BeAGLE update

Mark D. Baker

15-SEP-2017
Excitation Energy in BeAGLE

- $E^* = M(\text{residual nucleus}) - M_{gs}(\text{residual nucleus})$
 - If it is negative, ABORT and reroll the event.
 - Usually only a few %. May be biased (low W e.g.)
 - Installed a feature to allow me to test for bias.
 - Otherwise, hand to FLUKA/PEANUT for nuclear evaporation/breakup etc. (inside of DPMJET).
 - If it is large (e.g. $E^* 17$ GeV rather than the typical 40 MeV due to absorbing PyQM recoil), then FLUKA/PEANUT goes into an infinite loop.
Nuclear recoil absorption now works

- $E^* = M(\text{residual nucleus}) - M_{gs}(\text{residual nucleus})$
 - If $E^* > E^*_{\text{max}} = 3$ GeV (tuneable), then set $E^* = E^*_{\text{max}}$

- Good news: fixes infinite loop
 - Note: similar thing done (0.5 GeV) in Sartre which uses CASCADE instead of FLUKA/PEANUT

- Bad news: Breaks energy conservation for that event unless we come up with a kludge to fix it.

- We can experiment with raising E^*_{max}, but this will allows us to have a first look at whether this breaks agreement with E665 neutrons for nonzero qhat.
Plans

- Test the new code a bit (still in private area)
- Release ~ mid-next week & document
- Work on Fermi momentum
- When updated PyQM with working iEg=1 is available:
 - Default is they will be fragmented
 - Add option to absorb recoil gluon(s) on individual nucleons instead, kicking the nucleon out.
Requests/Questions for PyQM

- Are all up-to-date features in?
- Add heavy quark tables.
- Fix $iE_g=1$ so that it correctly returns 1 gluon per quenched parton (i.e. only if there is a nonzero radiation).
 - Location of gluon should probably be downstream of original hard interaction.
 - Should we allow the gluon to also quench?