MEIC detector design

Pawel Nadel-Turonski

2nd Mini-Workshop on the MEIC Interaction Region Jefferson Lab, November 2, 2012

Outline

Detection requirements and opportunties

Full-acceptance detector (primary)

High-luminosity detector (secondary)

Imaging in coordinate and momentum space

GPDs

2+1 D picture in **impact-parameter space**

- Accessed through *exclusive* processes
- Image above for polarized nucleon
- Ji sum rule for nucleon spin

TMDs

2+1 D picture in momentum space

- Accessed through Semi-Inclusive DIS
- Requires transverse nuclon polarization
- OAM through spin-orbit correlations?

TMDs and Orbital Angular Momentum

 m_{π}^{2} [GeV²]

LHPC Collaboration

nucleon?

How is this balanced by the fragmenting

Transverse spatial imaging of sea quarks and gluons

- Are the *radii* of quarks and gluons, or strange and light sea quarks, different at a given x?
- Full *image of the proton* can be obtained by **mapping** *t***-distributions** for different processes.

Recoil baryon detection

- At high proton energies, recoil baryons are scattered at small angles
 - Lower proton energies give better small-t acceptance and resolution in -t
 - Higher proton energies give better large-t acceptance for a given maximum ring energy
 - Lower maximum energy gives better acceptance at the *actual* running energy
- Good recoil baryon detection requires
 - Wide range of proton (deuteron) energies
 - Small beam size to reach low -t

GPDs with transversely polarized "targets"

$$E^{i}(x, \, \xi, \, t) = \kappa^{i}(t) H^{i}(x, \, \xi, \, t)$$

Error bars shown only for $\kappa^{sea} = +1.5$

- DVCS on a transversely polarized target is sensitive to the *GPD E*
 - GPD H can be measured through the beam spin asymmetry
- Meson production is more selective: J/Ψ sensitive to corresponding **gluon GPDs**
- *GPD program requires good resolution and acceptance in -t, but also transversly polarized proton and neutron targets*

Spectator tagging with polarized deuterium

- Deeply Virtual Compton Scattering (DVCS) on a neutron target
- Tagged, polarized *neutrons* are essential for the GPD program

"If one could tag neutron, it typically leads to larger asymmetries" Z. Kang

 Polarized neutrons are important for probing d-quarks through SIDIS

Neutron structure through spectator tagging

- In fixed-target experiments, scattering on *bound neutrons* is complicated
 - Fermi motion, nuclear effects
 - Low-momentum spectators
 - No polarization
- The MEIC is designed from the outset to tag spectators, and all nuclear fragments.

Spectator (and fragment) detection / tagging

A. Accardi

Quark propagation in matter (hadronization)

Accardi, Dupre

- Broadening of p_T distribution
- Heavy flavors: B, D mesons, J/Ψ ...
- Hadron jets at $s > 1000 \text{ GeV}^2$

- What happens to the nucleus?
 - Does it disintegrate to nucleons or fragments?

Full-acceptance detector – strategy

Hadron detection prior to ion quadrupoles

- Large crossing angle (50 mrad)
 - Moves spot of poor resolution along solenoid axis into the periphery
 - Minimizes shadow from electron FFQs
- Large-acceptance dipole further improves resolution in the few-degree range

Crossing angle

Ultra-forward hadron detection – requirements

1. Good acceptance for ion fragments (rigidity different from beam)

- Large downstream magnet apertures
- Small downstream magnet gradients (realistic peak fields)

2. Good acceptance for recoil baryons (rigidity similar to beam)

- Small beam size at second focus (to get close to the beam)
- Large dispersion (to separate scattered particles from the beam)

3. Good momentum- and angular resolution

- Large dispersion (e.g., 60 mrad bending dipole)
- Long, instrumented magnet-free drift space

4. Sufficient separation between beam lines (~1 m)

Ultra-forward hadron detection – requirements

1. Good acceptance for ion fragments (rigidity different from beam)

- Large downstream magnet apertures
- Small downstream magnet gradients (realistic peak fields)

2. Good acceptance for recoil baryons (rigidity similar to beam)

- Small beam size at second focus (to get close to the beam)
- Large dispersion (to separate scattered particles from the beam)

3. Good momentum- and angular resolution

- Large dispersion (*e.g.*, 60 mrad bending dipole)
- Long, instrumented magnet-free drift space

4. Sufficient separation between beam lines (~1 m)

Ultra-forward hadron detection – summary

- Neutron detection in a 25 mrad cone down to zero degrees
 - Excellent acceptance for *all ion fragments*

Other interaction regions

Space for 3 Interaction Points (IP)

 Main IPs located close to outgoing ion arc to reduce backgrounds

Full-acceptance detector (primary)

• 7 m from IP to ion final-focus quads

High-luminosity detector (secondary)

• 4.5 m from IP to ion final-focus quads

Special IP

• Space reserved for future needs

Momentum resolution at different rapidities

 $\Delta p/p \sim \sigma p / BR^2$

- Tracker (not magnet!) radius R is important at central rapidities (i.e., scattering angles)
- Only solenoid field B matters at forward rapidities
- Full-acceptance detector benefits from high field for uniform resolution
- High-luminosity detector solenoid could have a lower field and larger radius, focusing on transverse physics
- High-luminosity IP could give up the intermediate detection stage to save space, but keep the crossing angle and a simplified ultra-forward detection

Detector radius also useful for particle identification

- Small differences in the desired momentum range (p_{lab}) for π/K separation has a huge impact on detector layout
- If you need 8-9 GeV, the detector may look like on the left (1 m radial space for PID)
 - High luminosity detector?

- If 5-6 GeV is enough, the detector may look like this instead (0.1 m radial space for PID)
 - Full acceptance detector?
 - TOF
 - DIRC bar
 - DIRC expansion volume