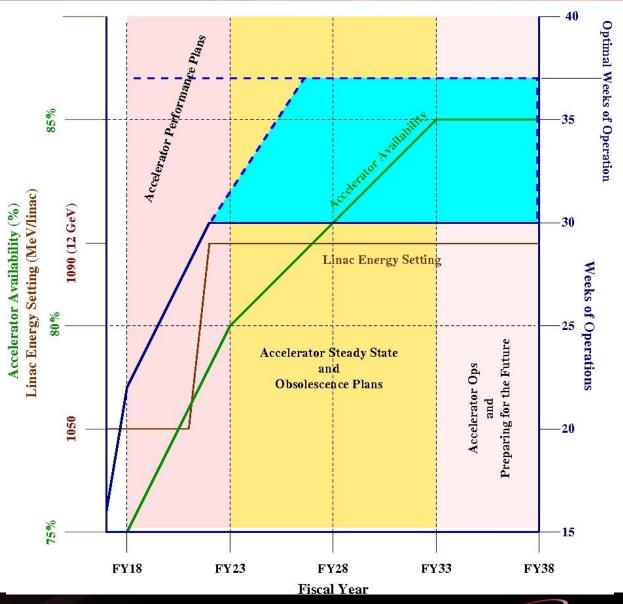


The CEBAF Performance Plan


Establishing reliable CEBAF performance at 12 GeV SRF/RF/Cryo Focus

Accelerator Operations Department

High level view

- 20 year scope
- 5 year ramp up
 - Availability
 - Energy Reach
 - Weeks of Operation
- Stuff
 - Critical Spares
 - **C75s**
 - Obsolescence
- Staff
 - Support optimal weeks
 - Support maximum hall multiplicity

Jefferson Lab

Performance Plan Development

- 1. Define Performance Parameters
 - a. Reliability
 - b. Energy
 - c. Multiplicity
 - d. Weeks of Operations
- 2. Perform Gap analysis
 - a. Establish areas that do not meet Performance Parameters
- 3. Plan Development
 - a. Make a plan that will close the identified gaps
- 4. Make the case to Lab Leadership

Performance Goals, Gaps, Plans

What	Unit	Goal	Gap	Plan
Reliability	%	> 80	5-10%	Critical spares
Optimal Weeks	weeks-per-year	37	Yes	Operations and Technical support Staffing
Beam Tuning Hours	h/week	< 8	Yes	Operations Staffing
Peak Hall Multiplicity	Number of halls	4	Yes	Operations Staffing
12 GeV Program Expected Duration	years	20	Yes	Obsolescence Plan
Performance Plans Duration	years	5		
Obsolescence Plans Duration	years	10		
Linac Design Energy	MeV	1090	~40 and growing	8 C75s
Required Linac Energy Margin at start of FY	MeV	> 110		
Overall FSD Trip rate	trips/h	< 15		
Overall FSD Trip Downtime	min/h	5		
RF Trip rate	trips/h	< 10		
Beam Loss Trip rate	trips/h	< 5		

Critical Spares Top Priority

- 1. **Spring 2014**: ZA magnet coil and vacuum failure; **3 week interruption** to replace damaged coil and repair the vacuum chamber. This failure consumed the existing spare coil; **the next failure will take much longer** for repair and recovery.
- Spring 2015: Cold compressor 4 failure in 2 K cold-box, SC1; No spare at JLab, consumed the SNS cold compressor spare. Program change required: half design energy after 5 week down.
- 3. Fall 2016: Arc7 box supply failure, no spare, program change required: to single hall operation until supply repaired.
- 4. **Fall 2016**: 5th pass separator vacuum leak, **program change required**, could not support 5th pass beam to Hall-A simultaneously with 5.5 pass beam to Hall-D.
- 5. **Spring 2017**: Cold compressor 5 failure in 2 K cold-box, SC1; on-going root cause investigation, might be repairable. **Scheduled program terminated.**

Critical Spares List

1. Cryogenics

- a. New 2K cold-box, \$10M over 3 years
- b. New ESR, \$10M over 3 years
- c. Sundry stuff, \$3M over 3 years
- 2. CEBAF Critical Spares
 - a. \$1.3M over 2 years
 - b. Box power supplies
 - c. Magnet coils and vacuum chambers
 - d. Klystrons 20 per year (most will be consumed by the C75s).
 - e. Sundry RF stuff
 - i. RF separator power supply
 - ii. Master Oscillator
 - iii. RF separator solid state amplifier
 - iv. Chopper amplifier

12 GeV by FY22 Plan

	FY	Proposed Maximum Linac Linac Margin Energy Setting for FY		Refurbished cryomodules completed in FY
Date		(MeV/Linac)	(MeV/linac)	
2016-10-01	FY17	1050	55	C50-13
2017-10-01	FY18	1050	50	C75-1
2018-10-01	FY19	1050	56	C75-2
2019-10-01	FY20	1050	62	C75-3, C75-4
2020-10-01	FY21	1050	90	C75-5, C75-6
2021-10-01	FY22	1090	78	C75-7, C75-8
2022-10-01	FY23	1090	106	C75-9
2023-10-01	FY24	1090	112	-
2024-10-01	FY25	1090	95	C75-10

SRF/RF Obsolescence

List are still be fleshed out, here is my vision

- 1. LLRF Analog to digital upgrade for all zones.
 - a. 2/year over 15 years
 - b. Should we be thinking about incorporating features in the digital LLRF to decrease the recovery time from a C20/C50 trip?
- 2. Warm region cleaning and new vacuum pumps
 - a. 2/year over 15 years
 - b. Include changing out the end-cap O-rings?
- 3. Continue C20 **Upgrade** (C75) at a rate that exceeds the annual loss.
 - a. 1 C75 every 1.3 years?
 - b. Evaluate the loss annually

Open Issues

- C100s in 20 years? What should be planned? What is our expectation?
- 499MHz separator cavities? Were they designed for a 40 year operational life?
- Injector RF
 - Hopefully capture is removed in a few years
 - Spare ¼ Cryomodule?
- Digital LLRF improvements to reduce C20/C50 trip times.

