy is slightly
higher than the resonant energy it results in a net gain i.e. an amplification of the light pulses.
This simple model assumes that electrons within a bunch do not interact each with other, that is
single-particle-dynamics model is valid. When such a model is valid, like in the case of the IRFEL,
the FEL is said to operate in the Compton regime.

2.5.3 FEL Gain

The amplification of the spontaneous emission is quantified by the gain that corresponds to the
ratio of the energy transmitted by the electron beam to the copropagating electromagnetic wave
to the initial energy of the copropagating electromagnetic wave. The gain® is defined as:

def 9 Ay
= —mc o (2.24)
where A~ is the reduced energy transmitted by the electron beam to the electric field of the optical
mode and W, is the energy of the optical mode considered (i.e. the one which is supposed to be
amplified). The derivation of analytic formula for the FEL gain has been performed in reference [11]
and is beyond the scope of this thesis. However it seems worthwhile to study the effects of the
electron beam parameters on the FEL-gain by considering the approximate 1D model that has
been discussed by S. Benson [12]. The gain can be parametrized as:

g = 0.00041yQ N NZnzn,m51, (2.25)

where v and I are the electron beam energy and peak current. ) is a factor that has been defined
in Eqn.(2.23). The 5’s coeflicients in Eqn.(2.25) represent degradation factors of the gain.
7, is the gain degradation due to energy spread and is a result of the non-mono-energetic character
of the incoming electron beam: since electrons in a bunch do not all have an energy exactly
corresponding to the resonant energy; this factor is defined as:
1
= 2.26
g (1 + 4\/§hNuUW/7)2 ( )

where 0., is the reduced rms-energy spread of the incoming electron bunches, and %, as before, is
the harmonic number.

nz is the degradation due to beam non-zero transverse emittance. This degradation also depends
on the 7, coefficient:

1
L+ 7 (4725 N5/ 0)2

5In this dissertation, gain designates the so-called “small signal gain” in the FEL literature since it is the quantity

Nz = (2.27)

of importance when considering the startup of FEL interaction, our primary concern in the present section.



Parameter Value Unit

N, 40 -
B, (rms) 028 T
Ay 2.7 cm
Gap 12 mm
K? 0.5 -

Table 2.1: Parameters of the chosen wiggler for the IR-Demo FEL.

where ¢ is the beam transverse rms-emittance and Ng is the number of betatron oscillations along
the wiggler. 7, is the gain reduction due to the filling factor for the optical mode; it simply results
from the nonintegral overlap of the electron bunch and the radiation pulse and is approximated by:

1
= 2.28
AR ErEypY (228)
7, is the gain reduction due to slippage :
_ (2.29)
M = '
H 14 h:]g\;;/\

where o, is the rms-longitudinal bunch length.
From Eqn.(2.25) we see that the gain is proportional to peak current which in turn is proportional
to the charge per bunch and inversely proportional to the longitudinal bunch length. Hence FELs,
to be more efficient, require high-charge, ultrashort-bunch electron beam. We now present the
beam parameters required to drive the IRFEL.

2.6 Characteristics of the IRFEL driver-accelerator

To discuss the characteristics required for the electron beam generated by the IR-Demo driver
accelerator, we list in Table 2.1 the specifications on the wiggler magnet which have been derived
from the requirements on photon beam parameters define by the experimentalists. In the JLab FEL
IR-demo [15] (see figure 2.11), the charge per bunch was initially chosen to be 60 pC, the maximum
value that yields a tolerable emittance growth due to space-charge. The average current should be
as high as possible to maximize the average power of the laser. It is a function of the charge per
bunch, and the bunch repetition that depends on the photocathode driver-laser which in turn must
be a sub-harmonic of the superconducting linac operating frequency (1497 MHz). The maximum
bunch repetition rate is 74.85 MHz and it is limited by the electron source. The repetition rate
of the electron bunch was indeed initially set to 37.425 MHz which mean the maximum average
current that can be reach is approximately 5 mA.

Since the energy does not affect the gain, and its only implication is on FEL wavelength: the IR-
demo is foreseen to initially lase in the region 3 ym-6 um range” (later this range will be extended

"Theoretically the output wavelength only depends on energy. Hence we could, in the IRFEL operate at any
arbitrary wavelength by choosing the proper energy. Experimentally, the output wavelength is limited to a certain
range that depends on the FEL-optical cavity mirror. For instance the mirror used to lase at 3 pm are not the same
as the one used to lase with an output wavelength of 6 um



to 100 um wavelengths); this implies the maximum electron beam energy should be in the range
38-48 MeV.

The transverse normalized emittance specification are set by the wavelength at which we wish to
operate the laser: the electron beam emittance should be less than the optical beam emittance:

3 A 2.30

€n < 7@ (2.30)
The factor A/(4x) is the transverse phase space area of the optical beam assuming it can be well
described by Gaussian optics.
For the laser wavelength and energy of operation (i.e. Ay ~3 ym and v ~ 77) the Eqn.(2.30) yields
a normalized emittance for both transverse plane that must be smaller than £, ~ 19 mm-mrad to
enable the operation of the laser at the fundamental wavelength. In fact this value is an “edge”
value: it was assessed from numerical simulation of the FEL gain that the emittance should be less
than 8.7 mm-mrad to also enable the laser to produce light at the third harmonic with sufficient
gain®.
The energy spread of the electron beam o /v should be less than ﬁ ie. 0,/v < 0.5 % Using the
above parameters as guideline we presents in figure 2.10, typical sensitivity of the small signal gain
versus bunch length and transverse emittance.
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Figure 2.10: An example of variation of the gain versus the bunch length (A) and the transverse
emittance (both x and y plane) (B) (these plots were computed using the very simple 1D model
exposed in the previous section).

8S. V. Benson, private communication



2.7 The Jefferson Lab IR project

The purpose of the consortium gathered around Jefferson Lab is to develop the technologies needed
to realize high-power free-electron laser in a cost effective frame. The long term project is to build
a 20 kW infrared free-electron laser As a starting point it was decided to build the IRFEL that is
used as experimental platform throughout the present report.

In the built IRFEL (see top view in figure 2.11), the electron beam is generated by a 350 keV pho-
toemission electron gun and accelerated by two superconducting RF CEBAF-type cavities (5-cells
cavity operating on w-accelerating mode) mounted as a pair in the so-called “quarter cryounit”
which provides a beam energy gain of approximately 10 MeV. The beam is then injected into
the main linac which is composed of one cryomodule, containing 8 superconducting CEBAF-type
superconducting RF cavities. The linac can currently accelerate the beam up to approximately
48 MeV. This cryomodule is followed by two 4-bends chicanes that bypass the FEL optical cavities
and provide additional longitudinal phase space manipulation. The IR undulator (see parameters
in Table 2.1) is located between the two aforementioned chicanes. After the FEL interaction, the
“spent” beam is recirculated with a quasi-isochronous recirculator with variable momentum com-
paction and path length up to the entrance of the cryomodule with the proper time of arrival so
that the electron bunches are on the decelerating phase of the radio-frequency wave. The secondary
beam is thereby decelerated down to 10 MeV and separated from the primary beam before being
dumped in the “energy recovery dump” by the mean of the “extraction chicane”. The energy
recovery scheme allow the recovery of almost all the energy provided to the beam by the main linac
during the acceleration phase.

The FEL light is directed in an optical room where it can be diagnosed and sent to one of the
six user laboratories. The experiments that have been run to date, include standard pump-probe
experiment to measure the gold reflectivity in the IR region, the observation of laser light effect on
a plasma, and some preliminary tests in micro-machining.
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Figure 2.11: An actual top view of the “as built” IRFEL driver accelerator.

The electron source [14] is a DC-photo-emission gun presented in figure 2.12. It consists of a
Gallium Arsenide (GaAs) photocathode illuminated by a laser system capable of providing 5W.



The wavelength is chosen so that the photon energy is above the work function of the GaAs.
Once the photoelectrons are extracted from the GaAs crystal they are rapidly accelerated by the
high DC electric field (approximately 4 MV /m) applied between the photocathode and the anode
which are separated by 14.63 cm. The choice of a photoemission gun was driven by its capability to
achieve high current density simultaneously with ultrashort bunch length compared to conventional
thermionic electron source.

The cathode illumination system was designed to be flexible so that it can be used to vary several
characteristics of the electron beam: the charge of the electron micro-bunches, their frequency
and the macropulse frequency and width. The illumination system consists of a mode-locked,
frequency doubled, Nd:YLiF4 laser commercially available from Antares(©) [13] producing a wave-
length A =527nm. The optical pulse achieved is 23 ps (RMS) at a repetition rate that can be
varied up to 74.85 MHz. This frequency corresponds to the 20th sub-harmonic of the fundamental
frequency of the linear accelerator radio-frequency system: 1497 MHz; it thereby insures the bunch
to bunch acceleration. The maximum power that can be achieved by such photocathode driver laser
is approximately 6 Watts. It can be adjusted by modulating the laser beam using two electro-optics
crystal. The choice of using simultaneously two electro-optics cell is driven by the desire to achieve
a high extinction ratio.

The electron bunch charge can be varied from 0 to 135 pC by attenuating the laser beam thanks
to a rotational polarizer located between the two electro-optics cells.

Hence the optical pulse on the photocathode generally consists in a series of 23 ps width “mi-
cropulses” occurring at a frequency f,,. The micropulse produced during a certain time ¢p; con-
stitute a macropulse. Hence the micropulse frequency can only take the value f,, = 74.85/h MHz
(with h €N).

The transverse beam spot on the photcathode can be shaped by using a mask to make it looks more
square or gaussian. The former distribution has been shown experimentally to reduce nonlinearities
in the space charge forces [14].
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Figure 2.12: Simplified schematic of the electron source: A 527 nm laser beam that can be modu-
lated by two electro-optics cell (EO1 and EO2) and attenuated by a rotational polarizer illuminates
the GaAs photocathode. Ejected photo-electrons are accelerated through to the accelerating voltage
of nominally 350 kV between the photocathode and the anode.



Chapter 3

The FEL driver accelerator: Lattice
Study

3.1 Introduction

The present Chapter deals with the optical lattice of the IRFEL driver-accelerator. After briefly
reviewing the accelerator magnetic optics with the help of a numerical model, we present few
experimental results obtained as we tried to characterize the lattice and compare it with a numerical
model.

3.2 A Brief Overview of the FEL Optical Lattice

In this section we describe the FEL optical lattice for the main accelerator only. It has been designed
by D. Douglas and it is also described in numerous reference (see for instance reference [16]). For
the purpose of the present discussion, the driver-accelerator can be divided into five parts:

1. A 10 MeV injector and the injection transfer line

2. A 48 MeV superconducting radio-frequency (SRF) linear accelerator (it is used both to ac-
celerate the first pass beam and to decelerate the second pass beam); this linac is also termed
“cryomodule” hereafter,

3. A wiggler insertion region,
4. A recirculation ring,

5. A reinjection transfer line.

In this section we will only concentrate on the high energy lattice (E~48 MeV) that is items 3, 4,
and 5 in the list above.
The first region encountered by the beam at the exit of the SRF linac is a “matching” region. It

22
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Figure 3.1: Dispersed overview of the main ring of the driver accelerator corresponding to fig-
ure 2.11. The path of the electron beam is indicated with arrows.

insures the beam lattice functions are properly matched to the desired value at the undulator center.
This region consists of two quadrupole telescopes disposed upstream and downstream an achromatic
chicane. The telescopes consist each of three quadrupoles. These two telescopes provide six free
parameters (the strength of the quadrupoles) to adjust the four Twiss parameters (o, ay, By, Gy)
while insuring the beam size can still be contained within the vacuum chamber with acceptably low
particle loss via scraping. The a-functions are supposed to be zero at the wiggler center whereas
the betatron functions are matched to the wiggler “natural” betatron function eigenvalue of an
infinitely long wiggler 3, = yA./(27v2K), with A, the wiggler period and K the undulator
parameter (see Chapter 2). The “upstream” by-pass chicane provide further longitudinal phase
space rotation because of its non isochronicity (momentum compaction! Rss = —28 cm).

After the wiggler, two additional telescopes each composed of quadrupole triplets are used to match
the optical lattice functions to the desired values at the injection point. Longitudinally, further
phase space rotation is provided by the “downstream” by-pass chicane which is identical to the
upstream chicane.

The recirculation loop is composed of two arcs linked by a straight line section, termed “backleg”

1Thlroughout this report the momentum compaction is defined as the transfer matrix element Rze = A%ﬁ in the

TRANSPORT formalism. This definition is different from the usual definition (generally for closed orbit accelerator)
ALJL

where it is defined as the ratio of relative path length change for a relative energy change o = 3% B



Parameter Value

a, “0.178
B, (m) 8.331
ay -0.124
8, (m) 3.979

Table 3.1: Twiss parameters downstream the cryomodule expected from simulations with the code
PARMELA.

that consists of six period of a FODO lattice.

The arcs are based on the MIT-Bates accelerator design [17]; they provide each a total bending angle
of 180 deg. They include four wedge-type dipoles, each bending the beam by an angle of ~+28 deg
alternatively, installed in pair symmetrically around a 180deg dipole. Furthermore providing the
desired rotation, the arcs are also used to adjust the total beam path length of the recirculated
beam in a such way that the electron bunches have the proper timing to be on the decelerating
phase of the SRF linac, a very important parameter for energy recovery. For such a purpose,
the arc is instrumented with a pair of horizontal steerers located upstream and downstream the
180 deg dipole to vary the reference orbit path length inside the 180 deg magnet. Two families
of quadrupoles (the trim quadrupoles) and sextupoles are installed in the arc to provide both
linear and quadratic energy dependent path length variation that are necessary in the “energy-
compression” scheme needed to properly energy recover the beam [18] i.e. to precisely adjust the
momentum compaction Rse? (linear dependence of longitudinal position with relative energy) and
the nonlinear momentum compaction Tses (quadratic dependence). When the quadrupoles and
sextupoles are not powered, the arc is operating in a non-isochronous mode (Rss = 13.124 cm).
However under nominal operation, i.e. when the FEL is operating and the linac is in energy recovery
mode, because of the need of energy compression, the sextupoles and quadrupoles of one family
are excited to proper values in order to provide the required Rss between the wiggler exit up to
the linac entrance.

The backleg transport line consists of thirteen quadrupoles. Nominally it is operated as a FODO
lattice with a phase advance per cell g = 90 deg, but we have demonstrated its operation with
a phase advance of yt = 60 deg needed during emittance measurement based on multi-monitor
technique. Its total transfer matrix is -1 for both transverse plane: it images the lattice optical
functions at the first arc exit into the first arc entrance accordingly to f — § and o — —a.

The reinjection line consists of a telescope composed of four quadrupoles that is used to adjust the
beam lattice function to achieve reasonable beam envelope at the entrance of the SRF linac.

As the electron bunches go for the second times through the SRF linac, they are decelerated and
induce voltage in the cavity via beam loading. This induced-voltage is at the proper mode to serve
to accelerate the next bunch in the acceleration phase which is in the neighboring RF bucket. The
wasted beam, once decelerated (i.e. at approximately 10 MeV), bifurcates into a dump.

Typical lattice functions, computed with the second order optics code DIMAD, are shown in
figure 3.2. The initial conditions (see Table 3.2) that are used, have been computed using the
PARMELA code since it include space charge effects in the low energy region and also have a very
detailed model of the SRF cavities. For the figure presented, the undulator magnet is installed.

RO = fs = R;fm()m) dz, where p(z) is the local bending radius. So since the presently mentioned quadrupole
so

are located in a dispersive region, i.e. Rig # 0, so that Rs¢ can be varied.
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Figure 3.2: Horizontal Dispersion (top graph) and transverse betatron functions (bottom graph)
for the nominal settings of the magnetic optics.

3.3 Measurement of the Transverse Response

Though the driver-accelerator design is essentially specified via numerical simulations, there are
many factors that can cause the real machine to be different from the numerical model. Among the
causes of these discrepancies, the most usual are alignment errors, magnet disfunctions, etc... Hence
it is of prime importance, in the first phase of commissioning of the accelerator, to diagnose these
defects and potentially fix or understand them to match as close as possible the numerical model
to the “as built” accelerator. In this section we report on measurement of the transverse lattice
response of the driver accelerator along the recirculator. In this report, we have only concentrated
on two types of measurements: (1) try to verify that the first order transfer matrix used in the
model is close to the machine, (2) measure precisely the dispersion (i.e. the transverse position
dependence on energy) function in the back-leg transfer line.



3.3.1 Theoretical Background

The purpose of measuring the transverse response of the optical lattice is to get some insights on the
first order transport and potentially find out problems with the lattice i.e. magnets corrupted ex-
citation, optical elements misaligned. We have performed two types of measurement: (1) response
of the lattice for a given angular excitation by mean of correctors and (2) energy dependence of the
lattice i.e. measurement of the dispersion.

In a dispersion-free region, the position and divergence centroid of a beam (z(0),y(0)) at an arbi-
trary position 0, is propagated to another position, under the assumption of first order transport

validity, accordingly to:
@'(s) ot Ry 2'(0) '

The observable that can easily be measured is a beam centroid position at the downstream location
z(s). Hence a technique to measure the transverse response is distort the orbit by using a pertur-
bative angular kick on the beam trajectory at the position z(0) i.e. 2/(0) — 2/(0) + Az’. In such
an event, the “perturbed” beam position downstream now writes:

Tperturs () = RIT*2(0) + RYF*(27(0) + Az’ (32)
def

That is the displacement of the beam position at s, Az(s) = 2perturp(s) — z(s) is only dependent
on the angular perturbation at 0:

Ax(s) = RI3* Az’ (3.3)

Moreover, for a dipole we can relate the angular kick to the beam momentum: Az’ = 1/(3.3356 X
p) X [ Bdl where [ Bdl represents the field integral (in T.m), and p is the beam momentum (in
GeV).

Hence a very simple way to check if the “real world” machine is performing as predicted by first
order transfer matrix model, is to measure the beam position along the beam line for different per-
turbations (angular kick values but also position of the kicker magnet used). It is worth mentioning
that this technique allows directly to measure the Ry transfer matrix element. The measurement
of Ry; requires more elaboration: one needs to create a perturbation that is exactly 90 deg out of
betatron phase with respect to the kick intended to measure the Ry5; in such way one can compute
to what position displacement it corresponds.

The other type of measurement is the energy dependence of the optical lattice. This measurement is
very similar to the transfer matrix response aforementioned: it is know that after magnetic element
systems such as dipoles there can be position dependence on energy, i.e. the position z(s) writes
as z(s) = xzg(s) + 1(s)6(0), where z3(s) is a pure betatron induced position and the product of
n(s), dispersion function at s, with §(0), energy offset at 0, represent the dispersive contribution
to the orbit. Note that n(s) = R%. Therefore by varying the energy of the bunch centroid (i.e.
d — & + AJd) and measuring the associated position change downstream the beamline Az = nAd
we can get an estimate of the dispersion function 7.



3.3.2 Experimental Method

To determine experimentally the lattice response due to either kick excitation (pure transverse
response) or energy change (dispersion), we only have to measure the beam position, the only
observable we can easily access. The beam position is measured by means of electromagnetic
pickup called beam position monitors (BPMs) [25]. These BPMs consist of a number of pick-up
antennae distributed around the diameter of the vacuum chamber that detect the Coulomb field
associated with an electron bunch as it propagates along the beamline. Based on the asymmetry
of the signal on each antenna, the beam centroid coordinates can be inferred. Two types of BPMs
are installed in the IRFEL accelerator. In the measurement presented hereafter, we have only
used the so-called stripline BPMs whose cross section is depicted in figure 3.3. This type of BPM
consists of four strip-like pickup antennae oriented at 90 deg from each other. This type of geometry
for the pickup antennae has the advantage to minimize the beam quality deterioration because of
wakefield. The beam centroid coordinate is a simple function of the electric potential (Vg, Vi, Vb,

A Beam cross-section

Pickup Antenna

Vacuum Chamber D

Figure 3.3: schematic cut of a beam position monitor (BPM).

Vur)induced by the beam on each antenna [19] of the BPM (R, L, D, U on figure 3.3):

o YE=VL
VrR+ VL
Vo —-Vp

— 3.4
Ve B4

The electronic system used to process the signal is the so-called Switched Electrode Electronics
(SEE) [24]. The signal of peripherical electrodes is multiplexed to the same processing electronics
system. And the beam position is inferred using the standard technique from this signal. An
advantage of this electronic is that it can be used to acquire beam position at very high rate
typically 30 Hz to study potential time dependent beam position fluctuation.

The practical method to measure the response of the lattice is as follows: (1) For the nominal
condition, measure the beam position on all the desired BPMs {20, yo}i=1..n (the subscript ¢ is the
BPM index); (2) impress the desired distortion (i.e. energy change for dispersion measurement or
angular kick for R12 measurement); (3) measure the new beam position on the N BPMs{z, y}i=1. ~
and compute the displacement (or difference orbit) of the beam centroid along the beamline at the



location of each BPMs {Axz, Ay}i—y. n:

Ax x 2o
( Ay )i:l...N - ( Y )i:l...N B ( Yo )i:l...N )

For a transverse response lattice measurement, the transverse matrix elements are numerically
computed using the lattice set-up used during the measurement; the beam centroid induced by the
angular perturbation are computed using the Ry transfer matrix element.

For dispersion measurement, the energy change is impressed using the last pair of cavities in the cry-
omodule. Unfortunately this method does not provide valuable information (see the experimental
section for more explanation) and we had to use another technique to perform such measurement.
In the first place dispersion always results in a non-zero local Rig transfer matrix element e.g. due
to the presence of a dipole magnet. After it has been generated, it can propagate in region with no
magnetic field; for instance if at the exit of the dispersion generator the dispersion and its derivative
are 19 and 7, then at a downstream location, the dispersion can be computed from the knowledge
of the transfer matrix between the dispersion generator exit and the considered location:

1= Riino + Riang (3.6)

Note that in the case the dispersion generator is achromatic, we have 7y = 0 and 7}, = 0 so that
7= 0.
Because in the dispersion generator the beam momentum p is related to the magnetic field of the
dipole B (Bp = ecp), we have after differentiation (Ap)/p = (AB)/B. Hence a transverse offset
due to a relative energy change is equivalent to a relative magnetic field variation:
st =) [ 2] =) [ 5]
0

; (3.7)

where the subscript 0 indicate the energy changed is impressed before the magnetic system, and
the {%} is the relative magnetic field variation of the magnetic system downstream which the
dispersion is measured.

3.3.3 Results on Transverse Response

From the aforementioned technique to assess whether the optical lattice is performing accordingly
to the model, we need to have an accurate knowledge of the angular excitation provided by a cor-
rector magnet. In order to estimate such angular kick and since all the corrector magnets are of the
same type, we have use a corrector located in the backleg transport line with the next upstream
beam position monitor. The quadrupoles in between these two elements were not powered. So
the transfer matrix between the element is the one of a drift space of length 2.80 m. For different
corrector excitation, we measured the beam position as presented in figure 3.4. The beam position
is linearly dependent on the corrector strength in the range in position the BPM was used [-4 mm,
+4 mm]. A linear interpolation of the data presented in the figure, along with the knowledge of
the transfer matrix between the BPM and the corrector yields an angular kick provided by the
corrector magnet of approximately 0.64 mrad/(100 x Gauss.cm) this value is very close, within 3%,
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Figure 3.4: Example of calibration of a corrector. The slope of the linear interpolation is
0.0183 mm/(G.cm) which corresponds to an angular deflection of 6.54 yrad/(G.cm)

of the calculated value deduced from the corrector magnetic field map measurement® which give a
kick of 0.65 mrad/(100 X Gauss.cm)

Practically, the corrector strength is set de viso by looking at the on-line histogram plot of the
BPM value along the beam line, in such a way that the kick provide a significant position change
along the beam line; typical value used during the acquisition of difference orbit measurement are
approximately 100 G.cm. For a given corrector change By, + AB, (B is the nominal magnetic
excitation of the corrector) all the BPM readbacks along the beamline are acquired three times
(to quantify the beam position jitter). Then the corrector is set to the value B,,, — AB. This
latter operation allow to validate the measurement, since for the latter corrector setting, because
of linearity of the system, the BPM readback should be the opposite of the one measured for the
first measurement. Therefore the computation of the sum of the two measurements should give
zero for all the BPMs.

The use of only one corrector to study the response of the lattice is not sufficient since it only “probe”
the lattice at location that have a relative betatron phase advance of approximately 90 deg*. Hence
it is preferable to use at least two correctors separated by the proper phase advance so that they
probe different part of the lattice. In our present study, we use six different correctors: three
for the horizontal plane (2F00H, 2F04H and 2F08H) and three for the vertical plane (2F00V,
2F04V and 2F08V). The correctors are chosen so that the relative betatron phase advance between

®G. H. Biallas, private communication, June 99
*In the general Twiss transfer matrix formalism one has: R°37° = \/8(s)3(s0) sin(Ap) where Ap = pi(s) — pi(s0)
is the relative betatron phase advance between the points s and sg.



each other is approximately 60 deg so that one can accurately probe the whole period of the
betatron excitation as pictured in figure 3.5. An example of measurement for the six corrector
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Figure 3.5: Betatron phase advance between each corrector used to perturb the orbit along the
lattice in the horizontal (left plot) and vertical (right plot) plane (100 meters corresponds ap-
proximately to the end of the back leg beamline).

aforementioned is presented in figure 3.6. It is experimental response with the lattice and simulated
response. Although the two patterns generally match quite well one can see in the case of corrector
2F04H that there are large discrepancies. A technique used to find out the discrepancies is to
vary in the model different magnetic elements and try to minimize a y2-type quantities defined as:
2 = N (Agmeasured _ Agsimu)2 for the horizontal plane (the same kind of quantity is defined
for the vertical plane). In the present case, it was found® that one of the quadrupoles was not
producing the magnetic gradient that it was set to; the discrepancy between the set gradient and
the one effectively produced according to the difference orbit analysis is approximately 10%. After
inclusion of this discrepancy in the model, the newly computed pattern (see figure 3.7) are in good
agreement with the measurement indicating the model (second order based transfer matrix) can
be used to describe accurately the lattice.

3.3.4 Results on Dispersion Measurement

As we have already mentioned, the dispersion measurement theoretically reduces to the measure-
ment of the orbit transverse displacement for a given energy change. The easy way of varying the
energy in the accelerator is to change the accelerating gradient or the injection phase of one cavity.
Unfortunately, there are transverse fields in the CEBAF cavity that can significantly deflect the

5D.R. Douglas first noted this fact
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Figure 3.6: Comparison between the measured and simulated lattice response for the six correctors
used during the difference orbit measurement (100 meters corresponds approximately to the end of
the back leg beamline).

beam®. Because this RF-induced deflection is inversely proportional to the beam energy it can be a
problem for the operating energies of the IRFEL: simulations indicates the induced deflection due to
gradient change is significant and can be of the order of few tens of mrad. We have experimentally
verified such result in our preliminary measurement of dispersion in the back-leg transfer line by
varying the cavity gradient. We present in figure 3.8 the beam position offset along the beamline
and compare it with the case where we operate the cavity at their nominal gradient and used a
corrector at the linac exit to simulate potential RF-induced steering: the same type of pattern
(which is in fact the Rjz-induced pattern) is reproduced. This result confirms our suspicion that
dispersion measurements performed using RF-gradient variation is not valid. Next we present , in
figure 3.9, a measurement of dispersion obtained by varying the magnetic field in all the dipoles of
the recirculation arc. We note that the maximum traverse displacement of the beam centroid is
approximately 500 &= 100 um for a magnetic field variation of 1% insuring the spurious dispersion
is lower than 5 cm in absolute value. This is an important result for emittance measurement as we
shall see in Chapter 4.

6 A detailed study of this effect is presented in Chapter 6
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Figure 3.7: Comparison between the experimental data after correction and the simulated lattice
response for the six correctors (100 meters corresponds approximately to the end of the back leg
beamline).

3.3.5 Summary of the Transverse Response Measurements

We have demonstrated that the numerical model describes with high confidence the transverse
properties of the as-built recirculating accelerator. We have measured the dispersion in the backleg
transfer line when the trim quadrupoles and sextupoles in arc 1 are not excited and have discovered
the spurious dispersion has an amplitude smaller than 5 cm.

3.4 Measurement of the Longitudinal Response

3.4.1 Motivation

It was demonstrated in Reference [18] how important, for energy recovery purpose, the energy
compression scheme was. It enables to handle the large momentum spread induced as the laser
operates. The basics idea is to set the longitudinal lattice, in the recirculation, in such a way



- —0OR,, pattern
B—. Cavity Gradient Pattern

L L L
0 20 40 60 80 100
Distance from Cryomodule exit (m)

Figure 3.8: Comparison between an energy change induced beam displacement along the lattice
and the response to an angular perturbation.

that during the deceleration phase, for energy recovery purpose, the relative momentum spread is
reduced. Under the assumption of single dynamics first order optics this is simply because after
the linac, the energy offset §; for an electron can be written as a function of its energy offset dy and
longitudinal position zp at the wiggler exit as:

5. = Rgglaczo v RgglacR;%iggleralinac entrance(so (3.8)
The Rgs transfer matrix element of the linac is generally fixed: since the linac is setup to provide the
proper energy for lasing. Therefore the only parameter that can affect the energy spread at the linac
exit after energy recovery is the Rsg of the recirculation from the wiggler exit to the linac entrance.
An example of the importance in settings the energy recovery transport is shown in figure 3.10
where we present simulation of the energy recovery scheme: the PARMELA code is used as a skeleton
to simulate the acceleration and deceleration of the beam (i.e. RF-induced curvature and phase
slippage due to the non-relativistic nature of the beam are taken into account); the recirculation
transport is simply simulated by tracking particles using the longitudinal transformation”.

zi = zi+ Rsebi + Tresd? + O(57) (3.9)
o = &

For sake of simplicity and in order to expedite numerical simulations, we have turned off space
charge routine in PARMELA. The proper phase to achieve the shortest bunch at the wiggler in-
sertion is approximately —8 deg off crest. The beam is recirculated and re-injected —8 + 180 deg
off crest in the cryomodule so that it is decelerated and the electromagnetic energy stored in the
cavity via beam loading is directly used to supplement the available power for the accelerating
mode. We present the obtained results in 3.10, the longitudinal phase space at the linac exit (after

"In this numerical analysis, neither longitudinal wakefield induced in the accelerating structure and various beam-
line component, nor space charge collective force are taken into account
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Figure 3.9: Beam displacement in the backleg transport for a relative variation of 1% of the magnetic
field of the first recirculation arc.

acceleration), the downstream and upstream the wiggler are presented in the first row. The effect
of the wiggler was numerically simulated by generating an energy offset of .5 MeV and the energy
spread of the particle was set to: 6; — §; + 1/2AF X rand(—1, 1) where “rand” randomly generate
a number in [-1,1] interval. The longitudinal phase space after the recirculation for different values
of Rse and Tse6. The corresponding phase space after the deceleration in the linac are presented
in the bottom row. It is seen (bottom right) that with proper choice of Rz and Tses, the resulting
energy spread can be greatly reduced, yielding a beam that can be transported through the dump
transfer line.

The optimum point for operation of the linac in terms of both phase and accelerating voltage must
be related to the momentum compaction of the transport from the linac exit to the wiggler in order
to achieve the right longitudinal phase space slope at the entrance of the linac. In fact the linac
voltage and phase are dictated by the fact that one needs to match the longitudinal phase to the Rsg
of the compressor chicane by fulfilling the relation: os56/055 = —1/Rs6 (056 and 055 are the beam
sigma matrix elements). This matching condition is required to insure one can produce the shortest
possible bunch length at the point where the FEL-interaction takes place. This minimum bunch
length, when the matching condition is verified, is MV = Rss. /0% where the rms longitudinal
emittance £, and the bunch length ¢¥ are taken at the linac exit.

From PARMELA optimization® and recent experimental operation, the linac accelerating voltage is
about 38 MeV and is operated at approximately -8 deg off-crest.

The by-pass chicanes have their momentum compaction fixed by design to —28.8 cm and the only
free system to adjust the Rgg are the end-loop arcs of the recirculation transport by varying the trim
quadrupoles as we have already mentioned. An example of variation of the momentum compaction
of one arc with respect to the second family quadrupoles excitation is shown in figure 3.11. In the

figure we also plotted the non linear term Tsgg for the quadrupole but also for different sextupoles

8B. C. Yunn, updated PARMELA input files for the IRFEL driver-accelerator, private communications
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Figure 3.10: Energy compression scheme: The first row (from left to right) presents the longitudinal
phase space at the linac exit, after the compression chicane, and just after the wiggler interaction
has taken place; the second row show longitudinal phase space at the entrance of the linac just
prior to deceleration for three different choice of Rsg and 7556 ( for (A) -0.2 and 0. m, for (B) 0.2
and 0 m and for (C) 0.2 and 3.0 m). The result for the three cases after deceleration are shown in
the third row.

excitation (in this latter case the trim quadrupoles are unexcited). Note that the momentum
compaction as a function of the quadrupole strength can be parameterized by a quadratic regression
to give the “handy” formula:

Rse(ky) = 0.1436 — 0.5496k, — 005255k (3.10)

Experimentally this formula can be used to quickly check the Rgg of an arc and compare with
measurement.

3.4.2 Theoretical Background

The longitudinal lattice characterization is very similar to the transverse response measurement
previously detailed: the method again consists of impressing a known variation of the beam initial
condition and measuring the corresponding response downstream the section one wishes to char-
acterize. There are two types of longitudinal measurement that can be done very easily in the
IRFEL: the compression efficiency (or phase-phase correlation) and the momentum compaction (or
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the second family sextupoles strength k, (for this calculation, the trim quadrupoles are unexcited).

phase-energy correlation). In these measurements, the bunch is considered as a macroparticle and
the time-of-flight (TOF) of its centroid is measured between the locations where the variation is
impressed and a point where the time of arrival can be estimated.

Compression Efficiency

The phase-phase correlation, (¢;,|¢.u:) requires the measurement of time-of-flight (TOF) of the
bunch centroid versus a variation of its “injection phase” in the section we wish to study. In the
FEL driver-accelerator, this quantity is only measured starting from the photocathode since it is
the only location the “injection phase” ¢;, can be varied orthogonally with respect to the injection
energy by varying the phase of the photo-cathode drive laser that illuminates the photocathode
with respect to the master oscillator (and all the RF-element settings are kept constant). The phase
variation an arbitrary location downstream the photocathode §¢,,; as a function of the injection
phase perturbation d¢;, writes:

¢ def
5¢out = out 5¢2n = <¢2n|¢out>5¢zn (311)
Therefore by varying in a known fashion the injection phase and measuring the associated response
downstream, we obtain the phase-phase response of the section comprised between the perturbation

and the measurement station. From this phase, using the standard notation of the TRANSPORT




lattice code?, we have:

(Pin|Gout)00in = (Rs5 + > Tspsrr)00in + Ts55(00in)” + (3rd order terms) (3.12)
k<5

where 7y is k-th co-ordinate of the vector r = (2in, 2%, Yin, Yins Pin, 6in) Therefore, nonlinear fit of
this phase-phase transfer map yields the arbitrary order transfer matrix element (@i, |Pout)-

Momentum Compaction

The Rsg measurement involves the variation of beam energy. Such operation can be performed
by varying the gradient of an rf cavity. The beam injected in this cavity must be relativistic to
avoid phase slippage effects. If the measurement occurs in a dispersion free point, the same kind
of relation as Eqn.(3.12) can be written:

(bin|Pout)0in = (Rs6 + Z Tsierk)0in + T666(5m)2 + (3rd order terms) (3.13)
k<6

Hence again a nonlinear fit of this energy-phase transfer map can theoretically provide informations
on the linear and nonlinear terms of the Taylor expansion in the TRANSPORT formalism.

3.4.3 Experimental Method

We have seen that knowing both compression efficiency and momentum compaction relies on the
measurement of the time of arrival. Such measurement is performed by detecting the amplitude
signal produced by the TMgg waves excited as the electron traverses a resonant stainless steel
cavity [20, 21] The cavity has a resonant frequency of 1.497 GHz. The principle of the TOF
measurement is to measure the phase of beam induced voltage since it is in phase with the bunch.
The phase of the RF signal coming from the cavity (Vrr cos(wt+¢prr)) is mixed with the reference
signal phase shifted by means of a programmable phase shifter (Vycos(wt 4 ¢g)). The signal at the
mixer output, after removal of high frequency component with a low pass filter, is:

VrrVo

Vout = sin A¢ (3.14)

where A¢ d:ef ¢Rrr — ¢o is a measure of the relative time of flight.

The coefficient (VrrVp)/2 is initially determined during a calibration procedure that consists in
varying the phase shifter to find the two zero-crossings of the pickup cavity, i.e. the phase for
which the signal V,,; is zero and measure the dependence of V,,; for slight variations ofA¢ (so that
sin(A¢) ~ A¢)). Once the measurement is calibrated, the phase shifter phase ¢q is set so that
for the nominal conditions of the machine the cavity is operated at zero-crossing. Hence a change
in the TOF induced by varying the phase of the photo-cathode drive laser (for phase-phase map
measurement) or by an energy change (for energy-phase map measurement) gives a change of ¢rp
which in turn induces a change of V.. Practically only the change in V,,; is directly measured
but because one knows the coefficient VrgVy one can infer ¢rp i.e. the relative TOF of the bunch.

“hence forth we refer this notation as TRANSPORT formalism



Experimentally the calibration coefficients are stored in software, the voltage V,,; is digitized by
an ADC card, and a data analysis program directly output the TOF in unit of RF-deg (1 RF-Deg
is 556 pm at 1.497 GHz).
In the driver accelerator four cavities have been installed; their locations are shown in figure 3.12.
In this section we will only consider measurement performed by the pickup cavities 2, 3, and 4,
the measurement from the cavity #1 requiring some deeper analysis as we shall see in chapter 6.
It is worth noting that contrary to what we have implicitly assumed in the previous discussion
the measurement is not a single bunch measurement. Because of the needed signal to achieve
good enough signal over noise in the time of flight measurement, the cavity signal corresponds to
a macropulse that consists of 4675 electron bunches (the characteristics of the macropulse used for
the measurement are: a width of 250 psec, a micro-bunch frequency of 18.7 MHz and a macropulse
frequency of 60 Hz).

To expedite the measurements, the quantity varied (i.e. laser phase for (¢;,|¢.u) transfer map

Pickup #2 Pickup #1

Pickup #3 Pickup #4

Figure 3.12: Location of the pickup cavities along the transport line in the FEL driver accelerator.

and cavity gradient for (&;,|¢ou) transfer map), is indeed modulated with a frequency of 60 Hz
(see again fig. 3.13). The modulation is performed with a triangular waveform generated by a
function generator used to vary the proper quantity (phase of the photo-cathode drive laser or
cavity gradient). The choice of a triangular modulation was done to uniformly populate the transfer
map. Moreover sinusoidal modulation is also planned (but was not used during the work reported
hereafter) in order to use the Tchebytchev-polynomial- based analysis that has been developed by
G. Krafft for the CEBAF injector [22] at Jefferson Lab.

3.4.4 Simulation of (¢;,|¢,.:) transfer map

As aforementioned the measurement of phase-phase transfer map provide important information on
how the bunching process is performing and can give some insights on the bunch length. Because
the map is measured between the photocathode and the pickup cavities (see fig. 3.12 for their loca-
tions), we cannot use standard single dynamics relativistic codes such as TLIE or DIMAD but need
to use particle tracking code such as PARMELA which include nonrelativistic effects such as phase
slippage effects in accelerating cavities. The technique we have used to compare measurement with
numerical simulation is as follows.

We use the PARMELA code to generate uniform macroparticle distribution over a given extent in
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Figure 3.13: Block diagram of the compression efficiency Rss; and momentum compaction Rsg
measurement.

phase at the photocathode surface. The corresponding phase of emission (bjn of the i-th macropar-
ticle at the photocathode surface is recorded and the macroparticles populating this uniform distri-
bution are “pushed” along the beamlines. During tracking the space charge subroutine in PARMELA
is turned off, and each macroparticle is assimilated to a bunch centroid of bunches emitted at dif-
ferent drive-laser phase. We then record the phase of arrival ¢! , at the desired pickup cavities in
the simulation. The couple {(bjn, ¢éut}i:1,...,N gives the phase-phase transfer map and can readily
be compared with the experimental data.

3.4.5 Measurement of (¢;,|¢p..) transfer map
Nominal Set-up Measurement

We will not treat measurement of phase-phase correlation function in the injector since they will
be presented in Chapter 6. The figure 3.14 presents a measurement of phase-phase beam transfer
function between the drive laser photocathode and the three different pickup cavities aforemen-



tioned. From the transfer function in Fig. 3.15 we can deduced by performing non-linear fit, an

40
>
S
Lo 20 .
S
(O]
(D]
@
<
a
g o pickup #2
o] 0 [ . -
3 o pickup #3
< = pickup #4
a
[J]
e}
o
s
© =]
g =20 - o o %?]Eéégﬁ & i
T PR By o
_40 L 1 L 1 L
-2 0 2 4

Time of Flight (RF-deg)

Figure 3.14: phase-phase beam transfer function between the photocathode surface and the three
different pickup cavities: pickup #2, #3, and #4.

estimate of the transfer matrix element the results of the non-linear fit are gathered in Table 3.4.5.
The measurement of the linear part are in very good agreement with the simulation except for
the cavity #4, we believe the discrepancy comes from a bad centering of the electron beam on the
magnetic axis of the trim quadrupoles and sextupoles in the arc 2.

Effects of the Quadrupoles

We have experimentally investigated the effects of the second family trim quadrupoles on the
phase-phase transfer map. In figure 3.16 we present measurement of the phase-phase correlation
for different cases. The study has only been carried out using the pickup cavity #3. For such
measurement we have measured the beam phase-phase correlation with the trim quadrupoles set
to their nominal values. Then we iterate the measurement for both the trim quadrupoles turned off
and with their value opposite to nominal. The measurements are gathered 3.16(A). Since no time
was spent to re-measure the transfer map along the linac and iterate the same procedure as before,
i.e. set the model such that the same transfer map is achieved at the linac exit, and then use the
model to predict the change at cavities #3 and #4, the disagreement is quite important. However,

if we look at what is the relative change, i.e. by calculating the difference <¢Out|¢m>Quad Settings _

<¢Out|¢m>Nominal Settings o both the experiment (see fig. 3.16(C)) and the numerical model (see

fig. 3.16(D)) the agreement is satisfactory. Though in the present case the method does not allow
to extract quantitative number for Rs5 and Tsss5, it shows that this map does evolve the same way
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Figure 3.15: Comparison of the phase-phase beam transfer function between the photocathode
surface and the three different pickup cavities (pickup #2, #3, and #4) (bottom row) with the
one simulated using PARMELA (top row).

both experimentally and in the model when we try to perform a perturbation-type measurement.
This also suggest that the same “difference orbit” technique we use for the transverse plane could
be performed in the present case, if the motivation was not to extract matrix elements.

Effects of the FEL on the Phase-Phase map

Assessing the effect of the FEL on the beam has been studied only experimentally. We will attempt
to provide a qualitative explanation. In this experiment we have set the laser phase modulation
amplitude to 40 deg, since it corresponds the full bunch length at the cathode surface. Firstly we
prevented the laser to run by detuning the optical cavity and recorded the phase-phase transfer
function. Then we tuned the optical cavity, i.e. adjust the length to match the time of flight
of electron bunches inside the cavity, and recorded the phase-phase transfer map. The other



Pickup Linear Coeflicient Quadratic Coeflicient
Experiment

# 2 0.1172 0.0008
# 3 -0.0801 0.0016
# 4 0.0911 0.0006
Simulation

# 2 0.1070 0.0007
# 3 -0.0834 0.0003
# 4 0.0256 0.0004

Table 3.2: Comparison of coefficients obtained from the non-linear fit of the measured and
PARMELA-simulated phase-phase transfer map.

measurements were performed at various stages of the detuning curve of the optical cavity. The
obtained transfer maps are gathered in figure 3.17. For the case where the laser is turned off (see
fig. 3.17 (A)), the transfer map looks as usual, mainly linear with a small parabolic behavior due
to Tss5 contribution. However when the laser is turned on (see fig.3.17 (B)), and optimized to
extract a maximum output power, the fold-over is substantial, bunches emitted with phase close
to the “nominal phase” have a larger time of flight because now they are contributing to the laser
process and therefore are less energetic. At various stage of detuning curves the phase-phase map
fold-over due to the non-linear effect introduced by the laser interaction is less important. We
have succeeded in operating the laser at the limit of its turn-off point by properly adjusting the
cavity, in this region, (see fig.3.17 (E)) we can notice that the phase-phase transfer map has two
contributions: for bunch centered around the zero-crossing phase (i.e. —10 < ¢;,, < 410 deg), the
transfer map has the same fold-over as when the laser is optimized for maximum output power (see
fig.3.17 (B)), however for bunches emitted with phases |¢;,| > 10 deg, the transfer map has the
same behavior has the transfer map measured when the laser interaction is turned off, indicating
that in this region, the bunches are no more taking part to the laser interaction. This observation
remains to be studied with numerical simulations.

3.4.6 Simulation of (J;,|¢..:) transfer map

Since the (8;n|¢out) transfer map measurement is only performed in the 48 MeV energy region,
we can use relativistic single dynamics code. We computed first and second order transfer matrix
elements (Rse and T556) using the DIMAD code. In order to generate energy-phase transfer map
we have used the arbitrary high order code TLIE [23] codel®. The energy offsets experimentally
achieved when modulating the gradient of the last cavity encountered by the beam during its
acceleration is used as input in the TLIE code from which we can generated by using the tracking
option the phase of arrival at the desired pickup cavity. The couple ({&!,, ¢, }i=1,..n) Will give
the energy-phase correlation and again can be readily compared with the experimentally generated
transfer map.

1%This code is based on Lie differential algebra technique to compute transfer map in an accelerator lattice
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3.4.7 Measurement of (J;,|®,.:) transfer map

Effects of the Trim Quadrupoles

The trim quadrupole family has two effects on the energy-phase correlation. Firstly it modifies
the momentum compaction, Rsg. Since the quadrupole introduce a path length variation linearly
dependent on the energy offset. Also via its second order coefficient, the trim quadrupoles also
introduced a quadratically energy offset dependent path length variation which results in a modi-
fication of the nonlinear momentum compaction Tses = (Dout|P2)-

We have measured, using the nominal optical lattice setup the energy-phase transfer map at both
pickup cavities located downstream arc 1 and 2 (pickup cavity #3 and #4) on the figure 3.12.
The results are presented in figure 3.18: a linear fit of the measured transfer map has been per-



formed and is compared in this figure with the expected momentum compaction computed using
the magnetic optic code DIMAD. We have performed the measurement at both location with the
trim quadrupole in arc 1 both powered and turned off. It is seen the level of agreement is excellent.
Typical Rs¢ measured and expected for the whole recirculation, i.e. from the cryomodule exit up
to its entrance is approximately -20 cm for the nominal setup used at that time (February 1999).
From these both measurement it is possible to deduce the Rs6 of the by-pass chicanes: Using the
nominal settings measurement we find: R%HC ~—29.60 cm and R2}¢ ~23.51 cm, again we can note
the very good agreement, with 2cm between the measured Rsg for the chicanes and its design
values of —28cm. We have attempted to quantify the Rsg dependence on the trim quadrupoles
excitation by systematically varying the quadrupoles strength and each time measuring the mo-
mentum compaction from the linac exit up to the pickup cavity #3. The results are presented in
figure 3.19 where we compared the measurement with numerical simulation using the DIMAD code;
the code seems to be a very good tool to predict the Rgg evolution around the recirculation.

Effects of the Sextupoles

We have carried a qualitative study of the sextupole effect on the energy-phase transfer function.
The experiment consisted of measuring the (&;,|¢.u) transfer function using the pickup cavity
number 3. During the measurement the trim quad are un-powered. In figure 3.20, we present the
measured transfer functions. Quantitatively there is some disagreement between the simulated and
measured data. However it is seen that the sextupole have the same effect: when turn on they tend
to introduced a positive non-linear (quadratic) curvature. Again one can use the same scheme as
we used before and compare not the absolute transfer map, but relative transfer map i.e. compare
the algebraic difference (&;n,|Pous)”” — <5m|q§0ut>0ff for the simulated and measured set.

3.4.8 Concluding Remarks on the Longitudinal Response Measurement
In this section we have showed that:

1. phase-phase first order map and nonlinearities measured can be rather well reproduced with
the PARMELA code. Also it can be used to deduce both the compression rate between the point
of measurement (pickup cavity locations) and the photo-cathode surface; of course this is a
lattice compression rate, practically, and especially in the low energy region, where the beam
is in a space-charge-dominated regime, the compression is strongly influenced by collective
space charge force.

2. phase-phase map can be used to set the lattice i.e. to operate in isochronous mode, e.g. by
making sure the map before and after a section is approximately the same

3. energy-phase transfer map, can give with fairly good accuracy the momentum compaction of a
section. We have measured the momentum compaction of the recirculation to approximately
Rsg >~ —12 c¢cm from the cryomodule exit to the arc 3F. Which give the for the section wiggler
to linac entrance Rsg >~ +16 cm very close to the desired value of 20 cm.

4. energy-phase transfer map can also be used to characterize, with high accuracy the effect
of the sextupole on the longitudinal dynamics, also in the present work we were not able



to precisely extract the Tsgg term probably because of mis-centering in the arcs transport,
it could be use for such purpose to ease the path length correction required by introducing
linear and high order energy chirp.
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Chapter 4

Transverse Phase Space
Characterization

4.1 Introduction

The present Chapter is intended to discuss the emittance measurement that we have developed
in the IRFEL. Techniques to measure both emittance-dominated! and space-charge-dominated 2
beam are described. Because beam profile measurement is an integral part of an emittance mea-
surement we describe the OTR-based beam density monitor that have been installed in the IRFEL.
Before discussing in great detail the techniques we use to measure the transverse emittance and
phase space parameters, and because of the different definitions that vary from source to source in
the contemporary beam dynamics literature, we find it imperative to settle the definition of beam
emittance that we will use throughout this dissertation.

4.1.1 Beam, Hamiltonian Dynamics and Liouville’s Theorem

By definition, a beam is a collection of particles that are contained within a finite region of the phase
space. In the most general case, the phase space is a 6-dimensional space [26] and the particles
(assumed to be point-like) are represented by their position vector (z,y, z) and kinetic momentum
vector (pg,py,p-), and occupies a six-dimensional hyper-volume generally referred as I's. This
representation concerns the simplest case: in other cases, additional coordinate such as spin, for
polarized beams, or charge and mass, for multiple-species beams, might be required. The notion
of a beam also entails the existence of a privileged direction, the direction of propagation, along
which the kinetic momentum is much greater than the momentum in the two other directions. The
choice of (z,y, z) and (ps, py, p-) as coordinate is simply coming from the Hamiltonian description
of the particle system which requires canonically conjugate variables. In the six-dimensional phase

'emittance dominated beam means that the beam evolution is driven by external forces (e.g. external focussing)
Zemittance dominated beam means that space-charge forces dominates the beam evolution (i.e. Coulombian
repulsion)

49



space a beam that consists of N particles, is best described, at a given instant, in terms of a
density function ng(z,y, 2; ps, Py, p-). The number of particles in an element of phase space volume
dre = dxdpydydp,dzdp, in the vicinity of the point (z,y, 2; ps, py, p-) is:

d6N = n6($7 Y, Z;vapyvpz)d7—6 (41)

The total volume in I's occupied by the beam, at a given instant is:

wefff[] ]

This quantity, generally referred as 6D-hyper-emittance, is well defined provided the density func-
tion ng is a compact function.

A useful simplification, when describing a beam, occurs when each degree of freedom is independent
of the two other degrees of freedom. Then the since Hamiltonian write as the sum of uncoupled
sub-hamiltonian corresponding for each of the three degree of freedom, the density distribution
factorizes as:

n6($7 Y, Z;vapyvpz) = nZ,x(xvpx)n%y(yvpy)nlz(zvpz) (43)

In such case, the beam dynamics can be studied separately in each of the three two-dimension
projected phase space. The main properties of the particle trajectories in these planes can be
summarized as follow:

e The trajectories depend on the initial values of the coordinate and the time. An important
consequence is that two trajectories with different initial condition cannot intersect. Also
note that a trajectory at a given time can have several value thereby yielding phase-space
bifurcation.

e A boundary in the phase space that enclose a given number of particle at a given time ¢ will
map into a boundary at a time ¢’ which enclose the same group of particles.

e In linear phase space transformations, ellipses map to ellipses, straight lines to straight lines.
Such geometry might be appropriate to limit phase space density.

Generally the phase space density function, ng(z,y, 2; py, py, p-) is Liouvillian i.e. it satisfies Liou-
ville’s theorem which states that the density of particle in the appropriate phase space is invariant
along the trajectory of any given point. This theorem can also be expressed in terms of the invari-
ance of the phase space hyper-volume enclosing a chosen group of points as they move in the phase
space. The ensemble of particle behaves as an incompressible fluid:

v
=0 (4.4)

We should insist that Liouville’s theorem applies to conservative Hamiltonian systems i.e. systems
in which the forces can be derived from a potential. In the case of charged particle beam, Liouville
theorem cannot be applied when:

e Emission of electromagnetic radiation (e.g. synchrotron)
e Non negligible self interaction (e.g. space charge force, coherent synchrotron radiation,...)

e Quantum excitation effect are non negligible



4.1.2 Phase Space and Emittance

Henceforth, we will only concentrate on the transverse phase-space, # — p, and y — p, and assume
there is no coupling between these two sub phase-spaces. Therefore we will consider the horizontal
phase space x — p,, similar discussion is valid for the vertical phase space y — p,.

Firstly it is always preferable to work in the trace space which is the plane @ — 2’ where 2’ = p, /p.
is the renormalized horizontal momentum or the particle divergence. The variables  and 2" are no
more canonically conjugate but the phase space properties exposed previously are still applicable in
the trace space. For sake of simplicity, the phase space distribution is generally arbitrarily bounded
by ellipses since they have the good properties to map into ellipses under canonical transformation.
Such ellipse is generally referred as the phase space ellipse. It can be fully specified with three
parameters, the emittance €, the betatron function fr and the ar function; its equation is given
by?>:

vzt 4 2arza’ + Bra? = (4.5)

2
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where y7 is defined as vy = In this previous equation, the emittance is generally named

geometric emittance and corresponds to the area of the ellipse:

ef

/ o dada’ def e (4.6)
ellipse

The bilinear form expressed in Eqn.(4.5), can be rewritten in a matrix form ZX 77 with @ = (z, 2')
and X being the beam matrix:

Ed:ef ( Ore  —are ) d:ef ( 011 012 ) (4.7)

—Qare  YT€ 012 022

Despite this definition of emittance is the one generally used by experimentalist, it suffers from many
problem especially in presence of non-gaussian phase space distribution or when nonlinear effects
are present in the transport channel (chromatic aberration, wakefield, space charge,...). These
nonlinear processes generally yield non linear distortions of phase space which render the geometric
emittance concept difficult to quantify a phase space which shows a great deal of structure (e.g.
filamentation).

A convenient way is to statistically characterize the phase space using the first, (z), (') and second
order, (z?), (2"?), (z2'), moments of the phase space distribution. Then we can define a root mean
square emittance [27] as:

1/2

&= [{(@ = (@)@ = @) = (&= @) - @)°] (4.8)

It is also common to find in the literature the effective emittance which is the defined as 4 times
the rms emittance. Also, most of the time one rather normalized the emittance with respect to the
momentum and define the normalized rms emittance as:

é; = ﬁ75~x (4'9)

®In this Section the Twiss parameters are indexed with the subscript 7 to avoid confusion with other variables.

Later, where confusion cannot occur, we will omit this subscript.



This definition of emittance is practical since it does not vary if the forces are linear.
As for the geometric emittance one can define Twiss parameters from the first and second order
moments:

! !
ap = _{&a)-(@){@) (4.10)

Introducing the rms beam size, o, and divergence, o7, it is possible to have a simple expression
for the rms emittance:

!

N e

Ep = 0p0 /1 —1rd, = — 902 (4.11)
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Where rq3 is a correlation coefficient defined as rio = ~—£; it is a measure of the trace space slope.

ool )

Therefore, measuring a transverse emittance £, always reduces to the measurement of beam density
along z-axis (i.e. beam size measurement) and along z’-axis (i.e. beam divergence measurement).
As we will see, both of these measurements indeed reduce to the measurement of a beam trans-
verse density profile. Therefore we shall first concentrate our discussion on this latter type of
measurement. We will then discuss the emittance computation.

4.2 Measurement of Beam Profile Using Transition Radiation

As we have seen in the previous section, measurement of transverse trace space generally requires
measuring the beam profiles i.e. the transverse particle density along the horizontal or vertical axis.
Several techniques are commonly used for such a purpose depending on the beam. For instance in
the IRFEL driver-accelerator, the transverse beam distribution are measured by:

o afluorescent screen: a ceramic plate is inserted in the beam path, and the light emitted via the
fluorescence effect is observed with a camera since the fluorescence occurs in the optical region
of the spectrum (see fig. 4.1 b). These types of beam profile monitor are usable for quantitative
measurement only for extremely low average beam current of typically 10 nA. It is only used
as a qualitative beam transverse section measurement in the low energy (350 keV) region
of the injector to observe low current beam. The use of these type screens for quantitative
measurement of higher average beam current is not possible: the ceramic does not have a
linear response and can saturate resulting in erroneous beam density measurements.

e a wire scanner: the beam is intercepted by a thin (20 gm) moving tungsten wire. As the
wire scan the beam in the transverse plane, the potential across its ends is proportional to
the beam current intercepted. Therefore the measurement of this electric potential versus
the position of the wire gives the transverse beam density along the direction perpendicular
to the wire (see fig. 4.1 b). Despite this type of technique can achieved very high resolution,
depending on the diameter of the wire and the steps of the scan, it as few inconvenient: it
is a very slow measurement, because of its generally large diameter (more than 20 um), the



wire can yields a large loss of particle that can hit the vacuum chamber or other beamline
components and potentially damages electronics system.

e several synchrotron radiation monitors: as the beam is bent in dipole magnets, it emits
synchrotron radiation. In the IRFEL this radiation is emitted in the infra-red region of the
electromagnetic spectrum and is imaged on a very sensitive CCD detector (see fig. 4.1 ¢). This
profile monitor has the advantage of being non-invasive (it does not yield beam degradation)
and it can be used to measure beam distribution at very high current. However it is not well
suited for emittance measurement: the beam profile is measured in a bend i.e. at a dispersive
location and therefore the emittance computation, requires a somewhat tedious analysis since
we need to deconvolved the dispersion contribution to the beam profile.

e many transition radiation monitors: thin aluminum foil are inserted into the beam path
and transition radiation (see the Introduction chapter) is detected with a CCD detector.
Generally the foil makes a 45 deg angle with the beam direction and backward transition
radiation is detected (see figure 4.1 d). This configuration requires the foil material to have
a good reflection coeflicient. Since very thin foil are available, this type of devices can stand
high current beam without yielding significant beam degradation.

Among the techniques listed above, transition radiation was chosen to provide the quantitative
measurement of transverse distribution required for measuring the emittance in the IRFEL. This
choice was principally driven by the reliability, the speed and the low cost of this type of instrument.
Before the IRFEL was built we study many aspect of this type of apparatus: what are the average
beam current limit, what are the beam transverse phase space degradation after an OTR, screen.
Such studies, experimentally carried in the CEBAF machine at Jefferson Lab, helped with the choice
of the type of screen (aluminum). During these studies we also developed a quasi non-interceptive
screen that was used to measure the beam profile of the high power beam of the CEBAF accelerator;
also we did not implement this type of monitor in the IRFEL short term plan, it might be sometime
implemented to continuously monitor the electron beam quality without significant impact on
the beam itself. In the following sections we discuss the limitations of transition radiation-based
diagnostics and the development of the non interceptive profile monitor.

4.2.1 The limitation of Transition Radiation Monitor

As we have mentioned in Chapter 2, when we discussed electromagnetic radiation emitted by moving
charged particles, that transition radiation can be observed whenever a charged particle experience
a discontinuity in the electric properties of its environment. A common way of observing transition
radiation is to intercept the beam trajectory with a thin metallic foil (or TR radiator). Such
method allows the observation of the TR produced as the beam crosses the boundary vacuum /foil
(backward TR) or foil/vacuum (forward TR). As the beam is intercepted by the foil some concerns
might arise:

Firstly because of the dF /dx of the material the beam deposits some energy in the TR radiator
thereby increasing its temperature. Therefore we must study the thermal effect of the beam on the
TR radiator.

Secondly when the electrons that constitute the beam pass through the foil material, they undergo
scattering on the nuclei that can potentially degrades the beam emittance and therefore will not
result in a non-interceptive diagnostics. On the other hand, the divergence induced via scattering
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can be so large that some of the electron can be lost. If the percentage of lost particles exceeds
a certain threshold it can trigger the Machine Protection System (MPS) which will turn off the
machine, also even if the MPS is not armed, losing a large fraction of the beam is always a concern.
The protection system threshold depends on the machine, and insures that one cannot damage
any piece of hardware (vacuum pipe, electronics,...) that is located in the tunnel enclosure. In the
following we consider the behavior of three kinds of TR radiator: aluminum, gold and carbon foil.

4.2.2 Thermal Studies

The primary concern, as we previously emphasized, is due to the energy the beam deposits in the
foil. The energy deposition is mainly due to ionization losses of the relativistic electrons minus the
energy carried on by secondary electrons; it was computed using the EGS4 (Electron and Gamma
Shower 4) code?* distributed by Stanford Linear Accelerator Center. If the only mechanism of heat
transfer is conduction, the temperature of a body in which power is deposited is described by the
heat transfer equation:

oT oP
=k = 4.12
peyy — kappa T (4.12)
where T is the temperature, p the density, ¢,, the specific heat, x the thermal conductivity, V' the
volume of the body, and the deposited power.
This equation can be numerically integrated by several finite-element program. In the case of

body with high emissivity, heat evacuation via radiation is an important mechanism that should be

*Private Communication from P. K. Kloeppel, November 1995



incorporated in the computations. Typically for a given deposited power, a temperature gradient
will result. A given surface of the body dS whose local temperature is T will radiate and lose power
at a rate proportional to T4dS. More precisely, the power radiated is given by Stefan-Bolztman
relation:

dPs = 20edS(Ts - Ty) (4.13)

where o is the Stefan constant (o = 5.670 x 107 Wm™2K~%), € is the emissivity of the body, and
Ty is the ambient temperature of the canonical system the body is located in (in our case vacuum
at a temperature assumed to be 300 K henceforth).

To compute the temperature rise due to power deposition in the steady state case, we use the
following numerical iterative method. Firstly, let’s assume (and this is indeed the case) that the
TR radiator consists in a circular foil of radius r and thickness ¢ whose normal makes an angle
with the beam axis. In a such case, the power is evacuated radially via the conduction mechanism.
We can divide the foil by a series of annuli of outer and inner radii r; and r;y; (see fig. 4.2).
Therefore the temperature of the ith annulus is related to the temperature of the i-1 th crown by:

bjaam and screen center
screen edge

— e

T3 T, T=300K

-2

Figure 4.2: Methodology to compute temperature rise in a cylindrically symmetric TR radiator.

T.=T,_1+ R F; (4.14)
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where R; = In (r’ri) is the thermal resistance (k is the thermal conductivity of the foil material
and ¢ its thickness, and F; is the total power coming from the i th crown. Part of the power is heat
radiated and the remaining is transmitted via conduction to the next element. The radiated power

182
P =Py +2ra(T* = 300Y) (r7 — 7)) (4.15)

To compute the temperature rise at the beam edge crown, we introduced the parameter P,
that represent the evacuated power. Hence varying the value of this parameter and iterating the
Eqns. (4.14) and (4.15) from the edge of the foil up to the edge of the beam allows to determine
the temperature at the beam center and the deposited power (from which we can get the beam
current) using the equations [29]:

1
Teenter =17 —F, 4.16
! + 4rkt ( )



and

P
I= N cos 6 (4.17)

Eqn. 4.16 relates the temperature at the beam center and the temperature at the beam edge. It is
valid under the assumption of a uniformly populated beam. Using this method we have computed

Material Melting Point Thermal Conductivity dF/dz

(K) W/m.K eV/um
Aluminum 933 237 410
Gold 1337 317 6380
Carbon 3700 333 130

Table 4.1: Physical properties of the considered material for OTR screens.

the maximum beam current different foils can stand versus the equivalent beam size defined as
\/TzTy where r; and ry are the full beam size respectively in the horizontal and vertical direction.
The considered material with their properties are gathered in Table 4.1. The results are presented
in the fig. 4.3 which depicts the maximum average current that can be reached for a given beam
radius assuming the TR-radiator has a 0.8 um thickness®. For instance, we can see that with the
typical beam size expected in the free-electron laser, aluminum foil can easily withstand average
current up to 500 yA even with a beam of 300 um radius. Even in the low-emittance CEBAF
accelerator the maximum design of 200 uA can be reached without melting the foil for typical
envelope of 200 ym.

Obviously, we can notice in figure 4.3 that carbon is the best choice as far as thermal aspects

only are considered. Unfortunately the main drawback of carbon, as we will see later, is its low
coeflicient of reflection in comparison to aluminum or gold which does not facilitate its use to
observe backward TR.
Finally we note that despite its higher thermal melting point compared to aluminum, gold does
not stand higher beam average current due to its higher dF/dx coefficient. In figure 4.4 we present
the steady state temperature versus the incoming beam average current for different aluminum foil
thickness and a beam of 2mm.

4.2.3 Study of Multiple Scattering in Aluminum foil

We now turn to the study of beam degradation due to scattering in the TR radiator. In this section,
we present an experiment devoted to study scattering of a 45MeV electron beam on very thin
aluminum foils. The experiment was performed in the CEBAF injector region (for a description of
the injector see Reference [28]). We compared the data with a semi-empirical model and numerical
simulations.

Sthis thickness is an optimum value: it corresponds to the thinnest foil we can have (in order to minimize beam
degradation) still having a good surface reflection coefficient. Also thickness is limited by the frame on which the foil
is mounted: too thin foil could not be mounted on our holding support because they would anymore self-support.
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equivalent beam radius. Three types of TR radiator have been considered: Aluminum, Gold and
Carbon. The three radiator are 0.8 pm thick.

Experiment

We have performed an experiment in the CEBAF injector at 45 MeV to study scattering effect
as the beam pass through aluminum foil of different thickness. The experimental setup is as
follow: different aluminum foil are mounted on a support, and can be inserted into the beam path
remotely. The scattered beam then drifts through a length of 7.43m up to a transverse beam
profile measurement station: a wire-scanner. All the quadrupole and corrector magnets between
the foils and the wire scanner are turned off. In figure 4.5 we compare two typical wire scanner
traces obtained with and without a 0.8 yum aluminum foil inserted in the beam path. The wire
scanner has three wires (see fig. 4.1 b) that respectively (from right to left in the figure) gives the
beam profile along the horizontal, vertical and 45 deg axes. The fact that the beam size in the
horizontal direction is much smaller than the vertical direction one is simply due to the optics tune
upstream. As one can expect the beam profile is larger as the 0.8 pm foil is inserted. More generally
it gets wider as the foil thickness increases. For quantitative analysis of the scattering, we only
consider the tail of the beam profile located on the right side of the horizontal profile (right peak)
because the other peaks overlap and would yield a tedious deconvolution. We also assume that we
have scanned 100 % of the beam. Let S(6) be the function associated to the tail. S(6) is indeed
the convolution of the beam profile B with the foil “scattering transfer function” 7 (or scattering
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distribution):
S(0) = (T = B)(9) (4.18)

where * is the convolution product.
Rewriting the above equation in the Fourier space yields the scattering distribution function of the

foil:

S
T (_) 4.19
> (1.19)
The F~!is the inverse Fourier transformation. We have numerically performed this deconvolution,
and the calculated scattering functions for three different foil thickness are shown in figure 4.6.
From this figure we can see that the larger the thickness is, the larger the rms scattering angle (i.e.
variance of the scattering distribution) is.

Comparison with the Theory

It is useful to compare the previous results with the theory, in order to see how accurately we are
able to predict the effects of an OTR radiator on the beam. There are several theoretical model
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Figure 4.5: An example of the effect of a 0.8 um thick aluminum foil on the beam profile. The
beam is measured using a wire scanner located downstream the foil.

describing scattering inside very thin targets each of them have their own domain of applicability
which depends on the mean average of collision 2 an electron experiences as it pass through the

foil:

e simple scattering (2 < 1),
e plural scattering (1 < © < 20),

e multiple scattering (© > 20).

In the case of aluminum foil with thickness thinner than 5 pum, the mean number of collision being
less then 20 we are in the plural scattering regime. This type of scattering is well described by
the semi-empirical model elaborated by Keil [30] which is an extrapolation of the Moliére model
that describes multiple scattering. The detailed study of Keil model is out of the scope of this
thesis. In brief, Keil used the Fourier transform of the scattering distribution derived by Moliéere
and only considered the two first terms of this series, a valid approximation if the mean number
of collision is below 20. He then empirically calculated the numerical coefficient of the series using
the experimental measurements performed by Leisegang [31] as he was experimentally studying
scattering through very thin gold foils. The relation that gives the angular scattering distribution
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for a given mean number of collisions € as a function of the reduced angle 8, is given by:

Q m—k
F(Q,8,) = ™ CrCm=F x by BY x
kz ZZ : VT (el + eok)? o+ 62)°7

lCl — kCQ

(4.20)

where the coefficents ¢; and ¢o are constant that where determined from experiment. The mean
number of collision € is a function of the atomic weight A, the atomic number Z, and the thickness

of the foil:

t Z4/3
0 =28.83x10°—
X ) ﬁ2

(4.21)

where § is the reduced velocity.
The reduced angle, 8;, in the latter equation is related to the projected angle via the relation:

0
0 = — (4.22)
Xy
where the critical angle is defined as y, = %, FE being the energy of the incident electrons

in MeV. It is worthwhile to note that the work of Keil (as Moliére) was to show that the angular
scattering distribution in the plural scattering regime does not exactly follow a gaussian distribution



material Be C Mg Al Ti Fe Cu Ag Au
# of collision per um 7.5 87 83 13.6 28 51 62 90 127
thinnest foil available 0.25 0.25 0.5 05 1 05 025 0.25 0.1
corresponding §2 1.9 22 42 6.8 28 26 15 22.6 22

Table 4.2: Survey of materials commercially available for monitoring intense beams with TR ra-
diators; we excluded the materials with low thermal conductivity and mean number of collision
greater than 30 in their smallest thickness.

(since the average number of collision is too low to fulfill the validity of the central limit theorem).
The gaussian character of the distribution especially deteriorates at large angle, where large tail
tend to develop. It also breaks down for small angle where the scattering distribution has a dirac-like
behavior corresponding to the case k£ = 0 and [ = 0 in the Eqn.(4.20).

Numerical Simulations

To complete are studies, we have performed numerical simulation using the monte-carlo code
GEANT from the CERNLIB which is a popular simulation tool in the Particle Physics com-
munity. This code has a scattering routine that uses the Moliere model. However if the parameters
are so that the Moliére model is not applicable, GEANT will simulate a series of single Coulomb
scatterings. We have used this code to simulate each of the foils used in the previously described
experiment.

A Comparison between Experiment, Theory and Simulation

We summarize the results given by the experiment, the theory and the numerical simulation in
figure 4.7 where the different curves show the effect of the foil thickness on the semi-angle containing
70%, 95% of the beam. Clearly, the Keil model and the numerical simulation agree within 50% in
the worst case. However both of them are overestimations of the measurement by factor of 5 in the
worst case. Therefore it seems we can use the numerical simulations or the Keil model to predict,
with a safety margin, the fraction of the beam we may lose as the beam pass through a thin foil of
material.

4.3 The Possible Use of Carbon as TR radiator

We have surveyed the commercially available very thin material that may be used as TR radiator.
In table 4.3 we gather several material that could be used and can self support on a 10 mm diameter
holder, with the corresponding mean number of collision. The best candidates are beryllium and
carbon; they are equivalent but we prefer the latter because of the chemical toxicity of beryllium.
Another advantage of carbon is its capability of withstanding very high current because of its
very high melting temperature. Using the GEANT code we estimated the angular scattering
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Figure 4.7: Comparative results of experiment with Keil’s semi-empirical theory and GEANT com-
putation for thin aluminum foils.

distribution for carbon. In figure 4.8 we present the projected scattering angle (normalized to the
energy) containing 70%, 95% and 99.5% of the beam versus the mean number of collision for in
the case of relativistic electron traversing very thin foils. Using this plots and knowing the machine
dynamics acceptance, we can compute the fraction of the beam we can lose as the foil is inserted
into the beam path.

4.3.1 A non-interceptive TR beam profile monitor

In an attempt to check our previous estimations we have developed a prototype for measuring
beam profile. The experiment was performed in the CEBAF accelerator and located in one of the
transfer lines to one of the nuclear physics experimental end station.

Experimental setup

The backward TR depends on the reflection characteristics of the surface. There are several prob-
lems that arise with very thin foils: surface inhomogeneity makes their coefficient of reflection
nonuniform, and it is also difficult to stretch them enough to obtain a very flat surface. These
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Figure 4.8: GEANT computation for thin carbon foils.

problems disappear with forward TR since it is emitted in cone centered on the beam axis regard-
less of the angle or reflection properties of the TR radiator. There are two additional advantages to
the forward over backward TR with a 45 deg foil: (i) the depth of field effect becomes negligible, (ii)
a beam normally incident on the radiator has a shorter path in the material which in turn reduces
the scattering angle. Based on these considerations, we built a prototype that uses the forward
TR emitted from a 0.25 pm thick carbon foil presented in figure 4.9 (A). The foil is mounted on a
support which is U-shaped and open on the side crossing the beam path, so that it can be inserted
without obliging the beam to be turned off. A mirror collects part of the TR radiation. With
the TR that is strongly directional in a 1/4 cone, we need to collect the light emitted at small
angles from the beam axis. We did this by locating the mirror on the same insertion mechanism
as the foil. The mirror is 175 mm downstream from the foil; this insertion mechanism brings its
edge 4 mm close to the beam trajectory. The mirror sends the collected light to a charge coupled
device (CDD) via two achromatic lenses. The lenses image the foil plane onto the CCD array with
a magnification of 1/2 which yields a pixel size of approximately 20 um in the object plane.

Experimental Results

We tested our prototype at the highest beam current deliverable in CW mode by the CEBAF
accelerator: 200 A at an energy of 3.2 GeV (i.e. beam power of 640 kW). The carbon foil was not
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Figure 4.9: Overview of the carbon foil based OTR experiment (Courtesy from S. Spata) (A) and
a typical beam density measured with such device (B).

damaged, as predicted by our thermal studies.

On figure 4.9 (B) we show typical measured beam density. The beam size (define as the rms
value), obtained performing a nonlinear fit of the transverse profiles with a Gaussian distribution,
are 255 um and 130 pm for respectively the horizontal and vertical directions. These values are
compatible with the one expected using the magnetic optics code DIMAD. We also compare these
rms beam size with the one obtained using the wire scanner in close proximity and obtained the
same beam width within the uncertainty tolerance as shown in Table 4.3.1.

To the best of our knowledge this is the first time TR was used to measured beam size of hundreds of
microns for an ultra relativistic beam (v ~ 6300). This measurement is the proof of the nonvalidity
of a common argument in the beam instrumentation community according to which TR cannot
be use to measure micron-sized beam profiles for relativistic beams. The hypothetical limit in
resolution that had been claimed was that for a given reduced energy + the minimum rms beam size
that could be resolved by detecting TR at the wavelength A is of the order of the product Ay /(4x).
In our case such criterion would set, at a wavelength of observation of 500 um, the smallest rms
beam size we could observed to approximately 250 pm rms, i.e. approximately 2 times larger than
the smallest beam size we measured. Resolution issues concerning OTR have been discussed in
numerous paper [33]. In brief, the aforementioned criterion concerning the minimum rms beam size
o, we can resolve originates from the diffraction limit which states that the rms divergence o’ of a
source and its extent o are bounded by the relation ¢’ > A/(47). In the case of TR, the common
mistake is to write o/ ~ 1/ which finally yield to the relation ¢’ < ¥A/(47). Indeed, TR contrary
to SR, is not collimated within a 1/v-cone: for instance the TR emission associated with a 1 GeV
electron has only 30% of its total power contained within a cone of 10 x 1/+!

In collaboration with the nuclear team of one of the experimental end station we investigated the
impact of the foil on the electron beam. The test was aimed to see whether the foil is “transparent”
to the nuclear physics detectors. The detector used was the High Resolution Spectrometer (HRS),
an electron spectrometer located in one of the hadronic experimental end stations of the CEBAF
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Figure 4.10: Comparison of the Missing mass spectra obtained using one of the experimental hall
spectrometer with (A) and without (B) the beam being intercepted by the carbon foil (Courtesy
of P. Gueye, Hampton University, VA USA).

horizontal direction vertical direction
wire scanner 0.204 £ 0.050 mm 0.082 4 0.050 mm
OTR-monitor 0.255 =+ 0.060 mm 0.130 £ 0.060 mm
Simulation 0.250 mm 0.114 mm

Table 4.3: Comparison of the profile measurements with the wire scanner and OTR-monitor.

accelerator. The experiment consisted of setting the angle and the dipoles of the spectrometer to
observe the recoil electron issued from the scattering of the electron beam on a hydrogen target.
Namely we were observing the reaction e + p — € + p’ in the elastic scattering. A criterion
to determine whether the foil has significant impact on the nuclear physics measurement was to
look at the missing mass spectrum. In this missing mass spectrum, we have a peak centered on
the proton mass (945 MeV /c). Due to the finite resolution of the detector, the emittance of the
incoming electron beam that hits the target, this peaks as a nonzero width. One straightforward
experiment with the carbon foil is to determine if the fact of inserting the carbon foil in the
beam path downstream the target yield an enlargement of the peak width. Hence two sets of
measurements were performed: In a first one we inserted the carbon TR radiator and acquired
data with the spectrometer while in a second set data were acquired without inserting the carbon
foil. Figure 4.10 shows the missing mass spectra in the two cases. In both cases, the rms width of
the elastic peak was similar well within experimental noise. This measurement were performed at
3 GeV. Latter in collaboration with another experimental Hall, the similar experiment was iterated
at lower energy 800 MeV yielding a similar conclusion. Therefore, at least at energy higher than
800 MeV, the prototype we built constitutes a noninvasive beam profile monitor.



4.3.2 Profile Monitor Configuration in the FEL
Experimental Setup

Although the carbon foil monitor is very useful as a noninterceptive device, we decided, for the
short term, to use as beam density monitor in the FEL driver, aluminum foils in the popular con-
figuration as pictured in figure 4.11. This choice is in part due to the difficulty to reliably mount
very thin carbon foil on large support. Also in the case of the FEL, the laser itself can serve to
diagnose the beam quality in a continuous and non intrusive fashion.
The system we use consists of 0.8 ym thick aluminum foils mounted on a circular frames of 19 mm
diameter that makes a 45deg angle w.r.t. the beam direction. The foil can be remotely in-
serted /withdrawn from the beam path by the means of an air cylinder actuator. In this configura-
tion the backward transition radiation emitted at 90 deg with respect to the beam axis shines out
of the vacuum chamber through a silica optical window. It is then collected by a planar mirror and
sent to an optical system composed of a commercially available telephoto lens (optimized to reduce
chromatic and spherical optical aberration) and a high resolution CCD camera whose video output
signal is digitized by a VME-based DATACUBE image processing board that can be externally
triggered. The system is set to image the foil plane on the CCD array detector with magnification
of approximately 1/3. The choice of the magnification ratio is dictated by the need of achieving
the highest possible resolution with a reasonable field of view. The circular frame on which the foil
is mounted determines the field of view: this 19 mm diameter frame is used to accurately calibrate
the image and thereby determine what is the conversion factor between the CCD array pixels and
real distances in the foil plane.

To avoid damaging the aluminum foil, and since the beam dynamics is only dominated by sin-
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Figure 4.11: Standard configuration of the OTR-based profile monitor in the FEL-driver accelera-
tor.

gle bunch effect, i.e. the beam phase space density only depends on the charge per bunch and
not on the bunch repetition rate, the beam average current is decreased to approximately 0.5 pA.
There are four independent parameters that can influence the beam average current: the charge
per bunch, the bunch repetition rate in a macropulse, the macropulse width and the macropulse
repetition rate. Since only the charge per bunch affects the phase space and consequently the beam



density profile, by acting on the other three parameters it is possible to reduce the beam current
without affecting on the phase space distribution. Naturally the fact we have to use a reduced
beam current during the measurement of the beam parameter impacts on the FEL operation and
subsequent experiments. Therefore such a measurement is invasive. As we have seen in Chapter 2,
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Figure 4.12: Raw data beam profile (top graph) and beam profile after processing (background
subtracted, ghost pulse contribution removed,...).

each macropulse contains bunches (whose charge can be arbitrary varied from 0pC to 135 pC ©)
at a repetition rate up to 74.85 MHz. All the beam structure is generated by a master oscillator
which also synchronously generate a 5V rectangular pulse whose width and repetition rate are the
replica of the macropulse. Such signal called the “beam sync” is available from the control system
to trigger data acquisition systems.

In the present case, we trigger the image processing board to grab only the video frame that con-
tains the beam image. For such a purpose we use the following setup: the “beam sync” is delayed
by 0.435 ms before being sent to the “external trigger” input of the image processing board. The
delay is set so that the digitizer is triggered at the next incoming pulse.

The digitized data stream at the image board output consists of a 660x484 array matrix, I(z,y).
Some primary operations on this data stream can be directly performed by the CPU of the image
processing board in real time [39]. Such operations include the calculation of:

5In the results presented in this report the maximum charge used is approximately 60 pC



e the beam centroid position defined as zg = [adal(z,y)
e the beam spot the rms width defined as 0 = [(z — x¢)?I(z,y)dx

e and the Hough transforms (i.e. projection) along horizontal and vertical axis (i.e. P(z) =

[1(z,y)dy)

Along with these implemented operations, some signal processing functions such as filtering, back-
ground subtraction, etc..., are available.

During our preliminary measurements we have noticed that directly computing the variance of the
beam profile computed on the raw data matrix was yielding erroneous values for the rms beam
size. This was traced back to be due to the so-called “ghost pulse” effect: along with the main
macropulse that contains a series of electron bunches, whose transverse density is the quantity of
interest for our measurement, there are parasitic bunches called “ghost bunches” that consists of
photo-electron emitted as the drive laser pulse if off. These “ghost bunches” are indeed due to the
inability to have a perfect extinction ratio of 0 between drive laser pulse that serve to create “real”
bunches. Physically this is due to the electro-optics cell that are used to switch the laser pulse on
and off on the photocathode. Therefore we modified our acquisition algorithm to take into account
this effect by using the following steps during a measurement:

1. reduce macropulse width to 100 ns to only detect “ghost” pulses,

2. acquire the pixel matrix Mghost and store it in a memory buffer,

3. increase the macropulse to the appropriate width

4. acquire the pixel matrix Mbeam—l—ghost and store it in the current buffer
5. mathematically perform the operation M},.,., = Mghost — Mbeam—l—ghost

6. compute parameter using the matrix My .,

The results of this operation is graphically shown in Figure 4.12. We have also verified that this
method yields reasonable results.

In the above step 3, we need to clarify the meaning of “appropriate” macropulse duration: it
depends on the beam size, and it is experimentally determined by insuring the CCD array is still
operated in its linear domain. Typically the power surface density, dP/dS, on the pixel array, scales
with the transverse rms beam size image, o, and o,, and with the power of the emitted radiation,
P, according to the relation:

(4.23)

During our experiments, for each measurement station, the macropulse width was experimentally
determined for typical beam size on each of the beam profile measurement station. It is then au-
tomatically recalled when a measurement is performed. Also to accommodate potential operating
condition changes we can use the scaling law of the latter equation to re-adjust the macropulse
width dynamically.



Resolution of beam size measurement

It is very important to have a precise knowledge of the systematic error on a beam size measurement
since we will have to include these errors and propagate them to find the error bar due to systematic
errors on the transverse emittance computation.

There are principally two types of effects that enter in the resolution of this type of imaging devices
system we use: optical resolution and electronic response. The former effect can be evaluated in
our case since our system is optimized to minimize spherical and chromatic aberration, the optical
degradation of resolution is essentially due to the depth of field effect that results because the
plane we are imaging, the foil, makes a 45 deg angle with respect to the CCD array. The best
way to characterize the resolution of the whole system i.e. including optical and electronic transfer
function, is to image via this system a sharp edge [43]. For such a purpose a target image that
consists of an sharp edge between an optically black and optically white region is positioned at
TR radiator location. The derivative of the corresponding digitized image will provide information
on the impulse response of the system and its width can be used to quantify the resolution of
the system. Typical resolution measured were at maximum 1.5 times the pixel size in the object
plane. For typical magnification we use, the pixel size in the object plane is about 40 ym which
gives a typical rms resolution of 60 um well below the typical beam size measured (of the order of
approximately 1 mm rms).

4.4 Measurement of Emittance in the 384 MeV Region

4.4.1 General Considerations

The method to measure emittance in the high energy region of the FEL is the usual envelope
fitting technique. It assumes that the beam can be first order transport, that there is no coupling
between the horizontal and vertical planes, and that the dispersion is negligible at the location of
the measurement. If the latter assumptions are fulfilled then one can use TRANSPORT formalism to
find the relation between beam parameters at two different locations in the beamline knowing the
transfer matrix between them R

»0) = puORT (4.24)

Expanding the above matrix relation (recall ¥ is the beam matrix) we can relate the RMS beam
size at the location ¢ with the RMS divergence, beam size and beam correlation of the beam at the
location 0. Hence varying the transfer matrix for a given set of initial values in 0, provides different
beam size at the station location ¢. Therefore one can easily get a (generally over determined)
system of N equations (corresponding to N different transfer matrices) with only 3 unknowns. Such
system is traditionally inverted by the means of the least square method: Given the N squared-
beam size measurements, one needs to find the set of parameter (Uﬁ)7 0'8)7 Uég)) that minimizes
the y2:

. . 2
) {U(l) — (R}, (D)ol) + B30l + 31131208))}
Z=3 ok (4.25)
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where §; is the error on the i beam size measurement.
It is well known [40] that the value of oo that minimized the x? satisfies:

R}, (o (s N RL( N 2R} ()Ris(d N BL(O)RL(
i Shoene Theme XL >
cob=Cop (4.26)

The 3x3 matrix is named curvature matrix. The solution for ¢ is obtained inverting the previous
matrices equation. It is worth (for software implementation) to note that the curvature matrix has
the following form:

A 2B C
c=| 2B 4C 2B (4.27)
C 2B E

which yields a very tractable form for its inverse, the error matrix:
4(CE-D? —2(BE-CD) 4(BD-C?%

-2(BE-CD) (AF-C?%  —2(AD - BC) (4.28)
4(BD - (C?% —2(AD - BC) 4(AC - B?)

1

=
€]

where |C| denotes the determinant of C:
IC| = 4(ACE — AD* — B*E +2BCD — C?) (4.29)

The elements of the error matrix are the variance and covariance numbers on the computed 3(0)
matrix element namely:

ooy — E33

22 4.30
ACT117CT12 = FEip ( )
ACT117CT22 = Ei3
ACT127CT22 = Ey3

Using the standard error propagation theory [40] one can estimate the errors on the computed
Twiss parameters at the location (0). Let ¢ be the computed parameter i.e. the emittance or the
Twiss parameters. Then the error on ( is given by:

(AQ)? = (aifl)z (Aoyy)? + (aifz)z (Aci2)® + (8222)2 (Azz)? + (4.31)

2] 2] 2] 2] 2] 2]
+2 80’?1 80’?2 (A0117012)2 —I_ 28051 80’22 (A0117022)2 —I_ 28052 80’22 (A0127022)2

The partial derivative in the error propagation formulae are given by:
0¢ yr 08 0¢ Br
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(4.32)
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Finally after a bit of algebra one can compute the uncertainties on the emittance, and the g1 and
o parameters:

0’2 0’2
(A2 = & (oh(80) + B2 (A0, + THALL,) (4.34)
_012011A022011 —I_ %Agllggg - 0-120-22A0'110'12)
0110 2 of
(A9)* = & (00t (80)? 4 (24722 — 03) (80,2 + TH(A,)? (4.35)

3 2
9 o ofjon 2 2 9 3 3
+ (012‘711 - = 012) Agpyory + (012011022 — 2075011) Aoy o)y — 012011A011022)

2 2 2 2
2 _ 1 2 -2 2 912911 2 912922 2
(Aa)? = & (0hoh(A0n)? + T(A,)2 + T2 (A,,) (4.36)
2 2
2 012011022 0120717022
—012011012A012011 + 2 Acrucrm - 2 A011012)

Therefore by building the curvature matrix we can get an estimate of the uncertainties on the
computed elements of the ¥-matrix and then propagate these uncertainties on the estimated values
for the emittance and Twiss parameters. Lastly the value of §(7), the error on beam size measure-
ment, is taken to be equal to the measured resolution of the beam profile measurement system i.e.
5(i) = 60pum.

4.4.2 The quadrupole scan method

One way of varying the transfer matrix between a reference point and the measurement is to change
the strength of a quadrupole and observe the variation of beam size on an OTR screen upstream.
Although this method is generally easy to implement special care must be taken:

e the maximum beam spot size in both direction must be smaller that the dimension of the
OTR screen

e the minimum beam size should be chosen to be large with respect to the resolution of the
beam size measurement and large enough not to produce any saturation on the CCD camera
that is used to measure the beam size.

One question that arises is how to set the optics downstream the quadrupole that is being varied to
get the wanted beam size variation on the profile monitor? Such problem has been studied in the
case where the quadrupole and the profile monitor are separated by a drift (see reference [34]). In
a more general case where the transfer matrix between the quadrupole exit and the profile monitor
is R, we can derive a similar criterion on the lattice functions at the profile monitor location: the
oy and (3, , Twiss parameters at the entrance of the quadrupole being varied should be related

by:

Oy = —— 5 4.37
L (4.37)
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The 3., in the previous relation are the minimum S-function one wishes to achieve at the profile
monitor station. The choice of the minimum G-function has two implications.

Let’s assume the thin lens approximation to be valid” . Then the transfer matrix between the
entrance of the quadrupole and the profile monitor is:

Ri1 Ry 1 0
R= 4.38
( Ra1 Ra -1/f 1 ( )
Hence the betatron function at the OTR location can be expressed as a function of the initial
betatron function at the quadrupole entrance (for instance in the horizontal plane):

_ R i,
ﬁl’(k) B f2 ﬂx,O

where we have use the fact that a, ¢ = f;0/L when one has taken care of setting the upstream
optics to satisfy the relation derived previously in Eqn.(4.37).
Introducing the focal length (1/f = kyl) and recalling that Ry2/8,0 = B(k = 0) yields:

Bro+ (4.39)

R k312
Bx(k) = 8(0) + 500 (4.40)

whose derivative with respect to the quadrupole strength kq is:

dfs(k) _ 2RLK3
dk 3.(0)

with the same kind of relation in the vertical plane (replacing z index by y and Ri3 by Rs4). The
latter equation shows that the choice of 3,0, which we have suggested earlier to be as large as
possible to reduce the error on the beam size measurement, directly affects the slope of the beam
size variation on the profile monitor: a too large 3, o will give a “flat looking” variation. Therefore
there is an optimum beam value for 3;; this optimum should be determined via an iterative
process using numerical simulations.

(4.41)

4.4.3 The multi-monitor method

Another way of varying the transfer matrix between the reference point where one wishes to compute
the beam parameters and the beam profile measurement station is to measure the beam profile at
different position along the beamline which are separated by non-dispersive optics. This method
requires at least three monitors but one should use more of them for redundancy. An advantage
of this measurement is that no element has to be varied. However to get a precise measurement a
dedicated optical lattice setting generally need to be elaborated.

Let analyze quantitatively the method. The beam size on a profile station & and [ are related to
the Twiss parameters at the reference point by Eqns.(4.24). Indeed, we need to make sure that
these two equations are not redundant, namely that:

2 2 2
Riix Rigy Ri x —2RukRiggk

2
| 40, | —2Ry1 kRi2e Rigy
2 2 2
Ry, Riyy "Ry, —2RaniRaayg

0,and 0 (4.42
|7£ | _QRII,IRIQ,I R%QJ |7£ ( )

"This is a false statement if we consider the whole range of the magnetic strength for the quadrupoles (=20 < k1 <
20) but it provides easier analytical results and does not change significantly the physics of the present discussion.
The treatment of the full problem including the thick lens transfer matrix is done via numerical modeling.



These three determinants yield the same equation (assuming the Rqy and Ryg to be different from
zero):

RiipRi2) — RigpRi1,; #0 (4.43)

which implies, using the general formulation of a beam transfer matrix in term of betatron phase
advance Ap between k and [:

sin(Ap) #0 (4.44)

Hence in order the latter equation to be verified, one must take care to set the optical lattice so
that the betatron phase between the viewers being used in the measurement is different from nx
(with n € N).

Another care that has to be taken is to make sure that at the profile measurement station the beam
is not at a waist; this will enlarge the error bars on the measurement (one should make the beam
as large as possible compared to the error on the beam size measurement).

4.4.4 Simulation of Emittance Measurement in the IRFEL

After the decompressor chicane, the beam line consists of a quadrupole triplet and is instrumented
with two OTR viewers. For the simulation of the emittance measurement using the quadrupole
scan method, we use the OTR monitor located in the dump beamline 3.43 m downstream the exit of
the last quadrupole of this triplet quadrupole. Therefore in this case we have investigated whether
this quadrupole could be use to vary the transfer matrix while observing beam size variation on
the profile monitor. To perform such measurement optimally we need to set the upstream optics to
make sure we can have a “right” beam size variation over the quadrupole excitation range. Typically
we use the magnetic optics code DIMAD to fit the upstream quadrupoles to satisfy Eqn.(4.37) at
the OTR location (such optimization will be discussed in more detail in Chapter 5). After having
properly tuned these upstream quadrupoles, we have numerically studied the variation of beam
size for two different minimum pS-functions at the location of the OTR viewer. A typical beam
size variation is presented in figure 4.13. The deduced uncertainties on the emittance for these two
different values of the minimum betatron function versus the errors on beam size measurement is
plotted in Figure 4.14. From this figure one can obviously notice that the choice of the largest
minimum betatron value at the OTR location minimizes the error bars on the deduced emittance
(and on the other deduced Twiss parameters). It is seen that 6 m is a reasonable number for which
the systematic errors achieved on emittance measurement can be well within the desired 10% level.
To fully simulate the whole measurement and benchmark our data analysis algorithm, we propagate
using the DIMAD code the expected parameter at the linac exit (as computed with PARMELA) up to
the entrance of the varying quadrupole (i.e. last quadrupole of the triplet aforementioned). Then
we simulate the measurement: we vary the quadrupole strength and for each setting propagate the
parameters up to the location of the OTR monitor where we compute and record the beam size.
In table 4.4 we compare the results obtained on the computed beam parameters at the quadrupole
entrance face with the DIMAD initial parameters: the results are in excellent agreement. We also
compare the error bars obtained with our error analysis with the error bars statistically computed
on a set of 200 simulations of the measurement in which the beam size is randomly generated along
a normal density centered on the beam size computed with the optics code with a variance equal to
the rms resolution (60 gm). The conclusion is that the error propagation agrees with the variances



obtained via the statistical analysis. The fluctuation from measurement to measurement using the
Monte Carlo technique is presented in figure 4.15.
When the undulator magnet is installed onto the beamline, the two first triplet are use to match

Parameter DIMAD  Error Propagation Monte-Carlo Simulation
£, (mm-mrad) 0.17000 0.16993 £+ 0.00479 0.16990 + 0.00431

B (m) 5.56 5.56 £0.18 5.56 £0.17

Oy 1.39 1.394+0.05 1.394+0.04

£y (mm-mrad) 0.14960  0.14964 £ 0.00449 0.14969 + 0.00441

By (m) 5.56 5.56 £0.19 5.56 £0.19

ay 1.39 1.394+0.05 1.394+0.05

Table 4.4: Simulation of the emittance measurement using the quadrupole scan method prior to
the first recirculation arc. The parameters presented are all at the entrance face of the quadrupole
being used during the measurement.

the lattice function at the middle of the wiggler in such a way to obtain a waist at the undulator
center with a value for betatron function of approximately 0.5 meters (depending on the beam
energy and the wiggler parameter) in both planes. Such matching is realized by the mean of the
two upstream quadrupole triplets that can adjust the four beam parameters (o, 8, and ay, 5y)
while keeping the beam envelope within the machine aperture. After the wiggler two other triplets
are use to match the beam to the recirculation transport. We have implemented an optics to try
to measure emittance in this region: unfortunately we found difficult in simulation to achieve large
betatron function on the viewer used in the undulator chamber. This point is illustrated in the
table below where, as before, we validate the error propagation for the multi-monitor technique:
the error bars are much larger than those generally obtained with quadrupole scan technique.

Parameter DIMAD  Error Propagation Monte-Carlo Simulation
£, (mm-mrad) 0.17000 0.170054+ 0.01233 0.16753 + 0.01268
B (m) 5.48 5.48 £0.46 5.58 £0.53

Oy 1.25 1.25+0.19 1.274+0.20

£y (mm-mrad) 0.14960  0.14660 £ 0.01186 0.14726 + 0.01214

By (m) 3.09 3.08 £0.30 3.17£0.31

ay -0.13 —-0.134+0.13 —-0.154+0.14

Table 4.5: Simulation of emittance measurement using the multi-monitor method in the undulator
region. The parameters presented are all at the exit face of last dipole of the decompressor chicane.

4.4.5 Effect of spurious Dispersion on Emittance Measurement

Up to now we have assumed the beam profile measurement, for the subsequent estimation of
transverse emittance, is performed in a dispersion free region. Practically this assumption is not
a fortiori true: especially after large bending systems such as the recirculation arcs (when set to
operate in achromatic mode) in the IRFEL. In such a system because of potential misalignment
of magnetic elements, the dispersion may not exactly vanish after the arcs. Hence it is very
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Figure 4.13: Comparison of beam spot size variation versus quadrupole strength for two different
setting of the upstream optics to achieve two different minimum betatron value, 3 and 6 m.

important to assess what are the tolerance on the value of this “spurious” dispersion to have an
insignificant impact on the transverse measurement performed with beam profile monitor located
in these regions. Then prior to measuring emittance, the dispersion should be measured and
eventually corrected so that spurious dispersion is within the tolerated value. To establish such
criterion, we write the beam rms spot size as 0, = /3¢ X (1 + &?) where £ is a dimensionless
constant (n*(og/F)?)/(3¢) (og is the rms energy spread). We simulate the beam size at a given
beam profile measurement station by using a magnetic optics code and superimpose the effects of
spurious dispersion for different values of &, and then compute the emittance. In figure 4.16 we
present the relative emittance increase due to the dimensionless spurious dispersion £. From this
figure, we find that in order for the spurious dispersion to have insignificant effect on the emittance
measurement, say induce less than 1% emittance growth, we should insure that & < 1/100. This
give an upper limit on the spurious dispersion 1 < 1/1/(100)\/B&/(cg/E), in the most critical
case, i.e. assuming an energy spread of op ~0.5% and a betatron beam spot of 1 mm, it gives the
condition on the dispersion: 1 < 6 cm.

4.4.6 Experimental Method

In the early stage of the IRFEL commissioning we attempted both quadrupole scan and multi-
monitor methods to measure the emittance. The latter was somehow difficult to implement es-
pecially in the undulator region where we experimentally find it difficult to achieve the proper
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Figure 4.14: Relative error on computed emittance for the two cases presented in figure 4.13 versus
the relative error on beam size measurement.

betatron function variation. Because we find we could not reliably set the accelerator optical lat-
tice to achieve desired betatron function variation for optimizing the error bars on the multi-monitor
measurements and since we desired to have the same method to measure emittance everywhere in
the accelerator, we decided to only use the quadrupole scan technique. We totally automated
the emittance measurement by coding the measurement procedure [35], data acquisition and data
analysis in a C program with a Tcl/Tk user interface. From this program the user define the
quadrupole and viewer she/he desires to use for the measurement and few other parameters. The
program then automatically scan the quadrupole strength. For each quadrupole setting, the beam
size on the OTR profile monitor, the transfer matrix between the quadrupole entrance and the
profile measurement station are computed and stored in a file. Once the program has completed
the quadrupole scan, it computes the emittance using the algorithm detailed above. This program
can also be used to propagate the beam parameters along the accelerator and observe the beam
envelope, useful information e.g. to quantify lattice mismatch.

The program can be divided into three parts: (1) a user interface from which the user enters pa-
rameters and read results of data analysis, (2) a machine model, ARTEMIS®, that is automatically
updated to reflect the current accelerator settings (magnet strength, cavity gradient,...); and (3)
a control toolbox that contains a series of EPICS-protocol sequences used to control the machine
subsystems (i.e. vary quadrupoles, insert transition radiation screen into the beam path,...).

A typical emittance measurement, performed in the backleg transport line for a charge per bunch
of 40 pC, using the quadrupole scan method is presented in figure 4.17. It shows the variation of

8the on-line Model Server Artemis was implemented in the FEL by Sue Witherspoon and Bruce Bowling
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Figure 4.15: Monte-Carlo simulation of 200 emittance measurements. The plots (from top) are the
un-normalized rms emittance, the S-function, the o parameter.

beam spot size versus the quadrupole excitation.

4.5 Measurement of Emittance in the Injection Transfer Line

The envelope fitting technique exposed in the previous section relies on the validity of single par-
ticle dynamics. In the Injection transfer line, the beam energy is approximately 10 MeV in this
regime, the space charge collective force (i.e. Coulombian repulsion between electron in the bunch)
are significant for a 60 pC charge per bunch. Therefore, the beam envelope cannot be propagated
using the single particle formalism based on transfer matrix. In the case where space charge forces
are significant the beam envelope must be described with a differential equation: the Sacherer rms
envelope equation [37]. Propagation of the beam through a magnetic element then requires the
integration of this equation; generally speaking this integration has to be performed using numer-
ical methods but in some case one can use perturbative theory to find good approximation of the
envelope. In any case the envelope fitting are difficult for characterizing, e.g. measuring emittance,
of such space-charge-dominated beam. An alternative method is based on the so called phase space
sampling techniques [36]. This latter type of measurement can also be used to directly measure the
trace-space density.

The technique consists of intercepting the space-charge-dominated beam by a series of aper-
tures 4.18. The beamlet generated by each aperture retains the transverse temperature of the
beam. It is drifted through a free space up to a beam profile monitor. The drift length is chosen so
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Figure 4.16: Relative emittance error versus dimensionless spurious dispersion contribution to beam
size &.

that the transverse momentum imparts a significant contribution to the transverse profile. Hence
the measure of the beamlet profiles on the uncorrelated transverse momentum spread.

The differences among the various apparatus based on this interceptive technique is the shape
of the selecting aperture (hole, slits or matrix of aperture), and the kind of profile monitor used
downstream to analyze the beamlets (wire-scanner, fluorescent viewer, optical transition radiation
screen).

In the present case, the selecting aperture we chose is composed of parallel slits [38] that samples
the beam in the direction we wish to perform the measurement. This choice was essentially done
to perform very fast measurement with a simple and robust data reduction algorithm.
Mathematically, the effect of the slits can be seen as a sampling: If before the slits the density in
the spatial plane (x,y) is [ [ pa(z,2',y,y")da'dy’, where py(z, 2’ y,y’) is the four dimensional trace
space density, then the projection in the z-2’-plane after the slits is:

=N gidw/2 1=n
Z/ dzpy(z,2’) ~ Z wpz(z;, ') (4.45)
i=1 Y Timw/2 =1

where n is the number of slits.
If the projection is observed after a drift of length L, the multi-beamlet profile is:

B(6) = 3 wpa(en €/1) (4.46)

where £ is the horizontal coordinate in the beamlet observation plane. It is instructive to consider
the simple case of a normal distribution in the trace-space:

1 vra? + 2apaa’ + fra’?

p2($7$/):mexp - 952

(4.47)
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Figure 4.17: An example of transverse emittance measurement in the high energy region of the
IRFEL using quadrupole scan method. The two plots present variation of the horizontal (top)
and vertical (bottom) rms beam size versus the excitation of the quadrupole. The dashed lines
are obtained with the least square fit technique. The reported number are the beam parameters
deduced from the fit. The charge per bunch was approximately set to 40 pC.

where N is the number of particles in the beam. For such a distribution, the projection writes:

®(S)

_ Nuw = 4y’ (

&XP |~ 3727
2r viLig

2 2 1
g—axi + 5) exp [— - ngz] (4.48)

Hence each beamlet width yields a measure of the width of the transverse divergence at the cor-
responding slit (i.e. uncorrelated divergence), whereas the beamlets centroids give information on
the slope of the transverse phase space (i.e. the correlated divergence distribution).

As we underlined previously, one advantage of such device is to be able to measure the emittance of
a space-charge-dominated beam. In fact, in the Eqn.(4.46) the replacement of the divergence z’ by
&/L is permitted provided the beamlets can be first-order transported. Otherwise the divergence
should include the angular spread Wgo induced by space-charge force:

AT
djc (s) (4.49)

E:Lx’—l—/ds

If the incoming beam on the multislit mask is emittance-dominated, Wgo will be insignificant with
respect to a’. However, in the case of a space-charge-dominated incoming beam, the slits width
should be optimize so that the beamlets become emittance-dominated.

A criterion to determinate the needed slit width can be derived by introducing the Debye length
Ap, a fundamental parameter in Plasma Physics that can also be by applied to Beam Physics:
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Figure 4.18: Overview of the phase space sampling technique. An incoming A multislit mask
intercepts the incoming space-charge-dominated beam. The beamlets issued from the slits are
emittance-dominated.

qualitatively, this length characterize the region centered around a test particle in which the po-
tential introduced by this test particle is screened due to reorganization of the neighbor charges.

For an electron beam, Ap writes
kT
Ap = | LB (4.50)
e’n

where « is the Lorenz factor, kg the Boltzman constant, T, the beam temperature, measured in the
beam reference frame, n the particle density and ¢ is the dielectric constant of vacuum. Depending
on the magnitude of Ap versus the inter-distance particles within the beam [+, and the beam
size o, there are two main regimes:

o If Ap > o the Debye screening will be ineffective and single particle dynamics will dominate

e In the case Ap < o the collective effect due to self-field play an important role. Depending
on the Debye length compared to the inter-particles distance: If Ap > l;10, smooth function
for the charge and the self-field may be used; If Ap ~ l;,1., then a particle is more sensible
to its nearest neighbors than to the collective field of the beam distribution as a whole.

Therefore transverse space-charge contribution is insignificant if Ap >> 0.4, 0c4 being the equiv-

alent beam radius (o, = [Ul,ay]l/Q). For the simple case of a K-V distribution the transverse
temperature is given by [41]:
8mc?é?

2
€q

kpTy = (4.51)

Where £,, denotes the normalized emittance.

Introducing the Alfvén current I, = Zme Nepe

Tz

’ , the peak current I, = (with o, being the bunch



length and N the number of particles within a bunch N ~ nazqaz) vields for the expression of the
Debye length:

2075 1a

A\ =
D T Ip

(4.52)

Hence a measure of the degree of self-field dominance over single particle dynamics is deduced from
the ratio R = 02,/

(4.53)

where ¢ is the beam size (assumed to be round).
Collimating the beam with a slit will scale R by 7, defined as the ratio of the slit rms-width (§/1/12)
to the rms-beam size o:

o — o
gy (4.54)
£ —> e

Therefore, in the case of a round beam, and under the assumption << 1 the space charge to
emittance ratio follow the scaling law:

R — "R (4.55)

Hence with an estimate of the beam size at the location of the slits, it is straightforward to choose
the slits width to minimize the space charge contribution to the beam envelope.

4.5.1 Design of the slits assembly
Overview

The final design of the multislit assembly has two sets of thirteen slits that allow z and y transverse-
emittance measurement. When the slits are removed from the beam path, a radio-frequency shield-
ing insures beam-pipe continuity to minimize the wakefield impedance, an important parameter
for such high charge (up to 135 pC) ultra-short (< 8 ps) bunch in the injection line. The slits have
been machined with a numeric command milling machine, after unsuccessful attempt on traditional
milling machine.

Choice of the geometrical parameters

To determine the characteristic parameters for the slit, namely the slits width w, the slits spacing
d, and the distance L between the slits assembly and the screen, we writes the three following
conditions:



e The Reduction of the Space Charge condition:
This condition is directly deduced from ratio of space charge term and emittance contribution
in the K-V equations exposed previously in this note. If u is the considered direction (u=x
ory), the ratio R',, after the slits writes:

R = Ry X (L)S
Lo V120,

e The non overlapping condition:
The observed pattern in the screen, as we already show, consists in peaks associated to each
slits. We must insure in choosing the drift length . and ¢ that the peaks do not overlap, i.e.:

4o,L < d

e The resolution condition:

To optimize resolution on the emittance, we must have the same resolution on the spatial
axis and on the angular axis. Introducing the transverse resolution of the detector R (which
is assumed to be the same in x and y direction), we must satisfy:

o Lo

d R

This relationship can simplify if we are at a beam waist to:

R
d= =
ﬁxL

For a design normalized emittance of about 8 mm-mrad at 135 pC, we determined from the previous
set of conditions, the geometric parameters of the multislits should be approximately:

w ~ 50 um
d~ 1mm
L ~55cm

In fact due to mechanical constraint I, = was set to 620 mm . Also we wish to measure the emittance
over a dynamic range going from approximately 3 mm-mrad up to 20 mm-mrad. For this reason
we optimized the slits” geometric parameters with the PARMELA code. Using this code we retraced
3000 macroparticles through the whole injector for different set of parameters (w , d, L). From the
so generated trace-space at the multislit mask, we generated via a monte-carlo method over 100000
particles and use linear transfer matrix to retrace each of them up to the transition radiation viewer
(such large number of particle was needed since the transmission of the multislit mask is only of
the order of 5%). A typical simulated OTR-image is shown in Figure 4.19. We used this particle
distribution in the z-y plane to try to reconstruct the phase space and calculate the transverse
emittance using an algorithm that will be detailed later. We gather for the different set we studied,
the measured emittance in Table 4.6. From these simulations we retained as design parameters for
the apparatus w=75 um and d=1.5 mm; for these specific parameters we have simulated the error
on the computed parameters and insured the emittance and Twiss parameters can be computed
within 15% accuracy (assuming 5 beamlets can be generated). We also compare the reconstructed
phase-space obtained after simulating the measurement, with the initial phase-space generated with
PARMELA in figure 4.20. This reconstructed phase-space iso-contour represents with accuracy the
macroparticle phase-space distribution of PARMELA.



€n w=100 pgm w=100pm w=75pm w=>50um
(mm-mrad) | d=2mm d=15mm d=1.5mm d=1.0mm
3.4354 19.56 14.93 13.27 9.66
6.8709 3.12 20.38 18.26 10.17
20.6127 9.91 7.96 5.79 41.24

Table 4.6: Typical error in percent on the computed emittance for different set of parameters (d,w)
and for various emittance.

4.5.2 Mechanical Considerations

In order to avoid using any cooling system, we have opted to make the slits out of copper and have
a thermal bridge that quickly dissipates the heat toward the exterior of the vacuum chamber. In
order to reduce the deposited power below the damage threshold of 3 W we will use a low duty
factor beam mode for emittance measurement, which is possible since the physics of our beam is
only dominated by single-bunch effects (bunch spacing is 8.02 m). The multislit mask thickness is a
compromise between noise and angular acceptance: if the mask is not thick enough, electrons that
go through copper can contribute to the OTR pattern. On the other hand, increasing the thickness
would imply more stringent tolerance on the slit alignment with respect to the beam axis.

For 10 MeV electron (y ~ 20), the main process of interaction with matter is ionization, brem-
sthralung being the second main process. In the case we only consider the ionization process we

! . . dE .
can have an estimate of the stopping power knowing the &-:

E
Ls= dE/dx

(4.56)

E is the incident kinetic energy in MeV, dF /dx for copper is about 12.5 MeV /cm yielding a stopping
power of about 8 mm. Practically we do not need a such thick support because (i) of the energy
losses due to bremsthralung production and (ii) the multiple-Coulomb scattering of the electron on
the copper nuclei. The latter phenomenon spread the beam angular divergence, it can be quantify
using the Moliere theory: according to this model, the scattering distribution can be approximate
with a normal curve whose standard deviation is given by [42]:

136 /| X X
=—y/— 1|1 . In — 4.
0% gcp‘/x()( —|—0038nX0) (4.57)

X is the material thickness, X its radiation length (1.43 mm for copper), and p is the momentum in
MeV /c of the incident electrons. A thickness of 5 mm was chosen; this implies ©y ~ 800 mrad this
number is much larger than the angular acceptance of the viewer ( ¢ = g ~24 mrad). Therefore
the electron passing through the copper plate will only contribute in the beamlet analysis plane as
a uniform background.

On the other hand, setting the thickness to 5mm yields an angular alignment tolerance of ap-
proximately 1.7 mrad. For this incidence angle, only 10% of the electrons are lost because of edge
scattering (see Fig. 4.21). Alignment of the multislit mask within this tolerance can be done easily,
furthermore, using downstream magnetic steerers it is also possible to adjust the electron beam

incidence angle to correct for eventual misalignment.
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Figure 4.19: Simulated multi-beamlets pattern on the optical transition radiation radiator
4.5.3 Emittance Calculation & Trace-Space Reconstruction

From the OTR image of the multi-beamlet pattern, a projection is generated. This projection
consists, as we have previously discussed, in a suite of peaks. Each peak is automatically identified
using a “recognition algorithm” [39].

From the projection, the beam average position (zg) can be calculated and used as the reference
for a-axis. The beamlets are then referenced to a slit and thereby to a position (with respect to the
beam average position) accordingly to:

r;=wxX1—(zB) (4.58)

where ¢ is an index that can be positive or negative and identify the slits and w is, as previously,
the slits width.

Measuring the average position of each beamlet also give information on the correlated spread
in the divergence which in turn give information on the a-Twiss parameter. Form the beamlet
distribution w;; we can deduced the beam divergence distribution wg at the specific position z;
using the relation:

o= ST () (4.59)
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Figure 4.20: Comparison of the expected phase-space, generated via particle retracing ( each grey
dots represent a macroparticle), with the retrieved phase-space (represented with back line iso-
contours) using the simulated beam pattern on the optical transition radiation presented figure 4.19

where (z'5) is the average divergence of the beam computed from the beamlet: z’5 = %
7 3 v

From all the previous calculations it is then straightforward to compute the emittance and Twiss
parameters:

2
<$2> ~ 2 Z]‘ Wy
> Z]‘ Wy,5
2
(2" = 22 v Wi
> Z]‘ Wy,5
: Taps
(za') = 2 i E]' L ;Wi 5
> Z]‘ Wy,5
As we already pointed out it is also interesting to have access to the trace-space distribution. The
trace-space distribution iso-contour can be deduced from the beamlet profile since this latter corre-

(4.60)

sponds to sample of the distribution in position (pg(2;, 2')). Unfortunately under normal operation
the number of sample in position does not exceed 5 and therefore some fine detail on the distribu-
tion could be missed. Indeed it is possible to move the beam on the multislit mask by means of
upstream magnetic steerers, and for each setting of this magnet record the beamlets’ projection. In
such a case it is possible to fill the trace-space completely; of course this rely on a perfect stability
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Figure 4.21: Fraction of incident electron that scatters on the slits edge versus the beam incident
angle with respect to the normal axis of the multislit mask. The depth of the slits is 5mm. A
misalignment of the mask of 1.2 mrad compare to the beam axis yields approximately the interaction
of 10% of the incident electron with the material.

of the electron beam.

The acquired data, in our case a projection that contains the beamlet profiles, is digitized by
the frame grabber and then transferred to an IOC on which VxWorks routines have been imple-
mented [39]. After identifying each beamlet profile and the slit it comes from, the code computes
the emittance and Twiss parameters. The results can then be accessed from any X-station via
the EPICS channel-access protocol. We developed X-window based screens that display emittance,
Twiss-parameters and possibly phase-space isocontours. The achieved speeds are, respectively,
about 1 and 2sec for updating parameters and plot refresh, a speed that allows observing the
phase space parameters in real time while tuning the injector. Storing raw data and projections is
also possible at each stage of the process for more detailed off-line analysis, e.g. using (time and
CPU consuming) powerful image processing tools.



£ Ag/e () AB/B () Aaja (%)

0.2040 19.9 19.9 20.9
0.3956 9.9 9.9 10.4
1.1597 2.5 2.6 2.6

Table 4.7: Typical systematic error on emittance and Twiss-parameters for the nominal emittance
value and two extreme cases.

4.5.4 Error Analysis
Error Propagation

The error propagation is quite tedious to perform analytically since direct calculations require
a lot of approximation and assumptions, especially since the trace-space distribution does not a
priori follow any kind of analytical function. For these reasons we perform this error propagation
numerically. Following previous derivation [45], it is straightforward to compute the systematic
error on the rms-emittance as a function of the second-order moments:

(Ad)2 = 2 x (<m'>2 (Aza’))® + (@) (Adah))® (@) (A<x>)2) (4.61)

£

The error on the (zz') is given by:

e S| e AL + 5w () (M)’
(Afza’))? = T (4.62)

Where the uncertainty on the average the divergence is simply A(2’) ~ Aa’. The error on {(z?) is:

= 25 wiAw)]

Alz?) = S (4.63)
Similarly, the error on (z'%) writes:
RE
o L] (4.64)

> Z]‘ Wy,5

Where the error on the divergence is estimated to Az’ = %\/52 + %LAZ)—LB where &, the resolution
of the OTR monitor (~60 um), has been added in quadrature. The uncertainty on the drift length
AL, is approximately 5 mm. All the previous formulae have been gathered in a program that allows
to compute errors on different sets of data. Typical uncertainties associated with the emittance and
Twiss parameters are presented on Table 4.7 for the nominal expected emittance and two extreme
cases; as expected, this error increases as the emittance value decreases.

Other Source of Errors

As mentioned in reference [44], the slits (directed along y axis) will reduce the az-transverse space-
charge field. this effect is due to the fact that when an electron bunch get very close to the slits



(say one bunch length), the transverse self field is short-circuited. This effect is considered to be
insignificant in our experiment.

Another source of error is the effect of non-zero space-charge force in the beamlets. Such effect has
been studied numerically for the maximum charge per bunch (135 pC) and was observed to enlarge
the beamlets width on the OTR-monitor by approximately 12 um (4-¢). This enlargement is less
than the resolution of the monitor and therefore is neglected.

4.5.5 First Experiment in the Injector Test Stand

We chose to commission the multislit assembly in the injector test stand (ITS) of Jefferson Lab
since this off-line facility was instrumented with another emittance measurement system that we
could use to compare the results obtained with the multislit mask. The configuration consists in a
photocathode gun, a solenoid, and a diagnostic beamline than incorporates a transverse emittance
measurement based on the one-slit and wire-scanner method [14]. The gun energy can be vary up
to 500 keV and the maximum available charge can be set to approximately 135 pC. Since the mask
acceptance is ranging from 0.6 mm-mrad to 1.1 mm-mrad (unormalized rms emittance) we had to
lower the charge per bunch accordingly to PARMELA numerical simulations to achieve an adequate
emittance; initially the charge was vary from 5 pC up to 10 pC to perform our test. The gun energy
was arbitrary set to 250 keV.

Preliminary test and cross check with the monoslit method

As mentioned above, the injector test stand is equipped with one-slit and wire-scanner apparatus
to perform very accurate emittance measurement for a wide range of charge. The technique is, as
the multislits, based on phase space sampling method: a movable slit selects a position and the
generated emittance-dominated beamlet is analyzed downstream by the mean of a wire scanner
profile monitor. The advantage of this “one slit and collector” technique is its ability to resolve the
phase space distribution for a wide dynamical range in emittance by adjusting the slits positions
steps. Such system has been successfully used to fully characterize the emittance of the beam
produced out of the photoemission gun. Unfortunately this method is time consuming: the time
required to perform one emittance measurement is typically 45 mins and therefore rely on the
assumption of perfect beam stability over this time. During our tests we find the beam not so
stable over this large time.
For a first test, we set the charge to 10 pC and acted on the solenoid strength (the only parameter
on which we can play on-line) to try to illuminate with the electron beam as many slits as we
could. Unfortunately because of technical problem we were only able to illuminate up to four slits.
A typical beamlets profile obtained performing our tests is presented in figure 4.22 along with a
typical reconstruction of trace-space whose iso-contour density plot is pictured in figure 4.23.

The table 4.8 presents the results of our cross check between the two methods. Both technique
agrees at the 15 percent level.
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Figure 4.22: An example of 2D beam distribution on the analyzer screen downstream the multislit
mask. The projection onto the z-axis is also displayed.

£, (mm-mrad) £, (mm-mrad) Difference (%)
multi slit method one-slit-one harp method

0.5594 0.4859 15

0.5607 0.5070 11

0.4669 0.5071 8

Table 4.8: Comparison of the rms transverse emittance measurement performed with the multislits
and the one-slit and one-harp techniques.

Measurement of Emittance in the Injector Test Stand

We then varied the solenoid strength from 237.5G up to 307.5G to see how was evolving the
emittance value for different settings of the first solenoid. The emittance presents a gap at values
around 280G (see Fig. 4.24) as observed in numerical simulation. The f-function presents as
expected a minimum corresponding to the beam waist. Charge was varied using the laser attenuator
and the bunch charge was measured using a beam dumped equipped with a Faraday cup. As it can
be seen in figure 4.25 below, the emittance was found to be dependent on the macropulse width. In
fact this was due to problem with the optical switch of the photocathode laser yielding a light leak
creating low emittance “ghost pulses”: extinction ratio (ratio between the intensity of the light at
the output of the switch when it is close or open) was not optimized and then even when closed,
the number of photon was still high enough to produced unwanted electrons (see our comment in
Chapter 1). The number of produced electrons depends on the selected width for the macropulse.
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Figure 4.23: An example of reconstructed phase space iso-contour density.

4.6 Summary

In this chapter we have presented the techniques we have developed to perform emittance measure-
ment in the injector transfer line, a region where the beam is still in the space charge regime, and in
the 38+ MeV linac and recirculation region. We have shown that under the expected experimental
condition both measurement could be performed with systematic error of the order of 10%.
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Figure 4.24: Emittance and betatron function versus the solenoid excitation.
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(10 psec and 50 usec).



Chapter 5

Longitudinal Phase Space
Characterization

5.1 Introduction

As mentioned earlier, in Chapter 2, the FEL gain strongly depends on the bunch length and
energy spread achieved in the vicinity of the undulator magnet. Hence it is of prime importance to
properly instrument the driver-accelerator in order to measure these quantities at critical point of
the bunching stage.

The bunching process, along the beam transport, is controlled by several elements: a warm buncher
cavity, SRF-cavities located in the injector and in the main linac, and the injection and by-pass
chicanes. In order to make sure the bunching process is performing adequately, it is worthwhile to
have many longitudinal diagnostics that can provide information on how the bunching is performing.
Also they can be useful to identify at which stage the bunch dynamics is not as expected and
therefore can allow to isolate a problem or monitor drifts in the system. For such a purpose
several diagnostics have been developed. These diagnostics include frequency domain methods,
which consists in estimating the bunch properties by detecting coherent radiation emitted from the
bunch, and time-based methods.

Along with bunch length measurement, the longitudinal phase space emittance can be estimated,
under certain conditions, provided one can measure the intrinsic energy spread.

Both measurements are described in this chapter, after discussing the longitudinal phase space
manipulation in the driver accelerator.

5.2 The Longitudinal Phase Space Manipulation in the IRFEL

In the IRFEL, bunch formation starts at the electrons’ emission from the photocathode which is
illuminated by a driver-laser whose optical pulse is approximately 47 psec (FWHM), as measured by
autocorrelation technique !. Therefore at the cathode surface, the electrons are gathered in bunch
of approximately 47 psec (FWHM), if we ignore the bunch lengthening due to the GaAs wafer time

'M. D. Shinn, private communication
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response. The evolution of the longitudinal phase space from the electron bunch emission up to
the end of the magnetic decompressor is best described in terms of sequences of PARMELA runs
shown in figure 5.1. In the following we only concentrate on the case of 60 pC charge per bunch
with lasing turned off.

1. The length of the electron bunch after emission via photoelectric effect and acceleration to
350 keV in the DC-gun structure is approximately 15 ps (RMS) (see Fig. 5.1(A)).

2. The first element that significantly affects the longitudinal bunch distribution is the buncher
cavity. This cavity is operated at zero-crossing so that the average arrival time of the bunch
coincides with a zero accelerating field. The electrons arriving sooner (i.e. that belong to the
bunch head) are decelerated whereas the late electrons (i.e. that are located in bunch tail) are
accelerated (see Fig. 5.1(B)). Hence the principal effect of this cavity is to provide an energy
ramp across the bunch. This energy modulation translates as the bunch propagates though
a drift space to a “bunching” of the electrons: because of the electrons’ average energy of
approximately 350 keV, which make them nonrelativistic, their propagation in a drift space
of appropriate length will bunch the electrons (mathematically this traduces to the nonzero
value of the momentum compaction of a drift space of length L: Rss = —L/v?).

3. After drifting through a longitudinally free space, the bunch enters the first accelerating
five-cell CEBAF-type SRF-cavity with a nominal average accelerating gradient of 11 MV /m.
The cavity is operated for maximum energy gain (which does not mean, because of the non-
relativistic nature of the electron, that the bunch is injected in phase with the maximum
accelerating electric field). There is a strong compression occurring in the first two cells
of the cavity (that acts as a capture section), then the bunch length is frozen and remains
constant up to the cavity exit while the relative energy spread is greatly reduced.

4. Approximately 7cm after the exit of the previous cavity, the bunch enters a second SRF-
cavity with a nominal average accelerating gradient of 9MV /m. This cavity is operated off
the maximum energy gain phase, so that it provides further bunch compression. Indeed the
choice of the phase is made to impress the longitudinal phase space with the proper slope
needed to match the slope desired at the entrance of the upstream achromatic chicane for
optimum bunching through this chicane. At the cavity exit, the parameters are: 1.2 ps for
the bunch length, 4% for the relative energy spread and approximately 10 MeV for the beam
average energy.

5. The electrons then drift through an achromatic three-bend chicane. This latter can reduce
the bunch length by means of magnetic compression that is based on the fact that path length
inside bends is energy dependent.

6. Then the bunch is injected in the SRF linac. The gradient of each cavity and the overall phase
of the linac is adjusted to give precisely the desired energy (which will determine the FEL
wavelength) and to adjust the incoming bunch length and energy spread in the compressor
chicane.

7. The compressor chicane will compress the bunch down to 120 um (RMS) to achieve the
minimum bunch length at the wiggler location.

8. After the wiggler a second chicane that acts as a decompressor chicane lengthens the bunch
length.



9. The beam is then recirculated.

The beam dynamics in the recirculation will be described later. In the present chapter we only
concentrate on the beam parameters in the undulator vicinity, which are of importance to startup
of the FEL process and quantify few of its properties.
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Figure 5.1: Sequences of PARMELA runs demonstrating the bunching process in the IR FEL. The
longitudinal phase space is plotted at the exit of the gun (A), the buncher (B), the SRF-cavity #1
(C), the SRF-cavity #2 (D), the achromatic chicane (E), the SRF-linac (F), the bunch compressor
chicane (G), the bunch decompressor chicane (H), the arc # 1 (I). Note that electrons with positive
A¢ belong to the bunch tail while the one with negative A¢ are in the bunch head.

5.3 Theory of Bunch Length Measurement using Frequency Domain

We presented in Chapter 2 the formalism associated to the emission of electromagnetic waves
by a multi-particle distribution. We have seen that the total spectral angular power emitted
(d*P/(dwdY)) by such system has a contribution that is proportional to N2 where N is the
number of electrons in the multi-particle system. This contribution is also proportional to the so
called bunch form factor (BFF) f(w,n) that in turn can be written as the product of two factors
named the spatial and angular BFF. In the next section we study both BFFs and show how it is
possible from the latter to extract information on the longitudinal bunch distribution.



The Angular BFF

The second term in Eqn.(2.5) in Chapter 2 is the dependence of the coherent emission with respect
to the angular beam properties. It is interesting to note that this term is wavelength independent
and therefore is not going to influence the spectrum of the radiation: it acts as a multiplicative
factor that can reduce the total power emitted by a bunched beam. Its expression from Eqn.(1.5)
is:

A ) [ a@u)adr (1)

It is relatively difficult to evaluate this factor for an arbitrary bunch distribution. However under the

assumption of transverse cylindrically symmetric bunches, and introducing the angles ¢ = Z(n, 3),
¢ = L(Ny:,2), ¥ = L(n,dZ), and 0 = L(ng,, dZ) it reduces to [2]:

cosfsincos ¢ — sin@cos¢|2

ey =1 [ dv [ doaw) (5.2)

sin ¢

which in turn can be expressed as a complete elliptic integral (extended from Ref. [2]) if we assume
the angular distribution writes as a Gaussian distribution: A(e) = 1/V270" x exp(—?/(20"%)

92 w/(260) 2$1/2 2$1/2 92
= [ el = oK) + (L B el

1+ 2 1+ 2 2072

A(8) z?)|?dx (5.3)
where the complete elliptic integral of the first kind, K(u), and second kind, E(u), have been
introduced?. The numerical integration of Eqn.(5.3) is presented for different RMS width of the
angular distribution in figure 5.2. It is noticed that typically this integral is unity in the case where
the beam divergence ¢’ is much smaller than the angle of observation. In the case of transition
radiation, the spectral power has its maximum at angles of the order of # ~ 1/~ and since the RMS
divergence is of the order of ¢/ ~ 1 mrad, we satisfy the relation ¢/ <« @ ~ 1/~ for the nominal
energy of 38 MeV (i.e. v ~ 77). Henceforth we will assume, except when explicitly mentioned, that
this factor is always unity for our typical beam parameters.

The Spatial BFF

The Eqn.(2.5) is written in a vector form. We will work in Cartesian coordinates to make this
equation more explicit. If 7n,, is the projection of the 7 unity vector in the (y,z) plane, let
§ = L(n,%) and ¢ = L(ny,,Z) then the argument of the exponential function in Eqn.(2.5) writes
nX = (zsinfsin ¢ + ysin 0 cos ¢ + zcos ), and this equation rewrites:

S(w, n) def | /Sx(gg)Sy(y)Sz(Z) exp (—%(ac sin #sin ¢ + ysin 6 cos ¢ + z cos 0)) (5.4)

where we have assumed we could factor the 3D-spatial beam density distribution S as the product
of the 1D projections S, S, and S..

In order to use frequency-domain analysis to deduce information on the bunch longitudinal distri-
bution, it is necessary that the w-dependence come only from longitudinal coordinate z. From the

>The elliptic integral of the first and second kind are respectively defined as K(u) = foﬂ/2[1 — u? sin® (5)]_1/2d€

and E(u) = foﬂ/2[1 —u’ sin2(§)]1/2d€
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Figure 5.2: Angular BFF for three different value of the RMS beam divergence.

latter equation, we can define the effective coordinates z.;; = 2 sin @sin ¢, y.rs = ysinf cos ¢ and
Zepy = zcos 0; and derive a criterion on the rms beam size to ensure the wavelength dependence is
mainly due to the longitudinal distribution:

Zepf > {ngf + yszrm (5.5)
or
Z> tan {wz sin? ¢ + y? cos? (b} V2 (5.6)
which can be expressed in term of RMS quantities without loss of generality:
o, > tan 6 {O'z, sin® ¢ 4 o cos’ (b} i (5.7)

If this latter criterion is fulfilled we can use the line charge approximation, i.e., treat a bunch as a line
with a 1D charge distribution. In such case, analysis of the coherent emission of the bunch reveals
information on the bunch longitudinal distribution and is not contaminated by the transverse effect
aforementioned, and we can write the BFF as it is generally written in the literature:

+ oo
SN =1 [ 8. exp (~2imoz) daf? (5.8)
where as before S,(z) is the longitudinal bunch density along the longitudinal axis z moving along
with the bunch. We have introduced the wavenumber o = 1/A = w/(27¢) for convenience.

The computation of the BFF for a normal distribution or a square distribution is simple; the results

are presented in Fig. 5.3 where we have assumed the bunch is a continuum and its RMS extent is
300 pm. For both types of distribution, the BFFs suddenly take off at wavelength of the order of



the bunch length. Hence measuring the coherent radiation power at wavelength comparable to the
bunch length, i.e. where the coherent enhancement occurs, can provide information on the bunch
structure and length. Also we can notice that the square distribution, and generally all type of
distribution with sharp edge, induces BFF with low wavelength (high frequency) components. It
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Figure 5.3: Bunch form factor computed for a 300 pm (RMS) square (dash line) and gaussian
(solid line) bunches.

is interesting to numerically compute the BFF using a Monte-Carlo simulation technique, for a
finite number of macro-particles in the bunch. In figure 5.4 we present computation of bunch form
factor for 10° macro-particles. In the case of the bunch charge we are interested in i.e. 60 pC, the
macro-particle represents 375 electrons. The choice to simulate only 10® macro-particle instead of
the whole number of electron i.e. 3.75 x 10® was imposed by the desire to economize CPU time and
expedite simulations. The Monte-Carlo generated distribution can be written as a Klimontovich
distribution:

=N
S(z) = Z: 3z — %) (5.9)

and the associated bunch form factor, under the line charge assumption, reduces to a sum:

SO = iv (| sin

=1

27z 27z
Ty |cos%|2) (5.10)

We see in figure 5.4 that because of the finite number of particles, the bunch distribution and
the BFF cannot be treated as continuum. These features should be kept in mind even if in the
following we will assume the bunch distribution to be continuum.

If one uses standard beam parameters experimentally achieved in the IRFEL accelerator, i.e. trans-
verse beam size of approximately 1 mm, minimum bunch length of 140 m, Eqn.(5.7) is not a fortiori
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Figure 5.4: Monte-Carlo simulated bunch form factor (right) with 10° macroparticle for three
types of bunch longitudinal distribution (left).

satisfied: transverse effect can yield non-negligible contribution to the bunch form factor. Fortu-
nately we are also helped by the directionality of the radiation: in the case of both transition and
synchrotron radiation most of the power resides in a cone that is of the order of 1/4: In the FEL
coherent radiation setup the collecting optics has an angular acceptance of 0.3 rad. We study the
effect of transverse beam spot size numerically by performing the integration:

1w Py (w)
AP(w) = d dQQ—— A1
) /0.9w “/ deod€) (5.11)
For simplicity, let’s assume that the bunch is cylindrically-symmetric ie. o, = o, e/ o.. The

results of the numerical integration of Eqn.(5.11) is depicted in Fig. 5.5 where we compare the
effect of the transverse beam size on the bunch form factor. The total TR and SR power spectral
density is computed for three typical bunch shape: aline charge bunch (o, = 0), an ellipsoidal bunch
(6, = 100,), and a “pancake” bunch (¢, = 0). Beam size significantly affects the region of coherent
enhancement in the BFF: if one use the thereby computed BFF to retrieve the bunch length, the



transverse beam size effect leads to an underestimate of the bunch length by a approximately a
factor of 2. However, the effect of the beam spot size is very small on the CSR, and CTR spectrum.
In the case of ellipsoidal bunch, i.e. the worst case that can happen in the IR FEL, the error is at
the 10% level.

Hence, we will assume the measurement of CTR or CSR in the IR FEL is directly related to the
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Figure 5.5: Effect of transverse beam size on the 3D-BEF. For three different type of bunch (ellip-
soidal, pancake and line charge bunch), the BFF (A), the CTR (B) and CSR (C) power spectrum
are numerically computed. The power spectrum are computed assuming an angular acceptance of
0.3rad and are given for a 20% frequency bandwidth.

longitudinal bunch distribution, without any “contamination” coming from the transverse beam
size effect or from the angular bunch form factor.

5.3.1 The use of the BFF to compute and monitor the bunch length

Under the “line charge” assumption mentioned earlier, the BFF only depends on the bunch length.
In this section, we derive a simple relation, without making any assumptions on the bunch density
function, that allows one to compute the rms bunch length from the bunch form factor. Let’s start
with the BFF definition, by introducing the wavelength number ¢ = 1/ for convenience, and by
replacing the exponential function in the Fourier transform by its Taylor expansion:



exp(a) = Z < (5.12)

The equation 5.8 yields:

_ |/+°° i 2271'02 2dz|? = |§: (2iro)" /_-:o 25 (2)dz|? (5.13)

Defining the n-order moment v,, as

+ oo
Uy, :/ 2" S (z)dz (5.14)
Eqn. (5.13) becomes:
> (2ixo)"
a) =1 (Zimo)" n,) vn? (5.15)
n=0 .

In case we are at high ¢ we can approximate the series by its first three terms only. In such case,
the previous equation reduces to:

(2iro)?

vz + O(0%)?
= 1—4r%0?2% 4+ O(c?) (5.16)

SZ(O') = |1+ 2imrovy +

where we have introduced the variance ¥? = vy — v (= f 0.).

From Eqn. (5.16) we note that it is straight forward to extract the bunch length, ¥, by fitting
the bunch form factor with a parabolic function at high frequency. This result is a generalization
of the gaussian distribution exp (—2%/(2X?)) case: for such a distribution the form factor writes
exp (—472023?) whose Taylor expansion at small frequency is also given by Eqn. (5.16). It is
very informative to develop the BFF to higher order to see whether we can extract information on
the higher moments of the bunch longitudinal distribution. Performing such derivation yields the
general form of the BFF [46] (with ( = 270):

. nCQN o0 )nCQn—I—l 5
S.(0) = |Z —————Vo, + 1 Zﬁ’mﬂ'”
n=0 :
2 2
o s I/2nC2n s (—1)”1/2n+1c2n+1
- (Z ) (£ S

o] 1 n+m CQ (n+m)

- Z_: C4n V2n+222( )iz VanVom +

n= 0 n=0m<n

o] C4n—|—2 )n—l—m—I—QCQ (n+m+1)
Z (2n+ 1)! VZ”“ 2 Z Z Gn o im g 1y ettt (5:17)

= n=0 m<n

From Eqn. (5.17) it is possible to obtain a system of n equations with 2n unknowns. Fitting
the bunch form factor with high degree polynomial only allows to determine unambiguously the
variance of the bunch distribution; it does not give access to higher-order moments (but only to
combination of these moments). This indetermination is in fact related to the measurement, a



power measurement, yielding the loss of phase information.

We have also noticed from experiment using a particle pushing code that the fine structure of the
BFF is affected differently depending on how the bunching process is performed. For instance
in figure 5.6 we plot the BFF computed from numerical simulation for different settings of radio-
frequency elements that play a key role in the bunching process. Though the bunch length does not
vary significantly, we can notice that each element affects the BFF at different wavelength. Such
features can be experimentally used to determine which element is not operated at its nominal op-
eration point (e.g. because of drift,...). Before its application we will need to perform experimental
parametric studies by systematically varying each RF-elements.
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Figure 5.6: Effect of different key elements in the bunching process of the electrons on the BFF.
The BFF corresponding to the nominal settings for the RF elements (solid line) is compared with
the cases where the buncher (dotted line), the first cavity in the injector (grey line) and the
photocathode drive laser (dotted line) are operated +3 deg off their nominal settings.

5.3.2 Retrieval of the Bunch Distribution by Hilbert Transforming the BFF

As we mentioned earlier, the only observable we can measure is the power of the coherent radiation
i.e. the square amplitude of the electric field; all the phase information is lost. However, it is still
possible to get some insight on the phase information using the so-called dispersion relations ® that
are commonly used in Solid State Physics e.g. for reconstructing the imaginary part of the refrac-
tive index of a material from from knowledge of the real part. This technique has been first applied
to the present problem by Lai et al. [48]; however in the literature there is no clear derivation that
proves the use of the dispersion relation for retrieving the phase of the BFF is legitimate. We

® Also referred as Kramers-Kronig’s relations



present an outline of this proof below, and a detailed proof in Appendix C. From the definition of
the bunch form factor we can write:

S(0)=5 (o) S (o) (5.18)

o is the wave number and S (o) is the Fourier transform of the bunch longitudinal distribution; it
can be written as:

5 (0) = /() x explits(o)) (5.19)
where (o) is the phase associated to the Fourier transform. The method is discussed in standard
mathematics textbooks (see for instance [50]) and can be applied to S(o) to calculate its imaginary
part knowing its real part because S(o) is a square integrable function. In the present case, the
problem is slightly different: we know the modulus of S(o) and need to compute the phase. By
taking the logarithm of the latter equation, we come back to the determination of the imaginary
part of the function log[S(o)] from the knowledge of its real part log[|5(o)]|]:

log($ (7)) = log(\/5(0)) + ivo(e) = 1/2 x log(1S(0)]) + iv:(0) (5.20)

Now, log(§ (0)) is not square integrable and the Cauchy integral on 10g(§ (o)) does not converge
(¢ = 0+ i0’ is the complex Wavenumber):

?glog(S () ~ log(5 (<)) kel /” log (5 ( (5.21)
(—o C
Let’s introduce the function ¥(¢) defined as:

5(¢) def loels (C)C] - ?g[s ()]

Y(¢) is not singular at { = o and is square integrable. We can then derive a set of “modified”

(5.22)

dispersion relations for § (see Appendix C for a detailed derivation), and finally the phase of §
takes the form:

¥(0) = ¥(og) — %(a — o9) 7?/+Oo logl] fg(_)g)_(;o_gﬂj (@) 4 (5.23)

where P designates the Cauchy prlnapal Value for the integral.

Letting 09 = 0 and using the fact S (©) =S (—¢) we finally find:

(o) = v(0) = Zp /;Oo Wdc (5.24)

T

This latter equation is widely known, in the literature, and is sometimes referred as dispersion
relation. Once the phase (o) is computed we can recover the initial distribution by using the
inverse Fourier transform:

S(z) = /OOO S () cos (2roz — (o)) do (5.25)

Two facts should be emphased about Eqn.(5.24) (1) the ¢(0) term is unknown and is assumed to
be zero, and (2) this equation is applicable provided log[S(o)] is analytic in the upper half-part of
the complex plane. If it has singularities then, in virtue of the residue theorem, there are other
contribution to the phase that must be considered. In the following we will not consider such cases
by assuming the standard bunch distribution is analytic in the upper half-plane (a fully detailed
discussion is provided in Appendix C).



5.4 Observation of Coherent Transition Radiation

In the early stage of the IRFEL commissioning, the experimental setup described in figure 5.12 was
used to image the CTR beam emission source produced by the electron beam as it passes through
an aluminum foil onto a Golay cell detector. The Golay cell (see Fig. 5.7(A)) is a thermal detector
with a nearly uniform energy response from the ultraviolet up to the microwave region. The de-
tector consists of a gas-filled cell enclosed by two membranes. The incoming radiation is absorbed
by a thin aluminum layer deposited on the “input” membrane. The aluminum film thickness is
chosen so that the corresponding surface impedance yields the maximum absorption of radiation
over a broad range of wavelengths. The absorbed radiation heats the gas which in turn increases
the pressure inside the cell and distorts the second (flexible) membrane. The distortion is sensed by
a photodetector cell that detects a light beam reflected from the membrane. This effect is amplified
by two large grids arranged so that initially, i.e. when no radiation is detected, the lines of one grid
are imaged on the space of the second grid resulting in no light detection by the photodetector.
When the membrane is distorted, the image of the first grid shifts, allowing significantly more light
to reach the photodetector. This grid system is in fact a mechanical means of enhancing the effect
of small displacements of the membrane. The output analog signal from the photodetector in the
Golay cell setup is electronically processed as described in Fig. 5.7(B): First, it is amplified by a
factor 10 using a simple operational amplifier located in the accelerator tunnel enclosure, then the
signal is brought in the service building located upstairs the tunnel where it is shaped using a noise
filter. Afterward, it is fed into a Analog to Digital Converter (ADC) where it is digitized, at a
sample rate equal to the beam macropulse repetition rate. The digital signal is broadcast via a
VME input/output controller (I0C) to the Ethernet network so that it can be accessed from any
work station communicating to the control system.

It is possible to verify the nonlinearity of the radiation versus the bunch charge as pictured in
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Figure 5.7: Simplified schematics of a Golay cell (A) and the associated signal acquisition elec-
tronics (B).

figure 5.8. The quadratic dependence of the CTR signal versus the charge per bunch is not very
pronounced compared to the one measured in the CEBAF accelerator [20] for example. This is



due to the method we use to vary the charge: we use a rotational polarizer to attenuate or increase
the drive laser power on the photocathode that also significantly affects the beam dynamics in the
machine (especially in the low energy region where the beam dynamics is strongly dependent, via
space charge forces, on the charge). Therefore varying the charge also affects the bunch length,
and therefore the CTR signal since it is dependent on both the charge and the bunch length. By
contrast in the CEBAF machine, varying a slit aperture opening in a chopper cavity varies the
charge per bunch. For all the practical slits openings, the beam is never space-charge dominated
and so the slit opening does not significantly affect the bunching process.

Figure 5.9 depicts the dependence of the CTR signal versus the overall phase of the main linac:
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Figure 5.8: Scaling of coherent transition radiation power versus charge per bunch. The charge
per bunch is changed by varying the intensity of the photocathode drive laser. The circles are
the experimental data point and the dash line is the result of a quadratic interpolation of the
experimental point.

during this experiment the machine settings were kept constant and only the linac “gang” phase 4
was varied. The maximum acceleration phase, determined experimentally by maximizing the en-
ergy, is —4 deg and the expected phase for maximum bunching (i.e. minimum bunch length) is
approximately 6 deg which is in good agreement with the phase value for which the maximum CTR
signal is observed in figure 5.9 (~6.3 deg).

A last experiment consisted of varying the beam spot size on the TR radiator and each time
recording the CTR signal. The variation of this signal versus the equivalent beam radius we define
as /0,0y is presented in figure 5.10. At this point it is difficult to tell whether the decrease of total
power detected is due to the spatial or the angular BFF.

‘the “gang phase” knob allows to shift all the accelerating cavities in the linac by the same phase compare to the
other radio-frequency elements in the IRFEL (see Appendix D)
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Figure 5.9: CTR signal versus the SRF linac overall phase. As the linac phase is varied the bunch
length at the undulator vicinity is changed.

5.5 The Michelson Polarizing Interferometer

5.5.1 Overview of the experimental setup

One way of accessing the frequency spectrum of an electron bunch longitudinal distribution is to
perform an interferometric measurement. In addition to providing the energy spectrum of the
radiation emitted, it can also give an estimate of the bunch length directly from the interferogram.
Such estimates must be taken with care as we will see in the following. We equipped the IRFEL
accelerator with two “polarizing” Michelson interferometer built by the Department of Physics and
Astronomy of the University of Georgia. The location of the devices are:

e the injector front end, to verify the bunching process in the injector is correct,

e the wiggler insertion region, to check the bunch length is adequate to get the FEL lasing.

The adjective “polarizing” refers to the nature of the beam splitter used in the interferometer: it is
a dichroic polarizer that has a preferred direction. It reflects the polarization of the incoming field
that is parallel to this preferred direction and transmits its orthogonal component.

Because electrons in an accelerator are randomly distributed from bunch to bunch, autocorrelation
of radiation at wavelength smaller than the bunch length will not provide any information on the
bunch structure. Hence the wavelength of observation must be chosen to be comparable or larger
than the bunch length: this is the regime of coherent emission and this insures bunch-to-bunch
coherence of the radiation.

In the IRFEL, this interferometer is used to measure the autocorrelation function of coherent
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Figure 5.10: CTR signal versus beam equivalent transverse spot size ,/6,0,. The error bars
correspond to the variance of five consecutive measurements.

transition radiation (CTR) pulses emitted as the electron bunches pass through a 0.8 um thick,
and 50.8 mm diameter aluminum foil. Though the use of CTR is a destructive measurement as we
have previously discussed, it was preferred to CSR because the TR power spectrum is frequency
independent in the region of interest whereas the CSR spectrum depends on the frequency (o w3/2)
and therefore is somewhat more difficult to analyze.

The backward CTR emitted from the foil directly shines out of the vacuum chamber through an
optical window located at 90 deg with respect to the beam trajectory. This optical window is made
of single crystal quartz so that it can transmit far infrared radiation without significant losses.
The window thickness is 4.826 mm. After the window, a plano-convex lens with a focal length
in the FIR domain of 125 mm is used to collimate the CTR beam to parallel rays (the lens is
approximately located 125 mm far from the point of emission on the foil). The collimated beam is
sent to the Michelson polarimeter via one planar mirror My (see Fig.5.11). The optical beamline
and the interferometer can be filled with nitrogen so that the measurement is not contaminated
by water absorption in the microwave region of the spectrum. In the polarimeter components are:
two beam splitters, two planar mirrors, one off-axis parabolic reflector, and a Golay cell detector:

e The beam splitters are made of parallel tungsten wires of 20 um diameter spaced by 50 pm.
Being metallic, the tungsten wires provide high conductivity for electric fields parallel to
the wires. Such fields produce electric currents in the wires, and the energy of the fields is
converted to energy of the current. The latter is then converted to heat, because of the small
but significant electrical resistance of the wires. Hence to obey the boundary condition at
the wire, the field parallel to the wires is reflected. However, because of the non-conducting
spaces between the wires, no current can flow perpendicular to them. Hence the electric field
component perpendicular to the wires produce no currents and lose no energy, therefore it is
transmitted.
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e The planar mirrors are standard optical circular mirrors of 50.8 mm diameter. The movable
mirror (M) is mounted on a micropositioner that can translate by 1 um steps. Two picomo-
tors are also mounted on the mirror gimbal mounts that can be used remotely to adjust the
horizontal and vertical inclination of the mirror to make sure it is coplanar with the image of
the fixed mirror (M3) through the beam splitter.

e The parabolic reflector is used to focus an incoming collimated beam onto the detector sen-
sitive area. It is an-off axis gold-sputtered reflector with a focal length of 10 cm.

e The Golay cell (see Fig. 5.7) and its acquisition system have been described previously.
5.5.2 Theory of Operation

The polarizing interferometer is depicted in Fig 5.12: Let’s first analyze how a polarizing interfer-
ometer works in the simplistic (usual) case of a plane TEM wave. Afterward, we will refine this
analysis including the effect due to TR electric field.

o Let ﬁ(t) be the electric field incoming into the interferometer. When this field enters the
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Figure 5.12: Simplified schematics of the Michelson polarizing interferometer.

Michelson interferometer it first encounters a polarizer P; whose wires are oriented at 45 deg
with respect to the horizontal plane. The effect of this polarizer is only to transmit the field
polarization whose direction is parallel to the wires. Therefore in the standard horizontal-
vertical, ¥ and v, coordinate system (see figure 5.11 for detail), the electric field after the
polarizer can be written as:

— u-+v

Folt) = s

Then a second polarizer P, located at approximately 130 mm from P ,that plays the role

Eo(t) (5.26)

of beam splitter, intercepts the optical beam. Since its wires are horizontal,_}the horizontal
polarization of the electric field get reflected in the Variable_>length arm (1) (F7) whereas the
vertical polarization is transmitted to the fixed arm (2), (E3).

In the variable length arm (1): the reflected field writes:
i
V2

and propagates up to the mobile mirror M; where it is reflected. The reflected field ﬁl is

E(t) = —=Ey(t)a (5.27)

(the reflection introduces a factor exp(—iw):

— R .
Fit)=——FEy(t+1)u 5.28
1) = - EEolt+7) (5:25)
where 7 is a time delay introduced by the mirror. By convention, 7 = 0 when the mirror M;
is at the same distance from the beam splitter as M,. The electric field ﬁi back-propagates
to the beam splitter and is reflected a second time on P,. Finally at the exit of the arm (1)
the electric field writes:
i R
E{(t)= —=Fo(t+1)u 5.29
11t = Z=Eolt + ) (5.29)



e In the fixed length arm (2): the transmitted field writes:

=
V2

and propagates up to the fixed mirror My where it is reflected. The field ﬁz after reflection
writes:

Ea(t) = —=Eo(t)5 (5.30)

= SO [
By{t) = =5 Fol(0)F (5.31)

The electric field ﬁz back-propagates to the beam splitter and is transmitted a second time
through P,. Finally, at the exit of the arm (2), the resulting electric field is:
T2
Fy(t) = ——=Fo(t)v 5.32
Ji0) = ~=Falt) 5:32)
e After re-combination of the electric field issued from the two arms of the interferometer, the
total electric field writes:

Ei(t) = % (—R2Eo(t + )i — T* Eo(t)0) (5.33)

This field is the total electric field incident on the Py polarizer. This polarizer reflects electric field
with component o (i — ©)/v/2 and transmit the components o (@ + ©)/v/2. Hence only the latter
polarization component is transmitted to the Golay cell after reflection and focusing on the off-axis
parabolic mirror; it takes the form:

Eg(t) = %

If we assume the polarizer to be perfect conductor, then R? = T? = 1/2 and the field detected
reduced to:

(R2Eo(t+ 1) — T*Eo (1)) (5.34)

Eo(t) = % [Eo(t + 7) + Eo(t)] (5.35)

Indeed the Golay cell is sensitive to the average power (|F,(¢)|*); which is:
I(7) o< 2| Eo(t)*): = [Eo(t) B3 (t + 7) + E5 () Eo(t + 7)) (5.36)

which can be expressed in the integral form:

400 +oo
I(7) 2/ | Eo(6)]2dt — 2R [/ Eo(t) E5(t + 7)dt (5.37)
baseline autocorrelation: 1'(r)

It is important to insist that in virtue of the superposition principle, the electric field is proportional
to the longitudinal bunch distribution and therefore measuring the properties of this radiation
electric field will provide information on the electron bunch. The “autocorrelation” term gives the
information on the bunch structure, it can be written as:

r(r) = % (J(T) — lim J(T)) (5.38)

|70



In the following we will replace the time delay, 7, by an optical path difference (OPD), §,(= 7).
Finally it is interesting to note that Fourier-transforming Eqn.(5.37) gives:

I(r) x 2 /j: | Bo(w) Pdw — 2R [/_+°° Fo(w) By (@)™ dw (5.39)

o0

Therefore the autocorrelation part can be written (since E(w) = E*(—w)):
I'(r) = / | Bo(w) 267 dw (5.40)

which mean that the autocorrelation is the Fourier transform of the energy spectrum of the incom-
ing radiation. This result in fact constitutes the well-known Wiener-Kintchine theorem in signal
processing.

In the previous explanation we assumed the electric field was a TEM plane wave, i.e. we assumed
it had the form:

E(z) = Ege™

Such field has a planar front and the field value is constant in the plane. In the case of TR, such
description is not a fortiori a good description. The electric field associated with TR in the time
domain writes [7]:

2BNeS(t)

E(t,0,r) = r(1 — 3% cos? )

0 exp(—ikr) (5.41)

where S(t = z/c) is the longitudinal density of the bunch, and r is the distance from the point of
emission (or its image). So it deviates from the previous assumptions:

1. It is not a plane wave because of the phasor dependence exp(—ikr). The use of the plano-
convex lens however makes the wave front planar to first order and under the Fresnel approx-
imation; under such an approximation, the phasor is multiplied by the phasor introduced by
the plano-convex lens of focal length f: exp(—ik(z? + y?)2(1/f)/2), the resulting phasor is
exp(—tkz) (which is a planar wave front).

2. It is not a TEM wave, for a given wavefront plane (after the plano-convex lens) the field is
still not constant in the within front.

Henceforth we assume the wavefront to be a plane wave after the plano-convex lens, a valid as-
sumption under the Fresnel approximation. However we shall consider the case where the lens do
not perfectly image the TR source at infinity. Then the variable r in the Eqn.(5.41), is the distance
between the point of observation and the position of the TR source through the plano-convex lens.
In such case, the autocorrelation writes:

1) o 2T 50 g (5.42)

1 r2

where 71 and ry are respectively the distance between the image of the TR source and the mirrors
My and My; the angle vector # is assumed to have the same direction for both field, a valid
assumption under the Fresnel approximation.



With ry = r 4 ¢7 (7 = §/c where ¢ is the mirrors relative position), ro = r, Eqn.(5.42) takes the
form:

1

r+cT

I(1)

r

(N@—FvW+EXN®—FvD) (5.43)

It is important to note that the quantity ¢, in the above equation, is of the order of the bunch
length (i.e. at maximum 500 gm for the present case). A 10% error in the location of the focal
plane with respect of the point of emission will result in a value of r, the distance between TR
image and the fixed mirror, of the order of 1 m; hence replacing r 4+ ¢7 in Eqn.(5.43) with r is a
5 x 10~ effect. Therefore, without introducing significant error the intensity on the detector can
be written as for a TEM wave, that is I(7) o (I'(0) — I'(7)); and the standard analysis presented
above can be used to extract information from a transition radiation interferogram.

5.5.3 Relating an Interferogram Measurement to a Bunch Length Measurement

By measuring the full-width half-maximum (FWHM) of the autocorrelation, one can very easily
get an estimate of the bunch length. Let’s analyze how the FWHM is related to the RMS values
of two typical particle distributions: a normal distribution that is characterized by its rms value
(variance) o, and a square distribution whose characteristic length is its full width w. Table 5.1
relates FWHM, RMS and equivalent length for these distributions.

Distribution | Equ. Length | RMS | FWHM
Gaussian V2ro, o, 20./In(2)
Square w w//12 w

Table 5.1: Relationships between “equivalent”, ”RMS” and "FWHM?” lengths for a gaussian and
square longitudinal bunch density.

Case of a Gausslan distribution:

S(z) = 1/\/2mo2exp (2*/(20.)). For such distribution, the autocorrelation is I'(§) = 1/(2v/70.) exp (6%/(402)).
Hence the RMS value of the convolution is /2 times the RMS value of the distribution. Using
Table 5.1, we deduce that

FWHM, ytocor = v/81n(2)0, (5.44)

Case of a Square distribution:

We write this distribution as:

ﬂd:{umgﬁ—wp<5<wz (5.45)

0 elsewhere



Its autocorrelation is:
(1/wH)[-6+w] if —w<§<0
S(z) = (1 2)[5—|— w] fo<déd<w (5.46)

0 elsewhere

Jw
Jw

The FWHM of the autocorrelation is exactly the width w of the distribution.

FWHMautocor = w (5.47)

Arbitrary Distribution:

Contrary to a typical circular accelerator in which damping and statistical fluctuations lead to a
gaussian phase space corresponding to thermal equilibrium, there is no reason in linear accelerators
to invoke the gaussian assumption. Hence it is not rigorous to perform some kind of fit with a nor-
mal distribution. The philosophies we use to get an estimate of the bunch length are as follows: (1)
We can give an estimate of limits for the bunch length by assuming the bunch length is a comprise
between the bunch length given by the gaussian and square-like distribution; (2) we can also use
multiple particle numerical simulation code to obtain a model for the numerical distribution and use
this distribution to relate numerically the coefficient that relates the FWHM of the autocorrelation
with the RMS value of this numerical distribution; (3) finally, we can also estimate the bunch distri-
bution, solving the phase retrieval problem exposed previously, and directly compute its RMS value.

5.5.4 Extracting the bunch form factor

The derivation of the bunch form factor from the energy frequency spectrum is a nontrivial problem:
there are limiting factors that must be taken into consideration due to the finite bandwidth of some
“optical” components in the interferometer.

A first limitation comes from the detector itself: because of the finite diameter of the Golay cell
entrance window of approximately 5 mm diameter, it acts as a low frequency filter via diffraction
effects. Typically such effects can be simply estimated using the theory of Franhaufer diffraction of
plane wave by a circular aperture. This would yield a transmission factor for the Golay cell having
the dependence: o [ df[J;(2roasinf)/sin ]2, This factor is plotted in figure 5.13 as T[F];.. The
cut-off wavenumber is estimated to be approximately ¢ ~8em™! (i.e. frequency ~0.1 THz).

On the other hand, there is a high frequency cut off that is induced by the grid polarizers. Typically
such polarizers do not work when the wavelength of the incoming field is greater that the wire
spacing (50 pm). The reflection coefficients for both the electric component parallel and orthogonal
to the wires are given by [51]:

1
1+ (Qda log %)

212020 2
d

and .R[EJ_]wg (U) = %
14 (2m)

where « is the wire radius, and d the distance between the wire centers. Using the plot of these
reflection coeflicients presented in Fig.5.13, we estimate the bandwidth of the autocorrelator to be
approximately 8em™!'< ¢ <500 cm~1.

(5.48)
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Figure 5.13: Limitation of some optical components in the Michelson polarizing interferometer.
R[E)Juwg is the reflection coefficient of the wire grid for the electric field component parallel to the
wires, R[F|],, is the reflection coefficient of the wire grid for the component perpendicular to the
wires, and T[FE],. is the transmission coefficient of the Golay cell entrance window.

The energy spectrum can be derived by Fourier transforming the autocorrelation deduced from the
interferogram. However, we cannot perform an exact Fourier transform and have to use standard
Fast Fourier Transform algorithm (FET) [47] because of the sampled nature of the experimental
data. Since the Fourier transform of a sampled function with sampling interval §t is a 1/dt-periodic
function, the frequency resolution will be of the order of 1/(2Nét) if N is the number of samplings
acquired. Again note that 6t = §/c is related to the OPD and therefore, for an interferogram
acquired with mirror steps of A, the frequency spectrum resolution is 1/(4NA).

5.5.5 Experimental Results Using an Autocorrelation Technique

A first set of measurements was performed in the period prior first lasing of the IRFEL. Typically, it
was found that the Golay cell could easily detect, with a fairly good signal over noise, the coherent
transition radiation power generated as the electron beam was in low duty cycle mode (the so-called
tune-up mode); signals with amplitude of the order of 1V were seen in this case.



Autocorrelation measurement

Figure. 5.14(A) and (B) depicts two autocorrelation measurements performed the same day, it
corresponds to the longitudinal phase space setup used for the first FEL light generation. The dif-
ference between Figures (A) and (B) comes from the ghostpulse background. In (B) the ghostpulse
was not cautiously minimized by properly setting the electro-optics crystal of the photocathode
drive laser whereas in (A) ,such operation was properly performed. Figure. 5.14(C) which repre-
sent the algebraic difference between the two measurements, shows that the only difference between
the two aforementioned measurements resides in the presence of a DC offset for the case where the
ghostpulse is not minimized. Therefore the autocorrelation itself is not at all contaminated by the
ghostpulse.

From these interferograms we can also notice other features: (1) The autocorrelation is not sym-

metric and does not vanish when the path length in the two arms are identical. This fault was
initially thought to be due to a non perfect orthogonality between the two mirrors in the two
arms; we tried to correct for it by installing piezoelectric picomotors on the movable mirror so
that its tilt can be adjusted remotely while performing a measurement. Unfortunately we never
managed to get the interferogram to vanish at this location. (2) There are secondary bumps located
at approximately £1800 ym that probably corresponds to reflections in the system (the distance
1800 x 2 =3600 pm corresponds to the distance between the optical vacuum window and the plano-
convex lens).
In Fig. 5.15(A) we present a fine scan (mirror step size for the displacement is 5 pm) of the cen-
tral peak of the interferogram shown in Fig. 5.14(A). From this peak we can deduce the rms width
(~110 pm) and also distinguish whether the core of the beam longitudinal distribution is a gaussian-
like or square-like bunch distribution. For such a purpose we have plotted on the same figure the
equivalent gaussian and square distribution that have the same FWHM and the same integral.
Neither of these standard distributions really fit the interferogram core. However a distribution
that consists of the sum of the two previous distributions better matches the interferogram core.

Dependence of the interferogram on the beam transverse size on the TR screen

A second set of experiments we performed was to study how sensitive the bunch length measurement
was with respect to the beam transverse size on the TR radiator. The procedure consisted in
varying an upstream quadrupole triplet to vary the beam spot size at the point of bunch length
measurement. For each setting of the triplet we measured, at the same time, the beam transverse
spot size and then the bunch length. For such purpose we can direct the transition radiation to
the interferometer or a CCD camera by moving the “switcher mirror”. The images recorded by the
CCD camera are processed accordingly to the description of Chapter 3 and the beam transverse
profile and rms width are then computed. The results of the measurements for five different settings
of the upstream optics are presented in figure 5.16 while the FWHM of the interferogram along
with the corresponding transverse beam sizes are gathered in Tab. 5.5.5.



Case | Interferogram Oy oy /020y
FWHM (pm) | (mm) | (mm) | (mm)

(a) 200 0.4215 | 0.3415 | 0.3794
(b) 240 0.5316 | 0.3987 | 0.4604
(c) 240 0.7843 | 0.5763 | 0.6723
(d) 320 1.2554 | 1.1164 | 1.1839
(e) 280 1.4667 | 1.6240 | 1.5433

Table 5.2: Measured bunch length and transverse beam dimension for the cases reported in Fig. 5.16.

Computation of the longitudinal bunch distribution

Using the methodology previously exposed, we have developed an off-line analysis code that allows
the computation of the bunch longitudinal distribution.

Because the experimentally obtained interferogram is not perfectly symmetric, its Fourier trans-
form, i.e. the energy spectrum, will not be real. Hence the first step consists of symmetrizing the
Fourier transform. We have implemented three methods: we can either use only the left part of
the interferogram, or the right part; we can also symmetrize the interferogram by computing the
average of the left and right part of the interferogram. The autocorrelations so-obtained and their
corresponding Fourier transforms are presented respectively in Fig. 5.17-A and Fig. 5.17-B. We can
notice that there is not much difference between the computed spectra. The method we will use
henceforth is the “average” method.

Moreover, the interferogram (and therefore the autocorrelation) can be measured for arbitrary
mirror displacement. However the information contained at large displacement might not be rele-
vant to compute the energy spectrum. To verify such assumption, we have used different length of
the central part of autocorrelation presented in figure 5.14: we used 64, 128, 256, and 512 points;
note that because we used an FFT algorithm that employs a radix-2 algorithm, the number of
points in the sequence must be a power of 2. From our previous discussion we noticed that the
step size in the Fourier plane (i.e. the energy spectrum) increases inversely to the number of points
in the standard plane (i.e., the interferogram). Therefore a naive argument would be, for a given
mirror displacement step, to measure the interferogram over a large range. Practically there are
two arguments against this fact: (1) the measurement can take up to one hours (depending on
the mirror displacement step size) and (2) for large values of the displacement the two TR pulses
associated with the electron bunch do not overlap anymore and therefore the interferogram does
not provide any information for the power spectrum (i.e. the autocorrelation is theoretically zero).
From figure 5.18 we see that indeed there is a compromise on the number of points; if this number
is too small, the fine structure of the spectrum is lost and the reconstructed bunch distribution is
smoothed. On the opposite, if the number of points is too large, because points corresponding to
large displacements consists only of noise, this noise propagates on the spectrum and a great detail
of fake structure appears. A proper choice is to “manually” cut ad viso the autocorrelation at the
point it seems to vanish. In our case typical values are 1.5 mm.

Experimentally we can clearly distinguish, for a wavenumber of approximately 10 cm~!, the low
frequency cut off induced by the finite aperture size of the Golay cell detector entrance window.
This low frequency part of the spectrum must somehow be reconstructed, otherwise the experi-
mentally computed energy spectrum cannot be used to recover the bunch longitudinal distribution.
For such a purpose we extrapolate this low frequency region of the spectrum using the fact that



for large frequency (i.e. low wavelength), the bunch form factor has a quadratic dependence on
the frequency; the CTR spectrum has the same dependence. Hence, using the general polynomial
expansion of the BFF derived in this chapter, the spectrum can be extrapolated using the equation:
I(0) = ag+az0?+O(c®). The point of attachment of this parabola is chosen to be in the neighbor-
hood of the low frequency cut off. The coefficient ay and ap are computed by using the continuity
conditions at the cut off point: we assume both the spectrum and its local derivative with respect
to wavelength are continuous. In figure 5.19 we perform different low frequency extrapolations of
the energy spectrum by varying the parameter ay and using only the continuity of the spectrum
at the cut-off point to compute the coefficient ag. The influence of these different extrapolations
on the recovered longitudinal bunch distribution is shown in figure 5.20. It is interesting to note
that one way to reject unphysical distribution is to reject all the parabolic extrapolations that give
a significant number of negative values in the bunch longitudinal distributions.

5.6 Zerophasing Technique for Bunch Length Measurement

5.6.1 Basis of the Method

The so-called zerophasing (or backphasing) technique has proven to be a very powerful method.
It has been demonstrated to resolve bunch length in the subpicosecond regime [52]. Therefore we
investigated the possibility of its application to measure the bunch length in the IRFEL accelerator.
The zerophasing method uses RF accelerating cavities phased +90 degrees off crest i.e. in such
a way that the bunch centroid coincides with a zero accelerating electric field. Hence the cavities
induce a longitudinally dependent energy ramp along the bunch. Then, by means of a spectrometer,
the energy distribution is mapped into the transverse direction, and the beam transverse density
is measured with a beam profile station located in the dispersive region. Therefore to implement
this method we only need accelerating cavities and spectrometers. There are two spectrometers
readily available to perform such measurements: we can use the energy recovery dump line or the
first 4-bend chicane. Preliminary considerations have shown that the latter is not easily workable:
the dispersion in the chicane at the beam profile measurement station is about 2 times less than
the one at the OTR profile monitor located in the energy recovery dump.
Despite the fact that the energy recovery dump has been chosen as a spectrometer, it is not
an optimum choice: the maximum beam energy that can be deflected into the dump is about
24 MeV ® which implies that the four last cavities of the cryomodule must be turned off and/or
used as zerophasing cavities. The non-zerophased cavities are operated under their nominal settings
(accelerating gradient 7.33 MV /m, phase -9.6 deg) giving a beam energy of 23.74 MeV. At such an
intermediate energy, the dynamics of 60 pC bunches is not emittance dominated, requiring a study
of space charge effects on the measurement.
In the FEL, the energy recovery dump line consists of a quadrupole and an OTR profile monitor.
The dispersion at the OTR location when the quadrupole is turned off is expected to be =75 cm;
this latter value can be reduced, if needed, using the upstream quadrupole.
It should be stressed that the measured bunch length is the bunch length at the exit of the fourth
cavity i.e. in the middle of the SRF-linac (the PARMELA predicted bunch length and phase space
slope at this location are 370 pm and -48.74 MeV/m respectively).

Following notation of Reference [52], we write the horizontal position  on the beam profile

5Private communication from R. Legg, January 1998



measurement station of one electron with longitudinal position z with respect to the bunch center
as:

2reVry dE) N def

r=uzg+ ( N o E—Oz = 25+ (Co+Ch)z (5.49)

where (Y is the contribution from RF-induced energy spread and C is the sum of initial intrinsic
energy spread and the space charge energy spread induced as the beam drifts. 25, Vrr, Arp, 7 and
Fy are respectively the pure betatron contribution to the position, the total accelerating voltage of
the cavities used during the measurement (i.e. operated at zero-crossing), the RF-wavelength (for
1497 MHz it is 20.05 cm), the dispersion at the beam profile measurement location, and the average
beam energy at the entrance of the first cavity operated at zero-crossing. % is the longitudinal
phase slope; it can be expressed using the beam matrix element as % = —056/(0%) where o056 is

the energy position correlation i.e. 056 = —(zF).

Let 0% oF be the beam sizes measured after the spectrometer dipole on the OTR profile moni-
tor, with the cavities respectively turned off and turned on at their £90 deg zero-crossing point.
Since the beam profile on the profile monitor is the convolution of pure betatron contribution i.e.
transverse and longitudinal phase space, these beam sizes can be expressed as:

(02)? = 0 + Cfo? (5.50)

(05)? = 0 + (C1 £ Co)? o2 (5.51)

o is the horizontal betatron contribution to the beam spot size.

Because the sign of the product 2CyCY is alternated as the cavities are operated at £90 deg, this
quantity can be eliminated and by computing the pure dispersive contribution due to the energy
spread induced by the cavities at £90 deg i.e.® (X%,,5)? = (0F)% — (¢9)?, it is straightforward to
deduce an analytical expression for the bunch length:

[(XFars)? + (Xins)?]
V2|Cl

Finally we can also estimate the coefficient C', which can provide information on the phase space
slope, using the formula:

1/2

(5.52)

O, =

Cy = |Col (Xfms)? ~ (XIEMS)Z (5.53)
2 (Xfars)? + (Xpars)?
Note that in the case of small energy spread these formulae reduce to the one derived in refer-
ence [52].
From Eqn.(5.53) the longitudinal phase space slope is:

db _ 7Vrr (Xie)? — Kpus)?
dz Arr (Xjiys)? + (Xiars)?

(5.54)

In summary, the measurement of bunch length (and potentially phase space slope) reduces to three
beam profile measurements for three different settings of the zerophasing cavities (£90 deg, and

0deg).

6The beam transverse density at the profile measurement station is a convolution of the betatron distribution with
the energy distribution. The rms value of a function g = f * h (* is the convolution product) is (g} = {(f*) + (h?)



Transverse Space Charge Effects

As a first approximation, we can estimate transverse space charge using the K-V envelope equations
by calculating the ratio of the emittance term with the space-charge term (we assume the beam is
cylindrical-symmetric):

1L, 2 fon)?
=t (6) (5.55)

where I, is the peak current, Iy the Alfven current (17000 A for electrons), § and + are the usual
relativistic factors. For the expected values obtained via numerical simulation we estimated R to
be approximately 0.6 at the cavity #5 exit. Therefore space charge and emittance terms are of the
same order in driving the transverse beam envelope.

In equation 5.51, one must insist that og contains the transverse space charge effect. In order
to validate the derived equations to compute the bunch length and phase space slope, we must
make sure that og, as it is implicitly assumed in the previous section, remains the same as the
zerophasing cavities phased are turned on and phased at their two zero crossing”. We have verified
such assumption using the PARMELA code: the beam envelopes along the beamline are plotted in
figure 5.22 for different cases (different number of zero-phasing cavities used): each case is treated
with the PARMELA space charge routine turned on and off. The effect on the beam size before the
spectrometer, in all the cases, remains the same and increases the beam rms size by approximately
36 um. Therefore the transverse space charge contribution to the beam size on the OTR is included
in o3 which is measured when the cavities are turned off. Also it remains the same as the cavities
are turned with their phase set at £90 deg. Hence the transverse space charge contribution is
indeed deconvolved unambiguously when one uses the Eqn.(5.52) to compute the bunch length.

Longitudinal Space Charge Effect

The longitudinal space charge tends to induce bunch lengthening which in turn rotates the longitu-
dinal phase space. Hence one way of assessing the associated effect is to study how the phase space
slope evolves as the cavities are zero-phased. One can conceive that because of the space charge
the slope at the dipole entrance is approximately:

dE [dELm [dE (5.56)

dz ~ |dz dz

SC

where {%} - is the phase space slope upstream the first zerophasing cavity, and {%} <o represents
me

the space charge induced phase space rotation.

Again we need to justify that |C| remains the same as the zerophasing cavities settings are changed:
namely we must make sure that the space charge induced slope is the same in the different cases.
This can be understood since the zerophasing cavities are not providing energy. We have checked
this using PARMELA: the slope evolution for the different cases of zerophasing are presented in
figure 5.24. For each case we compare the slope computed with the space charge routine turned

"There is another effect that can significantly affect the transverse beam size on the profile monitor: the cavity
focusing effect. Such effect is investigated later in this dissertation and was anyway found to be very small for the
purpose of the present discussion; therefore we ignore it for sake of simplicity.



# zero. cav 1 2 3 4

Co 3.7028  7.4057 11.1085 14.8114
Cy 1.1656  1.0873  1.0056  0.8991
Slope (Mev/m) 36.1706 33.7412 31.2067 27.9008
Xiys (mm) 1.8434  3.2860  4.7258  6.1368
Xpys (mm)  0.8789 24282 3.9352  5.4319
o, (mm) 0.3900  0.3901  0.3915  0.3913

Table 5.3: rms beam horizontal size simulated with the PARMELA particle pushing code on the
energy recovery transfer line profile measurement station.

on and off. It is noticed that the variation of the slope due to space charge is the same for all the

cases and we have estimated this variation for the normalized slope 3—2 to 0.54 %/m.

5.6.2 Numerical Simulation of the Method

We have numerically performed a bunch length measurement for the nominal settings using the
relations derived above. We have done such measurement using 1, 2, 3, and 4 zerophasing cavities to
check the constancy of the method. Table 1 summarizes the results we obtained. For the nominal
bunch length of 370 um the computed bunch length is always overestimated by about 20 pm.
On the other hand the coefficient C is dependent on the number of cavities (in fact on the drift
distance). The beam size measured at the OTR location are shown in figure 5.25, for the two zero-
phasing values +90deg, versus the number of zero-phasing cavities. In the figure we also simulate
the measurement with the PARMELA space-charge routine turned off to verify again our previous
statement that we could unambiguously deconvolve transverse space charge effect contribution to
the beam size. In figure 5.26, we present the beam distribution in the transverse plane along with
the horizontal beam projection, in the case where four cavities are used as zerophasing cavities.

5.6.3 Experimental Results

During the early stage of the commissioning of the linac, we attempted a bunch length measurement
using the zerophasing method. We tried to zerophase different numbers of cavities and since the
bunch length was larger than expected we needed only to use two cavities.

During our experiment, the gradient of the two zerophasing cavities was set to 7.33 MV /m, the
total energy of the incoming beam was estimated to be 23.75 MeV; with such value the constant
Cp defined in Eqn.(5.49) is approximately Cp ~ 7.19.

The rms size of the horizontal projection of the beam spots, presented in fig. 5.27, recorded during

90 ~ 58 mm and 67 ~ 4.0 mm;

the zerophasing experiment are respectively: o2 ~ 3.5 mm, o n

these values yield Xy, >~ 1.9 mm and XEMS ~ 4.7 mm.

Using Eqn.(5.52) we get an rms bunch length estimate of ¢, ~488 + 112 ym and the longitudinal
phase space slope % ~—82MeV/m. Both of these values are in disagreement with the parameters
predicted with PARMELA. These discrepancies were not relevant at the time the measurement
was performed: the injector beam dynamics was not yet fully understood and the settings not

optimized. Also note that the error bar on the bunch length measurement is obtained using the



error propagation ® theory applied on Eqn.(5.49), assuming an uncertainty of 10% on 7, Vg, and
the beam sizes measurement, and a relative error of 2% on the beam energy inferred from the dipole
magnet strength.

5.7 Intrinsic Energy Spread Measurement

5.7.1 Method

The estimation of the beam energy spread is performed by measuring transverse beam profile in a
plane where there is significant dispersion. In the case of the IRFEL, several locations can be used
to measure the energy spread. Typical high-dispersion point are, symmetry points of the chicane
and various location in the recirculation arc. In the plane where dispersion occurs, i.e. in the
horizontal plane in our case, the rms beam size is written:

}1/2

0o = () + 2 (5.57)

This commonly used relation is valid as long as nonlinearities in the transport is negligible. Typ-
ically, for the nominal energy (without lasing) spread in the IRFEL (0.2% RMS) it can be used.
From Eqn.(5.57) we see that to deduce the energy spread we must know the dispersion function,
7, but also the betatron contribution 3£ to the beam size. Though the former can be easily mea-
sured or estimated via magnetic optics code, the latter requires an emittance measurement (in a
dispersion free region) and the propagation of the Twiss parameters to the dispersive region where
energy spread is to be measured. Indeed we can avoid the emittance measurement® by varying the
strength of an upstream quadrupole while observing the beam size on the dispersive location, until
the beam size is minimum. At that point the betatron term contribution to the beam size is the
smallest possible. In figure 5.28, we present the beam size variation for two scenarii of energy spread
(i.e. the case were the laser is off i.e. o5 >~ 0.2% and on i.e. o5 ~ 2%). For the lowest energy spread
the minimum beam rms size simulated with DIMAD is comparable to the quantity nd. However for
larger energy spread, we observe discrepancies between the value computed from DIMAD and the
one derived from Eqn.(5.57). This disagreement comes from the non-negligible nonlinear dispersion
at the location of the beam size measurement which renders Eqn.(5.57) difficult to use (because it
only contains linear dispersion): Let 2, $670 be the position and divergence of an electron at the
entrance of a magnetic system, with a zero-energy spread, and let x5, {, 5 be the same coordinates
associated to an electron with an energy spread §. Inside the bending syslcem that generates energy
spread, we will have:

rpo = Riurop+ R12$670 (5.58)
rps = Ruros+ R12$675 + R0 + Ti660”

8The systematic error, Ao, on the bunch length computation is:
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= 20+ Rigb + Tigeb?

Therefore we can define an orbit offset with respect to the “reference orbit”, i.e. the orbit of the
electron with no energy offset ¢ = 0, as:

de
Ax If $f75 — $f70 = R12$675 + R16(S + T16652 (559)

Hence the energy spread can be expressed as a function of Az by solving the second degree equation
in 4 and taking the physical solution:

§ = — e [1 - (1 + 4%(&)2)1/1 (5.60)

 2Tes 6

In the case of practical value in the bending systems of the IRFEL, a third-order Taylor expansion
is largely sufficient, therefore the energy offset of an electron at position Az with respect to the
reference orbit is:

ﬁ T166(A$)2 2T166(A$)3

§=—
Rie R:fes R?es

(5.61)

As an example we shall consider an energy-spread measurement performed using a beam profile
monitor located in the center of one of the by-pass chicanes: Using the second order magnetic optics
code DIMAD, we computed transfer the matrix elements to be Rig =~ —42 cm and T ~ 45 cm.

5.8 Estimate of Longitudinal Emittance in the Undulator Vicinity

An important parameter to permit the laser to turn on, as we will discuss in detail in Chapter 6,
is the longitudinal emittance. We define it as:

Z45 = 1/ (6)(5%) — (06)? (5.62)

where ¢ is the longitudinal coordinate expressed in units of RF-degree and ¢ is the momentum
spread.

At the undulator location, the longitudinal phase space is at a longitudinal waist i.e. the correlation
coefficient (¢d) vanishes and therefore the emittance is simply the product of rms bunch length and
energy spread. At the undulator location we can measure the bunch length using CTR methods
(see fig. 5.29). However an energy spread measurement can be performed only in a high dispersion
point i.e. in the middle of one of chicane thanks to an OTR profile monitor (see fig. 5.29). It is
therefore important to check how the measured energy spread relates to the energy spread at the
bunch length measurement station. Under the validity of linear transfer matrix formalism, it is
clear that energy spread should be the same over the whole region provided the FEL is turned off.
However, we must be cautious about the applicability of linear optics: there are a few effects that
can significantly spoil the energy spread. The principal effects are the longitudinal space charge
force and wakefield effects. The former has been studied by performing numerical simulations using
the code PARMELA. As pictured in figure 5.30, where we compare the longitudinal phase space at
the wiggler insertion and the one at one potential point of measurement, namely the downstream
chicane midpoint, the energy distribution change is insignificant. The degradation of energy spread



induced by space charge is not a concern in the present discussion.

The second mechanism that can potentially deteriorate the beam energy spread is due to wakefield
generation as the beam encounters discontinuities in the vacuum chamber. Between the point of
bunch length measurement and the energy spread measurement station, the largest discontinuity is
introduced by the beam pipe size variation close the wiggler magnet: there is a transition between
the standard beam vacuum chamber, that has a circular section of 50.8 mm diameter, and the
undulator vacuum chamber which has a rectangular section of 48 x9 mm?2.
Wakefield forces are due to the change in boundary conditions surrounding a particle, which obligate
the Coulomb field to reorganize. An electron in the head of the bunch can cause an electric field
at the location where the boundary condition changes. An electron behind can interact with this
electric field and thereby modify its orbit. Typically wakefields are described by wake functions.
For an electron traversing a structure with an offset (z,y), with its velocity parallel to z, the wake
function writes:
1 o0
W(w,y,s) = E/ dz (ﬁ(x,y,z,t)—l—c?A ?(x,y,z,t)) (5.63)
— 00
If we assume all the electrons are centered in the structure, i.e. = y = 0, the principal effect
of wakefield is to introduce energy variation along the bunch which in turn can spoil the rms
energy spread. The rms energy spread induced by this effect is purely coming from the longitudinal
wakefield, W); it writes:

0o 1/2
O wake = € [ | dsaomits) - i (5.64)

where A(s) is the bunch distribution function, and k) dlef —1/e [Z2 W) (s)A(s)ds is the total loss

factor.

In the present case the computation of the wakefield is estimated by using a 2D code TBc1 which also
assumes the bunch is a rigid line charge distributed along a gaussian distribution. The expected
energy spread increase to the wakefield effect is presented in figure 5.31: it is noticed that the
associated energy spread is, in the worst case 25 times less than the beam intrinsic rms energy
spread (of typically 50 keV at 38 MeV as achieved in numerical simulations). Hence it is not
expected to have a significant contribution since the total energy spread is the quadratic sum of the
intrinsic and wakefield induced energy spread. Moreover the step transition between the wiggler
and the circular vacuum chamber has been smoothed by introducing a “trumpet” shaped copper
piece.

Hence under the assumption that there is no mechanism to spoil significantly the energy spread of
the beam, when the longitudinal envelope is at a waist close to the undulator location (.e. (§z) ~ 0),
the longitudinal emittance reduces to £, ~ 0,05 (where o, is the bunch length measured in the
undulator vicinity and oj is the energy spread measured in one of the high dispersion locations in
the chicanes). Typical bunch length and energy spread measured during the commissioning of the
IRFEL, in the period just prior to first laser light production, are respectively ¢, =110+ 30 pm
and o5 =0.25 £ 0.05% which yield a longitudinal emittance of approximately 18.8 £ 5.5 deg-keV.
This is much larger than the expected value from the PARMELA code (11.7 deg-keV) but still within
the specification 33 deg-keV.



5.8.1 Conclusion

In this chapter we have developed techniques to measure bunch length. Theses techniques in-
clude both a frequency-based method that consists of measuring the energy spectrum of coherent
transition (and potentially synchrotron) radiation, and a time-based method. Both techniques are
capable of resolving picosecond-time-scale bunch lengths. Along with bunchlength measurement,
some insights on the longitudinal phase space can be obtained by measuring the energy spread from
which, knowing the bunch length, the longitudinal emittance can be computed.
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Figure 5.15: Fine scan of the central part of the interferogram presented in Fig. 5.14(A). The
experimental interferogram (circle) is compared with an interferogram generated from a gaussian
distribution (solid line) and a square distribution (dash line) both of these distribution have the
same FWHM (A). The interferogram is compared with an interferogram of the sum of a square
and gaussian distribution both having a FWHM of 110 um (B). The baseline is 2.7 V.
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Figure 5.21: Experimental setup to measure bunch length with zerophasing method in the IR-FEL
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Figure 5.22: Horizontal beam envelope evolution from the exit of the four cavities in the cryomodule
up to the beam profile station in the spectrometer transport line for different numbers of zerophasing
cavities. For each case, the space charge routine in PARMELA is turned on and off.
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Chapter 6

Beam Dynamics Studies

In the present Chapter we would like to present few applications of the diagnostics we have previ-
ously described. Essentially, to the present date, these instruments have been helpful in trying to
optimize and understand the photoinjector. They have been used to optimize the bunching scheme,
and verify that the beam parameters close to the undulator insertion are within the specified val-
ues. Recently we started to study transverse emittance growth to assess if we could relocated the
undulator in the back leg transport as it is presently envisioned for the IRFEL Upgrade.

6.1 Study of the Photoinjector

The beam generation and low energy transport is probably one of the most crucial issue for the
driver-accelerator; every care must be taken to prevent any beam degradation and insure the beam
parameters remain within the specified values. Since the injector transports low energy, high charge
bunches, effects such as space charge have to be taken into account.

A few features of the DC photoemission-based injector, especially the beam generation using the
GaAs photocathode, have been described in Chapter 1. Here we shall only concentrate on the beam
transport from the gun exit up to the front end.

The injector beam linepro is pictured in fig. 6.1; it can be divided into three main regions:

1. The 350 keV transport line that consists of two solenoid lenses and a warm buncher cavity,

2. The high gradient accelerating structure, composed of two CEBAF-type superconducting
cavities capable of accelerating the beam up to a total energy of approximately 10 MeV,

3. The 10 MeV region that can be subdivided into two parts: a quadrupole telescope that is
used to match the transverse phase space into the main linac and an achromatic injection
chicane that consists of three bends arranged in a “staircase” configuration.

In this section we will study each region, try to provide a simple model of beam evolution, we will
compare with simulations, and when possible, benchmark with experimental results and provide
tentative explanation of discrepancies. However, we will not describe the photoemission process
and acceleration in the gun chamber since it has been treated in Reference [14].
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Figure 6.1: Simplified schematic of the IRFEL photoinjector (see text for explanation).
6.1.1 Introduction
The numerical model

The injector has been subject to extensive integrated modeling using several codes. The PARMELA
particle pushing code is used as skeleton for the simulation [53], the electrostatic field in the gun
and in the solenoid lenses are computed with the POISSON code, whereas the electromagnetic field
in the RF cavities are obtained from a 3D model using the MAFIA family code. The injector
parameters have been set after many iterative optimization runs using PARMELA. The resulting
rms beam transverse and longitudinal envelopes throughout the injector transport, optimized for
a gun voltage of 350 keV are presented in figure 6.2.

6.1.2 The 350 keV region

The beam is generated with a DC photocathode gun aforementioned. The accelerating voltage
between the photocathode and the anode can reach 500 kV. Ideally one would like to maintain
the highest accelerating voltage to minimize the space-charge-induced emittance growth since this
force is proportional to 1/4%. Unfortunately because we encountered technical difficulties (e.g. field
emission of the cathode support) during the gun commissioning, we had to operate the gun with
a lower accelerating voltage of 350 keV (and sometime 330 keV). It was assessed via numerical
modeling that even with this lower accelerating voltage, we could still find adequate settings to
provide the required beam parameters at the undulator location. As a bunch is emitted and
accelerated in the gun, its rms transverse (i.e. radial) beam size is strongly diverging and the
bunch is elongating as pictured in figure 6.2. To correct for the strong divergence and collect all
particle of the bunch, a solenoid lens has been located immediately downstream the anode plate.



120 240 360 480 600 720 840 960 1080 1200

6.0
Aao['
£ 40
E 30
&'2.0
1.0

0 200 400 600 800 1000 1200
z (cm)
GUN BUNCHER CAv4 QUAD1 QUAD4 _ DIP1 DIP3
e e Iy SN, SR v M| SR S N\ N
Ot J—Lrt 1T " \— ANV A VN
SOL1 SOL2 CAV3 QUAD3 QUAD2 DIP2

Figure 6.2: RMS transverse (o, and o,) and longitudinal (o,) beam sizes along the injector. The
bottom schematics locates the optical elements along the beam line (the gun accelerating voltage

is 350 keV).

This solenoid, that will be referred henceforth as the “emittance solenoid”, because of its impact
on the beam emittance, should be operated with the optimum magnetic field to minimize space-
charge-induced emittance growth and make sure there is no beam loss downstream due to scraping
on the vacuum chambers. Typically the optimum magnetic field depends on the charge per bunch
and electron energy (i.e. accelerating voltage of the gun). Generally the gun along with this first
solenoid are referred as the beam generation line'. Usually, this region is entirely simulated with
numerical methods: the magnetostatic field 2D map in the gun and in the solenoid ? are computed
with magnetostatic solver code such as POISSON and PARMELA is used to simulate photoemission
of electron macroparticles and track them along this generation line.

In the following we are going to provide analytic description of the evolution of the beam parameters
along the 350 keV transport beam line. This analytic description is based on coupled differential

'this generation line as been the subject of a PhD thesis see Reference [14]
2The gun and the solenoid are cylindrically symmetric elements



equation that require some initial conditions, that we will take to be at the emittance solenoid exit.
Let o, and o, be respectively the rms transverse and longitudinal beam envelope. It is well know
(e.g. see reference [54]) that one can describes the evolution of the beam envelope via the so-called
coupled rms envelope equation that write (extended from reference [54]):

d%a,(s) 3 Nr. 1 g o} _é_

g TR e o ) (1‘27 ) o7 =" (6-1)
9%0.(s) 3 Nre g E(s)?
T Hh ) - e e e 5 T e

where ¢ = g(0./0,,b/0,) a function of the beam rms size and the vacuum pipe diameter b, de-
scribes the effect of the bunch interaction with its image on the beam line vacuum chamber;
r. = e%/(4megmc®) is the classical radius of an electron and g is the bunch reduced energy (from
now on we will assume an energy of 350 keV, i.e. 8p=0.8048 and 7;=1.6849. To convince ourselves
on the necessity of using the above equation system, we can study the dependence of the “space
charge over emittance ratio”. For the longitudinal direction we define this ratio as:

def 3 Nr. go,

ATV I ERE 6:2)

The same kind of factor can be defined for the transverse direction:

R. def 3 Nr. ~(7,2, (1 g 072, ) (6.3)
10v/5 70 (£7)%0 2950

The evolution of these ratios along the beam line using rms envelope numerically computed with
PARMELA are shown in figure 6.3. In the 350 keV line it is seen that space charge contribution in
the envelope equation can be a factor 100 larger than the emittance term contribution. Even in
the 10 MeV region, there is still a predominance of space charge term by a factor 10 except in the
bunching chicane where dispersion increase transverse beam size and therefore locally reduce space
charge force. On the other hand, the longitudinal ratio is significantly larger than unity only in
the 350 keV region. It is strongly damped as the beam is accelerated in the 10 MeV structure and
downstream the cryounit the longitudinal envelope equation is only driven by the emittance term.
To apply the rms envelope equation to the different elements we can use the following steps:

o for a drift space, the external focusing parameters, k, and k, are set to zero.

. . . buncher v
13 . ! / €
e the buncher cavity is modeled as a “slope impulse”: z + /\RF 20

e the solenoid external focusing parameter is estimated using the relation kg = zan% where By

is the integrated magnetic field, which we have estimated using a POISSON generated magnetic

field profile.

6.1.3 The high gradient structure

In this section we would like to discuss few interesting effects induced on the transverse beam
dynamics by the CEBAF-type accelerating cavities. The discussion will enable the reader to un-
derstand experimental results presented in the next section.



N

=
Q

=
o
.
e

=
<
(
|
|
|
\

=
S,
s

=
S,
N

=
S,
w

S R,

A

Space Charge over Emittance Ratio (no unit)

=
S,

0 2@0 400 600 800 1000 1200
Distance from the Photocathode (cm)
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Energy Gain

The acceleration in accelerating cavities is provided by the longitudinal component of the electric
field of the fundamental mode. Such field can be written approximately:

E. = Eycos(kz) cos(wt + ¢) = % (cos(wt + ¢ — kz) + cos(wt + ¢ + kz)) (6.4)

Fy is the peak field, z is the position with respect to the cavity center, and ¢ is the offset phase
between the particle and the RF-wave. Because of their energy at the first cavity entrance, 350 keV,
the electrons are not relativistic and therefore one electron is not going to keep the same relative
phase with respect to the RF-wave, such effect is named phase slippage. Let’s define the phase
U(z) as:

def

\Il(z):wt—kz—cb:k/oz(%—l)dz—l—qb (6.5)

Moreover the normalized energy gain is:

dy(z) ( eFy

= \2me

- 1) (cos(W(2) + 2k=) + cos(W(2))) (6.6)

The Eqns.(6.5) and (6.6) together form a coupled differential equation system that can be solved
numerically using standard technique. Figures 6.4 presents the energy gain in the two cavity with



an electron beam of initial energy of 350 keV. It is notably seen that maximum energy gain provided
by the first cavity (cavity #4) is not obtained by injecting the bunch with a relative phase ¢ = 0
w.r.t. the RF-wave. This fact is a consequence of phase slippage between the RF wave and the
bunch which is not yet relativistic. In fact to obtain the maximum possible energy at the exit of
cavity #4, one needs to inject the bunch with ¢ ~ —40 deg.

Cav #4 Cav #3

=

=
o

o

Reduced Energy Gain ~(no unit)

— ¢=-16 deg.
--------- »=0 deg.

L L L L L L 0
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0
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Figure 6.4: Reduced energy gain, =, along the first (cavity #4) and second (cavity #3) cryounit
cavity.

Radio-Frequency induced Focusing

The fundamental mode longitudinal accelerating field also induces, by virtue of Maxwell’s equations,
a radial electric component that writes:
r(z) d
E = 6.7
(=" (67)
This radial field together combined with the equation of motion d;p = ek, yields a transverse
equation of motion, e.g. for the horizontal plane:

dx(z)  A(2)da(z)  d*(2)
dz? v(z) d=z dz?

x(z) =0 (6.8)

This equation can be solved numerically, but some approximated solution have been derived by
Chambers [58, 57], for pure 7-mode accelerating cavities, and are in very good agreement with the



numerical solution [56]. This approximate solution is written in term of transfer matrix (e.g. in
the z-2’ phase space) as:

- ( cos(a) — /2 cos(¢) sin(a) 825 cos(¢) sin(a) )

5 (S o) in(@) 3 (costa) + v2eos()sin)

(6.9)

where «; ¢ are the initial and final reduced Lorentz factors, the angle ais o = mln('yf/%)

and ¢ is, as usual, the phase of the injection of the particle with respect to the on-crest phase. '
is the averaged (over the RF structure) energy gradient: v/ = Tig cos(¢). The focal length can be
estimated in a straight forward fashion: using first order matrix formalism, the oy; beam matrix
elements at the exit of the cavity of the cavity are related to the beam matrix element at the cavity
entrance by:

(f) 2 _(0) _(f) (f) 2 _(0)

0
011 = M1011, 012" = _m11m21‘7§1)7 022 = —M21011 (6.10)
After a drift along a distance [, the beam size writes:
O'{lf = Uﬂ[) - QIUS) + lzag) (6.11)
Since the focal length is defined by the length f where we have dagf)/dl =0, it yields:

def aﬁ) _ M cosa— V2 cos ¢ sin o (6.12)

f o " ma 2 (T; n @C;w) sin o

Unfortunately this model is derived assuming perfect axi-symmetric RF structure which is generally
not the case: in the CEBAF-type cavities, for instance, there are asymmetries in the vicinity of
the high order mode (HOM) and the forward power (FP) couplers. These asymmetries, in turn,
induced transverse electromagnetic fields. Thus it requires a complete 3D model to accurately
study the effect of these couplers on the beam dynamics. Such a 3D model is readily available
and has been implemented in the Jefferson Lab version of PARMELA using 3D electromagnetic field
map generated with the eigensolver MAFIA [64]. In order to characterize the focusing effect of the
cavity we generate a hallow sheet beam in the & — y spatial coordinate space with zero divergence
(i.e. 2’ =y’ = 0 for all macroparticle in the beam). The properties of this kind of beam has a
beam size that is equal to the hallow radius, and zero-emittance. After the accelerating cavities the
parameter 0'{1 and 052 are computed and the focal length is deduced using the equation 6.12. The
results computed for the two cavities in the injector, taking into account non-relativistic effect, are
presented in figure 6.5.

Radio-Frequency induced Steering

In a similar fashion we have studied, for the injector cavities, the RF-kick effect on the beam cen-
troid. The kick imparted due to the presence of transverse field in the accelerating structure versus
the phase of the electron bunch with respect to the RF-wave are plotted in figure 6.6.

The RF-induced kick due to the presence of the forward power and High order mode couplers can
yield emittance dilution via two effects: the head tail effect and the skew coupling. The former is
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Figure 6.5: Focal length of the first (cavity #4) and second (cavity #3) cryounit cavities versus
A¢, the phase difference w.r.t. the maximum energy phase (so-called “crest phase”)

due to the fact that the kick is dependent on the particle position inside the bunch, and therefore
vields a differential motion between the head and the tail of the bunch. This in turn reults in
an increase of the bunch (projected) emittance. It is straight forward to estimate the emittance
growth due to this effect: it depends on the bunch length and the beam parameters at the location
of the considered coupler. The general expression for the emittance growth is [62]:

0z
2€ 10

85, ~ (402 + Ba?) (6.13)
where £y is the initial emittance, o,, 0, and o/, are respectively the rms beam size and divergence
at the coupler location, and A and B accounts for the steering effects of the cavity, these latter two
terms can be estimated using tracking code. The other contribution that can spoil the transverse
emittance is the skew coupling effect induced by the skew quadrupole moment of the electric field in
the cavity: it introduces a coupling between the vertical and horizontal transverse plane. Generally
the corresponding effect on emittance growth is smaller than the head-tail effect induced dilution
and it can be reduced with a proper correction scheme [62]; this latter effect will be ignored in the
forthcoming discussion.

6.1.4 The 10 MeV Region

As previously mentioned, we have instrumented the 10 MeV region with a variety of diagnostics
devices: beam density monitors, emittance measurement devices, a time-of-flight pickup and a
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electromagnetic beam position monitor. Therefore, we can try to compare the experimental mea-
surements with numerical simulations and attempt to explain potential discrepancies and try to
refine the model to incorporate the effects that may account for these discrepancies.

Transverse Beam Properties

As a first qualitative observation, we measured beam density profile on the OTR density monitor
located just downstream the accelerating structure. A comparison of the measured and expected
beam density is shown in figure 6.7. The beam shape are quite similar, and rms value are in agree-
ment at the 30% level: g% ~ U;m“ = 1.47mm, and o™ = 1.77, and o,"¥ = 1.60 mm. However
first measurements of transverse emittance based on the phase space sampling method utilizing
the multislits mask revealed emittance 70% larger than simulated. Many parametric studies where
conducted to determine if this emittance growth could be minimized by use of available parameters:
the magnetic field in the first and second solenoids, and the buncher gradient. Most of our effort
concentrated on the solenoid lenses and the buncher gradient, also this latter knob is difficult to
adjust because it also affect the bunching scheme and some other adjustment (accelerating cavities
and phases along the linac) are then needed to preserve an ultrashort bunch length in the main
linac at the undulator location. An example of parametric study of the transverse emittance versus
the “emittance” solenoid magnetic field is presented in figure 6.8. This figure clearly reveals the
injector emittances are degraded compared to the one predicted via numerical modeling. One hypo-
thetic explanation of such a disagreement is a the misalignment of the cryounit with respect to the
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beam axis. Such hypothesis has been inferred from other observations during the commissioning
of the injector including a noxious orbit that could not be straightened® out. In the figure 6.8, the
misalignment curve was generated by steering the beam by b0mrad upstream the cryomodule. In
our desire to obtain a more realistic model of the IRFEL electron beam transport, we included the
misalignment in PARMELA and get emittance values closer to what we experimentally measured.

Energy Spread

The energy spread can be estimated by measuring the horizontal beam profile at the high dispersion
OTR (see figure 6.1). At this location the dispersion is computed to be 7 ~ 42 cm and therefore a
measurement of the rms horizontal beam size gives access to the quantity:

Oy = ¢ﬂwéx + (n%)z (6.14)

Using the routinely measured rms horizontal emittance (£, ~5-6 mm-mrad and beta function
Bz < 5 m) we deduce that the dispersive contribution to the beam horizontal size is dominant,
this latter statement is indeed also verified via numerical simulation using the code PARMELA. In
figure 6.9 we present the effect of the buncher electric field on the beam OTR image recorded on
the high dispersion OTR density monitor. From these images we compute the rms values for the

horizontal (energy axis) projection and compare their values with the one expected from numerical
simulation in figure 6.10. The agreement is seen to be reasonable, i.e. within 30%, except for large
buncher voltage, though in this range we believe the beam was scraping on the beam line vacuum
chamber upstream the location of the measurement.

SUnfortunately because of time constraints this problem was not addressed

15
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Phase-Phase Correlation Measurement

Similarly to the bunch compression efficiency diagnostics described in the Chapter 3, the injector is
instrumented with a pickup cavity that can be used to measure the time of arrival of a bunch and
consequently determine phase-phase correlation by modulating the RF-phase of the photocathode
drive laser. Unfortunately in the case of the FEL injector, the pickup cavity is located in a dispersive
region which renders the time-of-flight (TOF) dependent on other parameters 4, in particular to
RF-induced steering which, in turn, depends on the injection of the bunches with respect to the
RF accelerating field in the cryounit. Hence at the pickup cavity location, the TOF of the bunch
centroid emitted at the photocathode surface with initial phase ¢; with respect to the “zero-
crossing” bunch (i.e. the bunch for which the TOF is zero by definition) is:

6 = ¢rr + Rz 6 + Ry i (6.15)

where ¢rp is the TOF contribution due to the RF-induced steering: ¢prp = R;l_)facc + Rg?fx’c
; ¢, 1, and f are respectively the location of the cryounit exit, the photocathode surface, and the
pickup cavity.

The RF steering is due to (1) the RF transverse equation of motion in an accelerating cavity, and
(2) the forward power and high order mode coupler induced kicks. To quantify the contribution
of the RF-steering in the phase-phase correlation measurement, we have compared phase-phase
correlation maps generated via numerical simulation using PARMELA with two distinct models of

*The necessity of studying carefully this point was brought to my attention by D. R. Douglas
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Figure 6.9: Beam density measured on the high dispersion OTR monitor for nine different bunch
gradient settings (the images (A) to (1) corresponds to the points presented in fig. 6.10 starting
from the low gradient values)

the CEBAF cavity: a 3D mMAFIA model (which includes the coupler-induced effects) and a 2D-
cylindrical symmetric SUPERFISH model. The results are presented in figure 6.11, which shows that
there is not significant difference between the generated transfer maps except some broadening in
the case the of the map generated from the 3D MAFIA model (which incorporates the RF-kick due
to couplers). In the same figure we also compare the phase-phase correlation pattern generated if
the cavity was located downstream the cryounit after a drift of similar length to its present location
in the injector chicane; since the calculation corresponds to a dispersion-free drift, this transfer map
gives insights on the effects of the ¢pp in the above equation. We can clearly observe that this
effect does not wash out the TOF variation due to energy changes; small effects are observable
only for large photocathode drive laser phase. Despite the fact that the effect is small, it prevents
us from extracting quantitative information from the map (i.e. by performing nonlinear fits as
in Chapter 3). In fact, we can use a similar technique to the one already in use in the CEBAF
accelerator [22] that consists of comparing the phase-phase pattern experimentally measured with
one numerically generated for an ideal setup.

An application of this type of measurement was to find the proper operating point of the buncher
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Figure 6.10: Comparison of the rms transverse horizontal beam size measured in the high dispersion
OTR monitor with the one expected from PARMELA.

cavity electric field: devising a “good” bunching scheme in the injector is a three parameters prob-
lem with one possible measurement: the phase-phase correlation pattern. The three unknowns are
the buncher, cavity #4, and cavity #3 gradients (at the time of the measurement their gradients
were not precisely calibrated). Since the cavity’s control electronics and software are identical, and
because cavity #4 is operated at a gradient 30% higher than cavity #3, we estimated the gradient
with the help of PARMELA: using this code we have varied the gradient of the two cryounit cavities
(keeping cavity #4 at a gradient 1.3 times higher than cavity #3) until the simulated energy at
the injector front end matched the experimentally estimated kinetic energy of 9.56 MeV ( inferred
from the strength of the injection chicane dipoles); during the simulations the cavity #4 was set
to operate on crest while the cavity #3 was -20 deg off-crest to reflect the experimental operating
points at that time). The buncher was operated at a gradient of 0.32 MV/m. The so-generated
model is henceforth termed as “ideal” injector.

First series of measurements performed

We have investigated the buncher effect on the 320 kV gun setup® after the injector RF-phases
were properly reset. The optimized phase are gathered in Table 6.1.4. The buncher gradient was
initially set to 0.28MV/m, and we investigated the effect on the “Rs5” transfer map pattern by
systematically varying the buncher gradient. The recorded patterns are presented in figure 6.12
along with the pattern generated with PARMELA for the ideal injector. From this figure we decided

5 At the time of the present experiment we were limited to this voltage; higher voltage would induce arcing in the
gun chamber which in turn will remove the cesium from the photocathode wafer.
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Elements | Phase Gradient
Laser reference phase N/A
Buncher zero-crossing 0.28 MV/m
Cavity #4 | on-crest 11.8 MV /m
Cavity #3 | -20 deg off-crest  9.10 MV/m

Table 6.1: Nominal injector settings before the first series measurement.

to operate the buncher at 0.32MV /m since it provides a pattern very close to the simulated one.
It is seen from the figure 6.10 that the “best” buncher gradient devised by matching the exper-

imental phase-phase correlation pattern with the simulated one occurs for a buncher gradient of

approximately 0.32MV /m; such a gradient does not correspond to the minimum energy spread on

the dispersive viewer.

Second series of measurements performed

A second series of measurement was performed after the FEL photon beam was optimized for
60 pC/bunch 6. The value for the phases and gradients recorded before the measurement, after
the FEL was optimized, are gathered in table 6.2. The phase-phase pattern measured is compared
in figure 6.13 with the “ideal” one obtained by numerical simulations. The agreement between the
measurement and simulation is excellent.  This agreement validates the method for setting up
the longitudinal dynamics manipulation in the IRFEL injector. Basically the technique consists of

Sthis optimization consisted of maximizing the output FEL power by varying the buncher gradient
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Figure 6.12: “Rss” transfer map for different experimental operating points of the buncher gradient.
The measurements are also compared with the “ideal” injector devised from numerical simulations.
(First series of measurement)

Elements | Phase Gradient
Laser reference phase N/A
Buncher zero-crossing 0.32 Mv/m
Cavity #4 | on-crest 11.8 MV /m
Cavity #3 | -20 deg off-crest  9.10 MV/m

Table 6.2: Nominal injector settings before the second series of measurement.

reproducing the “optimum” correlation pattern by only playing with the buncher gradient.

6.2 Bunch Compression Studies in the Linac

Up to now we have only mentioned the compressor chicane, without much discussion. This chicane
consists of four rectangular-edge dipole-magnets arranged symmetrically. Though its purpose is
to bypass the optical cavity of the FEL, it also serves as a bunch compressor using the standard
magnetic compression scheme. Again, a simple way of demonstrating the principle is to propagate
the generalized moments of the longitudinal distribution across the chicane. Let R be the 2 x 2
longitudinal transfer matrix of the chicane and let see how (z2) propagate from the chicane entrance
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(position %) to its exit (position f):

82 1 (26)?
(2%); = R35(2%); + 2Rs5Rse(20); + R3g(0%); = Ris(2); + 2Rs5 Rs6(26); + Rges%

where we have used the definition of rms longitudinal emittance to write the far right expression.
In the present configuration, the parameter at the entrance of the chicane are set by the linac;
which indeed essentially modify the correlation term (z8),. Hence, under the assumption that the
bunch is not significantly varying with the linac set point, the minimum bunch length is given by
the condition d(2%),/3(z8); = 0, which gives the relation (28);/(z%); = —1/Rse; by definition we
introduce the longitudinal phase space slope (dF/dz); = (26)./(z?),; therefore the “matching” con-
dition for achieving minimal bunch length after the compressor system is (dF/dz); = —1/Rs6. By
setting the linac phase and accelerating gradient such that the aforementioned matching condition
is fulfilled, and because of the initial emittance, the minimum bunch length achieved, via numerical
simulations, at the undulator location is about 140 pgm (rms). The evolution of the bunch length
computed according to PARMELA from the photocathode surface up to the exit of the second chi-
cane is presented in figure 6.14. Experimentally the typical bunch length measured in the undulator
vicinity is approximately 100 pm (rms), an example of reconstructed bunch shape (using the inverse
Hilbert transform technique detailed in Chapter 5) is compared with a beam profile generated with
PARMELA in figure 6.15(C). Within the level of accuracy’, we have good agreement. By varying the
phase of the linac (thereby changing the quantity (z6).) we can vary the bunch length; we present
the result of such an experiment in figure 6.15(B) along with results from numerical simulation (in

(6.16)

7(1) we only used 500 macroparticles in the numerical simulation, (2) the Hilbert transformation, as we have seen
do not give a unique longitudinal distribution, and there are a lot of assumptions that have to be considered (e.g.
extrapolation of the CTR spectrum at low frequency,...)
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plot (B)); for completeness we also include in figure 6.15(D) the total CTR power detected. We find
that the bunchlength predicted via numerical modeling has a less pronounced variation compared
to the measured variation.

6.3 Beam Parameters Measurement Prior to “First lasing”

As we mentioned in the very beginning of this report, one motivation, for operational purpose, of
the diagnostics developed herein is to verify the electron beam quality is within the specifications
to enable the FEL to lase. In the early stage of the commissioning of the IRFEL, the undulator
magnet was removed, the main reason being that during this “tuning period” we could have
damaged the undulator because of radiation showers induced as the electron beam ”scrapes” on
the vacuum chamber. In table 6.3 we present some of the beam parameters required along with
the experimentally achieved and the numerically expected values. It is seen that we have achieved
sufficient beam quality to enable the FEL to operate however the achieved parameters are somewhat
larger than the one that could be theoretically reached as predicted from numerical modeling, except
for the bunch length. With the above parameters first light was achieved at low duty cycle within a
couple of hours after we installed the undulator magnet, and two days later we were able to operate
the FEL with an output power of 150 W (cw), thereby demonstrating the quality of the electron
beam. On the Beam Physics point of view it is interesting to try to understand the discrepancies
between the numerical model and the achieved parameter.
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6.4 Study of Potential Emittance Growth

In this last section we would like to report on an attempt to measure emittance (and to a lesser
extent energy spread) degradation in the bending system of the IRFEL. For such a purposes we
need to consider in the few following sections what are the mechanisms that can lead to an increase
of the emittance. It seems we can divide such mechanism into two categories: the first one are due
to the lattice (betatron mismatch, filamentation, chromaticity); the second type are due to bunch
self interaction (because of Coulomb field or radiation field).

A growth of emittance comes from an increase of one of the position and/or divergence, i.e. z or a’
in the 2-2" phase space. Let’s start with an initial emittance at the entrance of a beam line section
2’::03 8

2o= (B (ah?) — (eoaty?) (6.17)

If we assume, that due to perturbation in the beam line section, the position and divergence of a
particle change accordingly to:

Tg — To+ 0z
xl — w + 0’ (6.18)

8We voluntary omit the subscript , for the emittance.in this section



Parameter Required Achieved Expected

Emittances (mm-mrad) Eoy <87 £, xTb5 £,=5.16
E, =70 £, =377
Bunch Length (mm) o, <03 0.110 0.137
Energy Spread (%) SE/E < 0.2 0.25 0.140
Longitudinal Emittance (deg-keV) < 33 18.8 11.7
Charge/Bunch (pC) Q) =60 > 60 -
Kinetic Energy (MeV) E =38 > 38 -

Table 6.3: Comparison of the achieved, required and simulated beam parameters (the beam pa-
rameters are specified for a charge per bunch of 60 pC).

then, at the beam line section exit, we can compute the emittance as:

2 = ({(@o + 62)2) ((xh + 82)2) — ((zo + 2) (ah + 8a'))?) (6.19)

Which, expressed as a function of the initial parameters, takes the form:

E=24 (<5$2><5x’2> — <5$5$’>) + (23)(82") 4 (2§) (82?) — 2{zoap){6xd2’) + cross terms(6.20)

6.4.1 Chromaticity

Because a bunch does not consist in a mono-energetic distribution of electron, i.e. it has an energy
spread oF, and since focusing in the optical lattice also depend on momentum it can spoil the
transverse emittance. To quantify the lattice effect on the transverse phase space, one generally
defines the so-called chromaticity. For a beam line section it is defined as the ratio of betatron
phase advance Ap change with the given energy change, AFE:

fm/ =

(6.21)

Therefore, even under the linear optics approximation, the transfer matrix in the TRANSPORT code
formalism is dependent on § = AFE/FE. Because of this dependence there is potential emittance
variation that can be generated.

The technique we used to study the chromatic aberrations consisted of raytracing a few points on
the initial beam ellipse in the transverse phase space at the cryomodule exit. This raytracing is
performed for a variety of energy spread with a span of £1% and was computed with the TLIE code
using expansion of the transfer map up to the third order. The results for two different locations
along the beam line (after the decompressor chicane and in the middle of the backleg transfer
line) are presented in figure 6.16. The phase space distortion is very small; to further quantify
this statement we studied the emittance growth due to this effect in the backleg transfer line; for
such a purpose we tracked an initial Gaussian distribution in the 6-D phase space and vary the
rms relative energy spread of the distribution in the longitudinal plane. The result is presented in
fig 6.17. For the nominal (measured) rms relative energy spread of 0.25% the emittance growth
due to chromaticity is less than 2%, even in the case of energy spread of the order of 1% (which
can be reached depending on the linac accelerating phase) the expected growth is approximately
5%. Hence it seems in the IRFEL emittance growth due to chromatic aberration is not a concern.
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Figure 6.16: Phase space distortion due to chromatic aberration at the decompressor chicane exit
(top plots) and the arc 1 exit (bottom plots).

6.4.2 RPF-effects

In the high energy region, we have investigated the change in parameters due to variation of
accelerating phase since we will attempt to measure the transverse horizontal emittance versus the
linac gang phase®. The simulations were performed with PARMELA; and the results showing the
dependence of the beam parameters versus the linac phase are presented in figure 6.18; the linac
energy during these simulations was set to 38 MeV and the gang phase that provide minimum
bunch length at the undulator location is A¢ ~ —9.5 deg. Both horizontal and vertical emittances
at the linac exit do not depend on the accelerating phase.

6.4.3 Energy Spread induced in a Dispersive region

The general class of effects that can lead to energy spread are bunch self interaction via self field
(space charge) or radiation field (wakefield due to vacuum chamber irregularities, synchrotron
radiation). We have already briefly considered longitudinal wakefield at the end of Chapter 5 and

°A reminder that in Appendix D we provide a schematics of the RF-control system
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Figure 6.17: Emittance growth due to chromatic aberration versus the momentum spread and
energy offset of the beam.

have show that it is very small for our beam parameters. In fact all the beamline components have
been specified in such a way that the total longitudinal loss factor is within some impedance budget
so that the potential beam degradation is very small [65].

In this section we would like to show how energy spread generated in a dispersive region (i.e. a
bends system) can couple to the transverse plane and yield emittance degradation. The linearized
equation of motion of an electron in a bend, assuming no external focusing and no coupling between
the two transverse phase spaces, for the bending plane (the x-x” plane in the case of the IRFEL)
is [59]:

2
o 2 _29 (6.22)

TN
where s is the longitudinal position referred w.r.t. the entrance of the bending system, p, is the
radius of curvature of the trajectory and 4 is the relative energy offset w.r.t. the reference orbit.
Let’s assume, for simplicity, that the mechanism generates an energy spread that is only dependent
on the curvilinear coordinate s'°) i.e. § = §(0) + d(s). Under such an assumption, the latter
equation takes the form:

>z 5(0)+4(s)

—— =T 6.23
ds* ~ p2 Pe (6.23)

Ygenerally speaking the mechanism is also dependent on time, for a complete treatment see [69]
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Figure 6.18: Evolution of beam parameters (bunch length o, rms energy spread AFE, transverse
emittances £, ,, and rms beam sizes o, ,) versus the operating accelerating phase of the linac.

which can be solved using the standard Green function perturbative technique [59]'! The solution
of the above equation is:

2(s) = cos(s/ps)x(0) + posin(s/pe)2'(0) + pa(l — cos(s/ps))6(0) + /0 —pusin(3/py)8(3)d3

2'(s) = =1/pusin(s/py)x(0) + cos(s/ps)a’ (0) + cos(s/ps)8(0) + /05 cos(5/py)0(8)d5(6.24)

the latter equation clearly shows that, compared to the constant energy spread equation, there is
an increment in angle and position of:

Ax(s) = /0 o sin(3/p.)5(3)d
Ax'(s) = /0 " cos(3/px)3(5) (6.25)

To compute the emittance growth we need to compute the second order moments ((z2), (2?)
and (zz')) and substitute them in the eqn.(6.20). It is interesting to note that in the case of an
achromatic bending system, the achromatic character is broken because of Eqn.(6.25). Another
interesting point is that depending on the bending system design, one can conceive a way of making
the above integral very small (or ideally zero) so that the net emittance growth is negligible. Such
a method has been discussed in detail in references [60] and [61].

Y1Tf we consider the right hand side of the previous equation as a perturbation term p(t,s) the solution of this

equation writes z(t) = fotp(f)dfG(t, t) where G(t,t) is a Green’s function that can be constructed from the two
principal solutions (S(t) and C(t)) accordingly to:

G(t, 1) = S(t)C (i) — C(1)S(E)



6.4.4 Bunch Self Interaction via Coherent Synchrotron Radiation

CSR is a long standing topic in several subjects, especially in Accelerator Physics. The first
comprehensive study was performed by J.S. Nodvick and D.S. Saxon [4] in 1954. These authors
studied the interaction of charged particle moving on a curved path between to perfectly conducting
plane and showed how CSR emission could be partially suppress at a given wavelength by the means
of the two conducting plane that act as a shielding. Indeed, to the best of our knowledge, CSR effect
on the Beam Dynamics, and CSR emission, have never been observed in storage ring or circular
accelerator. It is a consequence of the generally long bunch that are circulating in such accelerator:
as we will see in this chapter, CSR emission occurs at wavelength comparable to the bunch length.
Therefore, for bunch length of the order of centimeters (as it is current in circular accelerator),
the emission of CSR should occur in the microwave region: unfortunately, the size of the vacuum
beam pipe chamber, which serve as a waveguide for the CSR, propagation, are also of the order of
centimeters and so is their cut off wavelength. Therefore the CSR emission is “shielded” by the
beam pipe, i.e. it does not propagate. In fact, only very recently, CSR emission in the far field
region, and in the far-infra-red wavelength has been observed in a 100 MeV linear accelerator of
the Tohoku University by T. Nagazato [66]. This group showed experimentally how it was possible
to infer the bunch length and bunch structure using the frequency spectrum of CSR, using the
same technique we presented in Chapter 4 for the transition radiation. They also demonstrate
the possible shielding of CSR emission using two parallel conducting plane with variable gap [67].
However the anticipated effects of CSR on the Beam Dynamics, i.e. transverse emittance dilution,
has never been observed up to now.

A simple model: steady state in free space

We outline in the present section a simple picture of the CSR phenomenon. For such a purpose we
start with the Liénard-Wietchert retarded electric field [8]:

(6.26)

= [l

v2(1— 7. 0)3R?

ret

R is a vector from S’ to S,and 1 — ﬁﬁ =1—[Fcos(Af/2) and A = A(O?’,O?) (see figure 6.19).
The subscript ,.; means that the quantities inside the brackets must be evaluated at the retarded
time t’. Because of causality the retarded ¢’ and present ¢ times are related by ¢ = t' + R(t')/c
or equivalently by A8 = A¢ — 20psin(A¢/2) with A¢ being the angle between the two electrons
in the moving frame, p the radius of curvature, and Af the angle between them in the laboratory
frame.

The problem has been treated in several references (e.g. Ref.[69]), it first consists of calculating the
electric field emitted at the retarded time and location S’ at the present time and location S. This
electric field induces an energy change on S, V (s—s'), that depends on the relative positions, s and
s', of the two particles. In essence CSR is very similar to wakefield: it yields an energy redistribution
along the bunch. The energy change of a reference particle S is given by the superposition of the
radiation force of all the back particles:

dE 5 ! ! !
T = /_OO AV (s — ¢')ds (6.27)



one obtains for the energy change [68]:

dr

In the case of a rigid line charge with a Gaussian distribution A(s) = N/\/2rc2exp [—s?/(202)],
_ 2N e?
d(ct)

F(s/o,
(277)1/231/3,02/303/3 (s/0:)
with the function'? F defined as F(¢) = [¢__ T

(6.28)
%;1/3%, —€2/2 A plot of this energy change is
presented in figure 6.20 along with simulation results using a modified version of PARMELA that

gain for electrons located in the head of the bunch.

includes a simple model for CSR bunch self interaction (see Appendix B). Contrary to standard
wakefield where the trailing electrons in the bunch generally lose energy, CSR effects yield an energy

Bunch at Present time

Bunch

Trajectory ’

\

Bunch at Retarded ti me\ Tl

.o
Figure 6.19: Schematics of CSR self interaction of a bunch.

Limitations of the previous model

The model of CSR bunch self interaction briefly outlined in the previous section is oversimplified
in two ways: (1) it assumes the bunch has been orbiting on a circular path for ever (steady state
assumption) and (2) it assume the bunch is in free space. Both of this assumptions are not true in
practice: (1) an accelerator (even circular) consists of straight sections joined by bending elements
therefore a more realistic picture of CSR, should include the transient CSR, i.e. the passage from
the straight section to the bend section. (2) the bunch propagates in metallic (e.g. stainless steel)

vacuum chambers and therefore CSR can be shielded (i.e. not allow to propagate because of the
cut-off frequency associated with the geometric parameters of the vacuum chamber).
12

sometime termed as “overtake” function
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Figure 6.20: Analytical computation for CSR-induced energy loss along a gaussian bunch and
prediction using a simple numerical model in a modified version of the sc parmela code for 200 pm
(A) and 100 gm (B). The system considered is a simple achromatic chicane (macroparticle with
A¢ > 0 are in the bunch tail).

6.5 Preliminary Experimental Results on Emittance and Energy Spread Mea-
surements

The primary purpose of the experiment that was attempted in the IRFEL is to measure whether
the transverse horizontal emittance is significantly degraded after the recirculation arc 1. The rea-
son is to confirm the viability of the envisioned Upgrade IRFEL in which several wigglers will be
located in the backleg transport.

Another motivation was to try to setup the IRFEL optics so that we could generate emittance
degradation and perform some parametric studies.

The experimental setup to measure emittance follows our discussion of Chapter 3.

The experiment was attempted in two series of runs. During the first run, we varied the linac
accelerating phase and measured the emittance before and after the arc 1. In the second series
of run, because the emittance was found to be large (technical problem with the injector), we
concentrated on measuring the energy spread measurement only.



6.5.1 Emittance Measurement

A first experiment consisted in varying the bunch length at the undulator location and measuring
the horizontal emittance after the decompressor chicane. A typical plot obtained is presented
in figure 6.21. The emittance seems to go through a maximum for a minimum bunch length
in the undulator vicinity (as inferred from the maximum CTR signal). From a simplistic model
implemented in PARMELA we found that at such point the emittance increases compared to the case
where CSR is not included in the calculation is approximately 10%. At the time of the measurement
we operated the gun with a very poor photocathode and could not extract more that 20 pC charge
per bunch, a too low charge to unambiguously measure potential effects from CSR bunch self
interaction, if those are present. A fully self-consistent code, written by R. Li of Jefferson Lab [70],
ran for 60 pC and a nominal emittance of approximately 7 mm-mrad yielded a 20% increase in
emittance!3.

We also attempted to compare the transverse horizontal emittance before and after the arc 1. In the
case corresponding to the nominal operation of the linac, which corresponds to a minimum bunch
length in the undulator vicinity, no emittance growth was observed within the error bars (transverse
horizontal emittances measured were approximately 18 mm-mrad normalized at 38 MeV).
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Figure 6.21: Transverse Horizontal emittance and total power CTR signal measured as a function
of the linac gang phase.

13R. 1i, private communication, this increase was noticed to be very dependent on the optical lattice setup.
Unfortunately no parametric study has been completed to the present date



6.5.2 Energy Spread Measurement

In the second series of run, we were able to extract high charge per bunch from the photocathode
(typically 60 pC) but we were never able to establish sufficiently low transverse emittance in the
IRFEL '* to provide a low enough signal-to-noise to see definitively a potential emittance growth
at the arc exit. In the case of energy spread, it was generally difficult to convince ourselves that we
had removed all transverse effects of transport from the viewer images, something that needs to be
done to be sure only energy spread is being observed on the viewers. However, for a few select cases
corresponding to short bunchlengths close to the undulator, we believe we have good data, and
within the resolution of these measurements, they show no increase in energy spread as pictured in
figure 6.22. This result is consistent with simulation performed with the JLab self consistent code
which indicates the energy spread increase between the compressor chicane midpoint and the arcl
exit should be of the order of 5% 5.

(A) (B) ©) (D)

Energy Distrib.

-0.01 0 0.01-0.01 0 0.01-0.01 0 0.01-0.01

L

3 & =
S *

0.1 | .

5 (%)

0.2

O [ L 1 L 1 L 1 L
0 20 40 60 80

Distance from the cryomodule exit (meters)

Figure 6.22: Energy distribution measured along the beam line, at the chicane midpoint (A) and
(B) and entrance of the arcs (C) and (D) [the horizontal axis of these plot represent the relative
energy spread (no units)]. The bottom plot presents the rms relative energy spread computed from
the distributions.

Mthe reason is still not understood at the present time
15R. Li, private communication



6.5.3 Conclusion

Our experiment on CSR was not very successful because of bad beam quality during the period
we tried to performed the measurements. However a preliminary conclusion would indicate that
CSR is not a significant effect in the IRFEL, in the sense that no tremendous growth of the
transverse emittance or the energy spread was observed even at 60 pC. Only one measurement has
been performed and there might be optical lattice setups that may provide a larger energy spread
and emittance growth. At minimum we can conclude that with the nominal setup of the IRFEL
accelerator neither significant emittance dilution nor energy spread generation were measured. In
the future, once the beam dynamics in the machine is fully optimized, one should try to transport
higher charge (e.g. the full 135 pC required for the Upgrade IRFEL), and attempt to generate and
measure beam degradation due to bends.



Chapter 7

Conclusion

The work presented in the present report describes in detail the implementation of different types of
diagnostics for a relatively high brightness electron beam and the applications of these diagnostics
to study some beam dynamics problems. This work had a significant contribution in the success of
commissioning, understanding and operating the first high average power (kW-level) infra-red free
electron laser oscillator that has been built at Thomas Jefferson National Accelerator Facility.

The recirculator transverse response functions, the lattice dispersion, and the longitudinal transfer
functions Rss and Rss (along with nonlinearities) have been measured and compared with a mag-
netic optics code such as DIMAD and particle pushing code such as PARMELA.

We have implemented two transverse phase space characterization techniques to study the phase
space density of the electron beam as it is still in the space-charge dominated regime, but also in
the emittance dominated regime. The former technique based on transverse phase space sampling
using a multislit mask has allowed some preliminary parametric studies of the phase space of 60 pC
charge per bunch beam produced at the front end of a 10 MeV photoinjector and has been capable
to resolve emittance as low as 1 mm-mrad in a test injector stand.

Along with the transverse phase space, a full six-dimensional characterization of the phase space has
been attempted by measuring both bunch length and energy spread of the electron beam. Because
of the ultra-short beam required to drive a free-electron laser (typically <0.5 picosecond rms bunch
length), we have instrumented the driver-accelerator with Michelson interferometers that detect
coherent transition radiation produced by the bunched electron beam. This interferometer has also
been used to perform parametric study of the bunch length evolution versus some radio-frequency
element that play a key role in the bunching scheme.

Finally a full model based on multiparticle simulation of the IRFEL has been elaborated and com-
pared when possible with experiments. A tentative experiment to measure energy spread generation
in the recirculation arc of the driver accelerator, along with emittance dilution has been performed.
The results yields the observation of emittance growth that is correlated with bunch length in the
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undulator vicinity. We have not managed, up to the present date, to unambiguously demonstrate
whether this effect was due to coherent synchrotron radiation. A second series of runs were per-
formed, where we concentrated on the measurement of energy spread along the transport channel,
resulting in no observation, within the precision of the measurement, of energy spread generation
(also this data were taken for one operating point of the linac only).

We can conclude, at a minimum, that it should be possible set up a beam that will transport around
the Bates arc without significant growth in energy spread (which translates to no significant growth
in emittance), and therefore for the FEL Upgrade it seems reasonable to plan on putting the FEL
systems in the back leg transfer line - a bunch charge of 135 pC (versus the 60 pC used for the
measurement reported in this report) would roughly double the effect provided all else were equal,
but then it still would not be significant. Once the lattice design of the IRFEL Upgrade has ma-
tured, then one should be able to use the IR Demo to set up a beam at the entrance to the first
Bates bend that mimics the IRFEL Upgrade beam parameters, and try to perform the same type
of measurements (emittance and energy spread) the 135 pC case.
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Appendix A

Abbreviations

e BFF : bunch form factor.

e BPM : beam position monitor.

e CCD : charge coupled device.

e CSR : coherent synchrotron radiation.

e CTR : coherent transition radiation.

o CW : continuous wave.

e FFT : fast fourier transform.

e FWHM : full width half maximum.

e FP coupler : forward power coupler (on accelerating cavities).
e HF : high-frequency.

e HOM coupler : high order mode coupler (on accelerating cavities).
e IRFEL : infrared free-electron laser.

e ISR : incoherent synchrotron radiation.

e ODP : optical path difference.

e OTR : optical transition radiation.

e RF : radio-frequency.

¢ RMS : root mean square.

e SC : space charge.

e SR : synchrotron radiation.

e SRF : superconducting radio-frequency.

172



e TEM : transverse electric magnetic.
e TOF : time of flight.

e TR : transition radiation.



Appendix B

Beam Dynamics: Notes & Tools

B.1 Linear and Second Order Transport: Convention

B.1.1 Transfer Matrix

In the present report we work in the coordinate system (z,2',y,y’, ¢,d) where:

e 1z, y, ¢ are the coordinate in the standard 3D position space (note that ¢ = 27z/Arp repre-
sents the longitudinal position of the particle in unit of the RF wavelength of the accelerator
(within a factor 27))

e 2’ and y are the divergence in the transverse plane

e 0§ is the relative energy offset of the particle with a reference particle (which is in the present
report coincident with the energy average of the bunch).

To propagate a vector 7, along a section of beam line, we use, provided the second-order approx-
imation of the equation of motion is applicable:

outi = Y Rijring + 3 Y Tijkrin Ting + O(7) (B.1)
J k >k

R;; is the first order matrix and 7};;, are the second order terms.

B.1.2 Beam Matrix

The beam or ¥ matrix, e.g. for the z-z’ phase space is defined as follows:
def def { 011 o012 } <$2> (za')
Y = Mg = ( 012 Oz ) = ( (za') <$/2> (B.2)

The same matrix can be defined for the y-y' phase spaces (¥3)4) or ¢-§ longitudinal phase spaces
(¥5)6). we have the following definitions/properties:
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e the transverse rms emittance is the determinant det(,)

e We define the slope of the phase space as: dz/dz’ = (za')/{z"?)

B.2 A note on space charge

We have already mentioned that charged particle beam are subject to space charge force that
originates from Coulomb repulsion between electrons within a bunch. Space charge tends to induce
emittance growth. In this section, we would like to show that these forces are only a concern for
low energy beam, in our case (§ ~ 60 pC the space charge collective effect is only important in
the injector beamline. For such a purpose we consider a very simple model of a uniformly charged
beam or radius a and longitudinal charge density A(z) !. For such a simple case the electric and
magnetic fields inside the beam, and in the beam reference frame, can easily be computed from the
Maxwell equation and are (for r < a) (in the bunch frame):

EL(2) = ——2QA(:) (B.3)

dreg a

The longitudinal field can also be computed considering the beam inside a pure metallic cylindrical
pipe of radius b is:
Q 1

A
B = £l )G (B.4)

where g(a,b) is a geometric factor that will be discussed later.
The electromagnetic field in Eqns.(B.3) and (B.4) are valid in the moving frame. The can be
transformed in the laboratory frame using the Lorentz transformation:

E.=~El E, =~vF! (B.5)

Furthermore in the laboratory frame, the beam radius and length are related to their equivalent in
the bunch frame by [ = v’ and « = a’. Hence in the laboratory frame, these field dependance are:

E, < 1/v,and, E, < 1/~ (B.6)
which in turn yield the following dependance for the forces:

F, =e(lby; — peBy) = £ x 1/92 and, F, = e, o 1/~* (B.7)
v

Therefore we find, using this simple uniform beam model, that the space-charge induced defocusing
force damps as 1/v2 and eventually because negligible for high enough energy beam. Indeed we
will derive a criterion, in the next section, from the rms beam envelope equation to determine when
the space charge effect is not a concern.

YA. W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, John Wiley & Sons, (1993)



B.3 The Simulation Tools

B.3.1 DIMAD

The program DIMAD ? studies particle behavior in circular machines and in beam lines. The tra-
jectories of the relativistic particles are computed according to the second order matrix formalism.
It does not provide synchrotron motion analysis but can simulate it. The program provides the user
with the possibility of defining arbitrary elements to tailor the program to specific uses. DIMAD,
like its predecessor DIMAT, is the result of many years of experimenting with several different
charged particle computer codes.

B.3.2 TLIE

TLIE 2 is a general 6D relativistic design code with a MAD compatible input language. The
particularity of TLIE is its ability to compute transfer map at an arbitrary order and not only up
to second order like DIMAD. The Physics behind this code is based on the use of the Lie Algebra
operator to propagate transfert map along a beamline section. A Lie algebra is an algebra (i.e. a
vector space with a product e verifying the properties (1) a(z e y) = (az) ey = z o (ay) and (2)
ye(z1+x9) = yex;+yexy) that also verifies the Jocobi identity: ze(yez)+ye(zex)+ze(zey) = 0.
The Lie algebra operator used in Beam Dynamics is the Poisson bracket defined as: [f,g] =
> aaqfi g}i — 385,- 88—;2 where ¢ and f are functions of the generalized variables p; and ¢;. The reason
for such a choice is the fact that with the help of the canonical Hamilton equations, we can write
for a function f(p;, ¢):

df of
%—E‘l'[fvfﬂ (B.8)

where H is the Hamiltonian that governs the evolution of the distribution f in the conjugate space
(piyqi). In standard notation, the Poisson bracket operator is often written : f : ¢ = [f, g] where
: f :is a Lie operator. To illustrate how the TLIE code works, let’s assume, for the time being,
that f is not an explicit function of time i.e. % = 0 in Eqn.(B.8). Then Eqn.(B.8) becomes:

% =|[f,H]=:f:H=—:H: f, and using purely symbolic equation we have in term of operator:
% = — : I : so the Lie operator : I : reduces to a simple time derivative. The solution of this

differential equation is e~ f where the exponentiation of Lie operator is defined as the series
M f = f 4 [H, f]+ V/2[H, [H, []] + ...

The beauty of Lie Algebra technique resides in that the computation of the function f at a time
t = tg + 7, knowing the function f at time fg, just consists of computing f; = e_T:H:ftO; such
calculation can be carried at any order by computing the Poisson bracket series at the desired
order, this is the principle on which TLIE is based: the hamiltonian H along with the corresponding
H: are computed for each beam line piece and are concatened using the Campbell-Baker-

A=C, JJA—=B. .gB—=C. . .
H F= el et *, to obtain the Lie operator for a whole

operator €
Hausdorff theorem, that states €
beam line section [A,C].

2R. Sevranckx, K. L. Brown, L. Scachinger, and D. Douglas, “Users Guide to the Program DIMAD” SLAC
REPORT 285 SLAC - Stanford University CA-USA (1985)

®The code was written by Johannes van Zeijts and Filippo Neri



B.3.3 PARMELA
Features of Jefferson Lab Version

“Phase and Radial Motion in Electron Linear Accelerators.” It is a versatile multi-particle code
that transforms the beam, represented by a collection of macroparticles, through a user-specified
linac and/or transport system. It includes a 2-D space-charge calculation and an optional 3-D
point-to-point space-charge calculation. PARMELA integrates the particle trajectories through
the fields. This approach is especially important for electrons where some of the approximations
used by other codes (e.g. the "drift-kick” method commonly used for low-energy protons) would
not hold. PARMELA works equally well for either electrons or ions. PARMELA can read field
distributions generated by either FISH for rf problems or POISSON for magnet problems.

Modified Space charge algorithm

At Jefferson Lab, a modified version of PARMELA has been produced by H. Liu. It incorporates a 3D
point-by-point space charge algorithm from K.T. Mc. Donald 4. An outline of the algorithm is as
follows. PARMELA use a two-step method to generate a space charge impulse on each macroparticle:
(1) it determines the net electromagnetic space charge field at the location of each macroparticle
due to all other macroparticle, (2) apply the space charge impulse to each macroparticle. Then
track the macroparticle through a slice (width defined by the user) of the beam line (for simple
element the tracking is performed using second order transfer matrix, but the user can if desired
define the 3D map of the electromagnetic field. In such case the equation of motion is integrated in
each slice). This space point-by-point algorithm is very simple but because of the 1/r? dependence
(which can lead to singularity or numerical noise) it must be implemented carefully. For instance in
the eventuality two macroparticles come very close to each other the charge of the macroparticles
in the algorithm is reduced. The algorithm to reduce the macroparticle charge is discussed in detail
elsewhere 3

A simple model for Coherent Synchrotron Radiation

The implementation of the CSR interaction into the PARMELA code closely follows the method
described by Carlsten ®where the electric field generated at a retarded angle ¢’ by a line ¢ of uniform
charge (); and length §; orbiting on a circular trajectory of radius R; detected at the present time
by an observer electron j derived and expressed as:

s

_% ! i_ 2% 2(1 _ ’
ru=$ iy [ ot -] o

*K. T. Mc Donald, IEEE Trans. Elect. Dev. 35 p 2052 (1988)

5H. Liu, “Concept of Variable Particle Size Factor for a Point-by-Point Space Charge Algorithm”, CEBAF report
TN-94-040, Jefferson Lab, Newport News, VA-USA (1994)

6B. E. Carlsten, “Calculation of the noninertial space-charge force and the coherent synchrotron radiation force
for short electron bunches in circular motion using the retarded Green’s function technique” Phys. Rev E54 num 1,
pp 838-845 (1996)




where f3;, 7; are the usual Lorentz factors for the orbiting line ¢, 7;; is the normed vector along the
direction from the line center and the observer electron. The quantity in bracket must be evaluated
for the present angles (7, (resp. CZJ;) that corresponds to the angle between the rear (resp. front)
of the line charge and the observer electron. The retarded angle (' is related to the present angle
¢ by a transcend equation derived from geometrical consideration. For instance for the line charge
¢ and the observer j we have:

BIRI(C' = €)? = p? 4 2Ri(Ri + ;) (1 — cos(¢")) (B.10)

where p; is the total transverse displacement of the observer electron with respect to the trajectory
of the line charge.

The denominator of Eqn.(B.9) can also be expressed as a function of the retarded time using geo-
metrical consideration.

The extension to a bunch of electron described by a macroparticle model is straight forward: the
line charge can be replaced by a macroparticle which carry, as in PARMELA, a uniform charge.
Therefore the total electric field produced by the bunch of macroparticle at a retarded time on an
observer macroparticle at the present time simply writes as the sum:

N
total
B =N (B.11)
=1

where NV is the number of macroparticle in the model.

In fact this “point by point” type macroparticle algorithm has already been implemented in the
JLab PARMELA version to simulate macropaticle interaction via space-charge force. Hence we
can easily modify the existing algorithm to simulate CSR self interaction.

The retarded angle is evaluated as described by Carlsten using an iterative process to solve the
transcendent equation Eqn.(B.10). The model described in the previous section as been imple-
mented in the JLab version of PARMELA (both a HP9000 and a Cray C90 versions). Pratically,
when the bunch enters a bend in which the user wish to include CSR interaction, the radius of the
trajectory of each macroparticle is ealuated and then, based on geometrical consideration, all the
parameter in Eqn.(B.9) are computed and the field due to bunch on a macroparticle is evaluated.
This operation is performed for each macroparticle and therefore a large number of iteration is
needed. Typical CPU time needed to run one FEL chicane is approximately Lhr wall clock. A
block diagram of the PARMELA code is presented in Fig. B.1. The modification performed are
shown in grey: firstly we have introduced a new card BENDCSR which follow the same syntax as the
BEND card. This card must be used to indicate the bending magnet where the user wish to simulate
CSR interaction. Secondly, we have modified the program PARMDYN so that when the electrons are
in the BENDCSR card the subroutine csr is called.
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Appendix C

Dispersion Relations for Bunched
Beam Distributions

C.0.4 Introduction

Dispersion relations to compute the phase associated to the electric field generated via coherent
emission from a bunched electron beam have been used by many authors. However we believe
the mathematical proof is not always properly derived: these dispersion relations are applied to
functions which cannot be expressed as Cauchy integrals. In the present addendum we present
a derivation of such relations and discuss the fact that these dispersion relation do not a fortiori
give the phase, but only one term contributing to the phase (depending on the bunch longitudinal
distribution properties).

C.0.5 Background

There are many ways electrons can emit radiation as their environment is modified. It has been
shown in the case of bunched electron beam that if the emitted radiation is observed at wavelength
comparable or larger that the bunch length, the electrons in the bunch emit coherently. In such a
case, the spectrum of the radiation writes as:

Eiotal@) = NN = )V § (@)|E} - () (C.1)

where § (w) is the Fourier transform of the longitudinal distribution S(¢). The problem that has
been studied is to use the power spectrum, which is proportional to the modulus of the Fourier
transform of the electric field, to compute the bunch form factor phase.

In the many papers, the function log(§ (w)) is defined and the complex part of this function (which
is the phase of § (w)) is calculated using the standard dispersion relations. However we shall see

below that log § (w) does not have the “right” properties and cannot be generally written as a
Cauchy integral and more care should be used when trying to recover the imaginary part of the

log 5 (w) function.
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C.0.6 The Dispersion Relations for § (w)

When S(¢), the bunch distribution has the “right” properties, its Fourier transform has some
interesting properties: its imaginary and real part are Hilbert conjugate, i.e. they are related via
Hilbert transformation. The “right” properties S(¢) must satisfy are as follows:

o [F°S(t)dt < oo i.e. the integral converge,
o lim; .., S(t) =0 and S(¢) — 0 faster than 1/¢,

e S(t)=0Vt <0.

The last item insure S(¢) is a causal function and the two other are equivalent to S(¢) € L%, the
ensemble of square integrable functions. The bunch distribution indeed satisfies all of the above
items. Moreover because of item (1) its Fourier transform is bounded.

Let’s extend the Fourier transform into the complex plane. Let £ = w+iw’ be the complex frequency
then the Fourier transform writes:

S (€)= /OOO S(t)etdt = /Oo etem "t gy (C.2)

0

If we only consider the upper half-plane § (€) is analytic since in this region of the complex plane
the function exp(—w't) is a purely decaying function (because of causality ¢ > 0). Because of

analyticity we can write § (£) as a Cauchy integral:

5= Lp [ 5l s

m S a—¢&

from which, after identifying 5 &) = 3?[5 ©)]+ 2%[5 (€)] and using the fact that S(=¢) = S(&),

we get the standard dispersion relations:

77/000 S[s (a)]da (C.4)

C.0.7 The Dispersion Relations for log[§ (w)]

When detecting the power spectrum of coherent radiation emitted by a bunched beam with an

infrared detector we only have access to the modulus of § (w) (see Chapter 5 of this report).

A natural choice is to define the function & 4! log[§ (w)] whose real and imaginary part are

the modulus and phase of S (w) 1. Such function has been defined by several authors and the

Lye write S (w) =| 3 (w)]| exp(—1¥(w))



dispersion relations have been applied to this function to retrieve its imaginary part (i.e. the phase
of § (w)).

Unfortunately log[S (w)] cannot be expressed as a Cauchy integral because log[S (w)] is not an
analytic in the full upper half-plane. Moreover:

log |g| i log 5
- / : (C.5)

Obviously log[§ S(&)] is not a “good” function! A commonly used ruse is to define the function

w(e) ef log S (52 = ljg S (a)

where « is an arbitrary point of the upper half-plane where log[S] is analytic (note that (¢) is not
singular at £ = ).
The dispersion relations applied to X(&) yields:

(C.6)

irS(€) = 7?/+OO E(e)da

o k=&

(C.7)

Using Eqn.(C.6) we get:

imlog[5 ()] = imlogl§ ()] + (€ — ) [P [ B p [T %] (©5)

which expands to:

irlogls (§)] = irlogls ()] + (€ - a) P/_T: % ~ log[s P/j xd—w
—|—10g 77/+Oo xd_xa] (C.9)

The two far RHS terms are zero, so that we finally get:

£ — 047)/"‘00 log[§ (2)]da

log[$5 ()] = log[5 ()] + > o -9 -a)

(C.10)

By 1dent1fy1ng the real and i 1mag1nary parts we obtain the dispersion relations for log[§ (€)] which
relate log|| 5 (€)|] to the phase of 5 (&), ¥(¢&):

log| 5 (§)[] = logl] 5 (a >|]+5‘0‘P/+OOM

W) = U(a) 7?/+OO 1°g| S 2)| — log| *)9 ©)lg, (C.11)

“(-a

~—

which after taking into account the symmetry of § (§ (&) =S (—=¢) yields for a = 0:

(&) = w(0) 257’/00 w (C.12)



U(0) can be estimated because the Fourier transform at w = 0 is the integral of S(t); it gives

S (0) =1 € R, since S(t) is a real function normalized to unity; therefore W(0) = 0. So finally we
have:

(C.13)

25 /OO log| S (z)|dx S |dw

However it should be noted that we have assumed from the beginning that 5 (€) is analytic in
the upper plane. Unfortunately it does not imply log[S (£)] has the same region of analyticity; in

particular the point where S (&) = 0 will give singularity on ¥(£) which in turn must be taken into
account in the phase by, when writing () as a Cauchy integral, taking in account the contribution
to the integral via the residue theorem.

In the figure (figure C.1) below we present results for a simple bi-modal distribution that consists
of a sum of two normal distributions: we have generated three types of distribution (a) (c¢) and
(e) and for each of them we compare the phase calculated directly from the computation of the
Fourier transform of the distribution with the phase retrieve using Eqn.(C.13). On this very simple
example we notice that this equation does not a fortiori reproduce the veritable phase of the Fourier
transform of the distribution.
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Figure C.1: Example of phase retrieval for a bi-gaussian-like bunch distribution. Three type of
bi-modal distributions (a), (¢) and (e) are presented along with the exact phase of their Fourier
transform (dash lines on plot (b), (d), and (f)) and the recovered phase using the dispersion relation
(crosses) on the same former plots.
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