Muon RLA – Design Status and Simulations

Kevin Beard
Muons Inc.

Alex Bogacz, Vasiliy Morozov, Yves Roblin
Jefferson Lab
IDS Goals:

- Define beamlines/lattices for all components
- Matrix based end-to-end simulation (machine acceptance) (OptiM)
- Field map based end-to-end simulation: ELEGANT, GPT and G4Beamline
- Error sensitivity analysis
- Component count and costing
- Two regular droplet arcs replaced by one two-pass combined function magnet arc
Linear Pre-accelerator – 0.9 GeV

24 short cryos

24 medium cryos

1.5 Tesla solenoid

2 Tesla solenoid

NuFact’11, Univ. of Geneva, Aug. 1-6, 2011
Transit time effect – G4BL

The graph shows the Transit Factor defined as
\[
\text{TransitFactor} = \frac{E_2 - E_1}{E_2 + L}
\]
versus the input \(P_z [\text{MeV/c}] \) for different input values. The plot includes a reference to "rf2.csv" and an exponential function \(\exp(f(x)) \). The data points are fitted to the curve with a green line.

C. Bontoiu
M. Aslaninejad
Linear Pre-accelerator – Longitudinal dynamics

72° before crest

Linear phase-space (s, Δp/p)

axis range: s = ±50 cm, Δp/p = ±0.3

Kevin Beard

NuFact’11, Univ. of Geneva, Aug. 1-6, 2011
Initial distribution

\[\frac{\varepsilon_x}{\varepsilon_y} = 4.8 \text{ mm rad} \]

\[\varepsilon_l = \frac{\sigma_{\Delta p}}{\sigma_z} \frac{\sigma_z}{m_\mu c} = 24 \text{ mm} \]
Injection/Extraction Chicane

$L_c = 60 \text{ cm}$
$\theta_H = 9 \text{ deg.}$
$B_H = 10.2 \text{ kGauss}$

2.1 GeV
$\mu^+ \mu^-$
50 cm

0.9 GeV

$L_c = 60 \text{ cm}$
$\theta_V = 5 \text{ deg.}$
$B_V = 4.7 \text{ kGauss}$

1.5 GeV
$\mu^+ \mu^-$

Double achromat Optics

FODO lattice:
$90^0/120^0 (h/v)$
betatron phase
adv. per cell

3 cells

4 cells
Multi-pass Linac Optics – Bisected Linac

'half pass', 900-1200 MeV

initial phase adv/cell 90 deg. scaling quads with energy

1-pass, 1200-1800 MeV

mirror symmetric quads in the linac

NuFact'11, Univ. of Geneva, Aug. 1-6, 2011
Multi-pass bi-sected linac Optics

Arc 1

\[\beta_x = 3.2 \text{ m} \quad \beta_y = 6.0 \text{ m} \]
\[\alpha_x = -1.1 \quad \alpha_y = 1.5 \]
\[\beta_{x,y} \rightarrow \beta_{x,y} \]
\[\alpha_{x,y} \rightarrow -\alpha_{x,y} \]

Arc 2

\[\beta_x = 6.3 \text{ m} \quad \beta_y = 7.9 \text{ m} \]
\[\alpha_x = -1.2 \quad \alpha_y = 1.3 \]
\[\beta_{x,y} \rightarrow \beta_{x,y} \]
\[\alpha_{x,y} \rightarrow -\alpha_{x,y} \]

Arc 3

\[\beta_x = 7.9 \text{ m} \quad \beta_y = 8.7 \text{ m} \]
\[\alpha_x = -0.8 \quad \alpha_y = 1.3 \]
\[\beta_{x,y} \rightarrow \beta_{x,y} \]
\[\alpha_{x,y} \rightarrow -\alpha_{x,y} \]

Arc 4

\[\beta_x = 13.0 \text{ m} \quad \beta_y = 14.4 \text{ m} \]
\[\alpha_x = -1.2 \quad \alpha_y = 1.5 \]
\[\beta_{x,y} \rightarrow \beta_{x,y} \]
\[\alpha_{x,y} \rightarrow -\alpha_{x,y} \]
Mirror-symmetric ‘Droplet’ Arc – Optics

2 cells out

transition

10 cells in

transition

2 cells out

Thomas Jefferson National Accelerator Facility

Kevin Beard

NuFact’11, Univ. of Geneva, Aug. 1-6, 2011
Alternative multi-pass linac Optics

Arc 1
\(\beta_x = 3.2 \text{ m} \quad \beta_y = 6.0 \text{ m}\)
\(\alpha_x = -1.1 \quad \alpha_y = 1.5\)

Arc 2
\(\beta_x = 3.2 \text{ m} \quad \beta_y = 6.0 \text{ m}\)
\(\alpha_x = -1.1 \quad \alpha_y = 1.5\)

Arc 3
\(\beta_x = 3.2 \text{ m} \quad \beta_y = 6.0 \text{ m}\)
\(\alpha_x = -1.1 \quad \alpha_y = 1.5\)

Arc 4
\(\beta_x = 3.2 \text{ m} \quad \beta_y = 6.0 \text{ m}\)
\(\alpha_x = -1.1 \quad \alpha_y = 1.5\)

\(\beta_{x,y} \rightarrow \beta_{x,y}\)
\(\alpha_{x,y} \rightarrow -\alpha_{x,y}\)
Arcs ‘Crossing’ - Vertical Bypass

4 vertical bends:

\[B = 1 \text{ Tesla} \]
\[L = 10 \text{ cm} \]

4 cells (90° FODO)

\(\Delta y = 25 \text{ cm} \)
‘Droplet’ Arcs scaling – RLA I

<table>
<thead>
<tr>
<th>$i = 1 \ldots 4$</th>
<th>E_i [GeV]</th>
<th>p_i/p_1</th>
<th>cell_out</th>
<th>cell_in</th>
<th>length [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc1</td>
<td>1.2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Arc2</td>
<td>1.8</td>
<td>1.43</td>
<td>2</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Arc3</td>
<td>2.4</td>
<td>1.87</td>
<td>2</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Arc4</td>
<td>3.0</td>
<td>2.30</td>
<td>2</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

- **Fixed dipole field:** $B_i = 10.5$ kGauss
- **Quadrupole strength scaled with momentum:** $G_i = \frac{p_i}{p_1} \times 0.4$ kGauss/cm
- **Arc circumference increases by:** $(1+1+5) \times 6$ m = 42 m

Footprint

- x [cm] from -5000 to 5000
- z [cm] from -5000 to 5000

Kevin Beard
NuFact’11, Univ. of Geneva, Aug. 1-6, 2011
‘Droplet’ Arcs scaling – RLA II

Table:

<table>
<thead>
<tr>
<th>i = 1…4</th>
<th>E_i [GeV]</th>
<th>p_i/p_1</th>
<th>cell_out</th>
<th>cell_in</th>
<th>length [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc1</td>
<td>4.6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Arc2</td>
<td>6.6</td>
<td>1.435</td>
<td>2</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Arc3</td>
<td>8.6</td>
<td>1.870</td>
<td>2</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Arc4</td>
<td>10.6</td>
<td>2.305</td>
<td>2</td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

- Fixed dipole field: $B_i = 40.3$ kGauss
- Quadrupole strength scaled with momentum: $G_i = \frac{p_i}{p_1} 1.5$ kGauss/cm
- Arc circumference increases by: $(1+1+5) 12$ m = 84 m

Footprint Diagram:

- x [cm]
- z [cm]
- 5000
- 4000
- 3000
- 2000
- 1000
- 0
- -1000
- -2000
- -3000
- -4000
- -5000

- 0 2000 4000 6000 8000 10000
- -5000
- -4000
- -3000
- -2000
- -1000
- 0 2000 4000 6000 8000 10000

Note:

NuFact’11, Univ. of Geneva, Aug. 1-6, 2011
Component Count

<table>
<thead>
<tr>
<th>beamline</th>
<th>RF cavities</th>
<th>solenoids</th>
<th>dipoles</th>
<th>quads</th>
<th>sext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-cell</td>
<td>2-cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pre-accelerator</td>
<td>6</td>
<td>62</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inj-chic I</td>
<td></td>
<td></td>
<td>8+3</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>RLA I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linac</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>arc1</td>
<td>35</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>arc2</td>
<td>49</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>arc3</td>
<td>63</td>
<td></td>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>arc4</td>
<td>77</td>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>inj-chic II</td>
<td>8+3</td>
<td></td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RLA II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>linac</td>
<td>80</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>arc1</td>
<td>35</td>
<td></td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>arc2</td>
<td>49</td>
<td></td>
<td></td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>arc3</td>
<td>63</td>
<td></td>
<td></td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>arc4</td>
<td>77</td>
<td></td>
<td></td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>Lambertson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Two-pass Arc Layout

- Simple closing of arc geometry when using similar super cells
- 1.2 / 2.4 GeV/c arc design used as an illustration can be scaled/optimized for higher energies preserving the factor of 2 momentum ratio of the two passes

Droplet arc:
- 60° outward bend
- 300° inward bend
- 60° outward bend

C = 117.6 m

NuFact’11, Univ. of Geneva, Aug. 1-6, 2011
Each arc is composed of symmetric super cells consisting of linear combined-function magnets (each bend: 2.5°)

1.2 GeV Optics

2.4 GeV Optics

θ = 60°
First few magnets of the super cell have dipole field component only, serving as Spreader/Recombiner.

* Trajectories are shown to scale

- **B** 1.7 Tesla
- **G** 28 Tesla/m
Summary

- Piece-wise end-to-end simulation with OptiM/ELEGANT (transport codes)
 - Solenoid linac
 - Injection chicane I (new more compact design)
 - RLA I + Injection chicane II + RLA II
- Alternative multi-pass linac optics
- Currently under study… GPT/G4beamline
 - End-to-end simulation with fringe fields (sol. & rf cav.)
 - Engineer individual active elements (magnets and RF cryo modules)
 - μ decay, background, energy deposition
- Strong synergy with muon collider program
Chicane - Double Achromat Optics

FODO quads:
L[cm] = 50
F: G[kG/cm] = 0.322
D: G[kG/cm] = -0.364

sextupole pair to correct vert. emittance dilution