BeAGLE: Shadowing & data files

MDB

05-MAY-2017
Simple Classical Shadowing

\[N_{\text{ev}} = 4 \mathcal{L} \sigma \]

\[N_{\text{ev}} = 2 \mathcal{L} \sigma \]
Quantum collisions still shadow

The virtual photon spends part of its time as a hadronic state ("dipole") with a coherence length of \(\lambda \sim 1/(2Mx) \).

So at low \(x \) it can hit BOTH the front and the back ("shadowed") nucleon. But the number of events is still reduced compared to the case of \(A \) nucleons "side-by-side"!
Quantum Shadowing (large λ)

$N_{ev} = 4\mathcal{L}\sigma$

$N_{ev} = 2\mathcal{L}\sigma$
BeAGLE shadowing approach genShd>1 (multinucleon at low x)

This is the basic conventional theoretical approach to low x eA, Details will vary by theorist...

\[R \equiv \frac{\sigma(eA)}{A \sigma(eN)} \]

EPS, JHEP 0904 (2009) 065
With Shadowing \((\text{genShd}=2) \)

Roll a Pythia event:

FIXES \(x, Q^2 \)

Pick one of the struck nucleons at random to replace with the hard Pythia interaction

Look up \(R_{\text{Au}}(x, Q^2) \)

\(x > 0.1 \) OR \(R > 1.0 \): like \(\text{genShd}=1 \)

ELSE

Look up & use \(\sigma_{\gamma^*N}(R_{\text{Au}}) \)
With Shadowing (genShd=2)

Roll a Pythia event:

FIXES x, Q^2

FOR NOW: The other struck nucleons give a random k_T kick to the forward-going parton and recoil elastically.

Look up $R_{Au}(x, Q^2)$

$x > 0.1 \text{ OR } R > 0.995$: like genShd=1

ELSE

Look up & use $\sigma_{\gamma^*N}(R_{Au})$
With Shadowing (genShd=3)

Roll a Pythia event:

FIXES \(x, Q^2 \)

Similar to genShd=2, but:
Pick the **FIRST** struck nucleon to replace with the hard Pythia interaction

Look up \(R_{Au}(x, Q^2) \)

\(x > 0.1 \) OR \(R > 0.995 \): **like genShd=1**
ELSE
Look up & use \(\sigma_{\gamma^*N}(R_{Au}) \)
What about d in multinucleon (shadowing) eA events?

Define $d_{1\text{st}}$ as the d from the 1$^{\text{st}}$ interaction
Define d_{avg} as the average of d's from all inelastic collisions.

I would guess our parton propagation physics cares more about d_{avg}.

The definition of d is much cleaner away from the low x region.
Jet quenching/modification may prefer lower energy and/or higher x!

Large d

vs. Small d

Just a mess
Available data files

/u/group/ldgeom/liang/BeAGLE/running/outForPythia
100k:
- ePb_10x40_Q2_1_20_y_0.01_0.95*Shd1*.txt
- ePb_10x40_Q2_1_20_y_0.01_0.95*Shd2*.txt
- ePb_10x40_Q2_1_20_y_0.01_0.95*Shd3*.txt
 USED w/ all x for Guohui's Figures 8-10??

Now on /u/group/ldgeom/data/mdbaker

100k events y>0.01 (no shadowing!) USED For Fig. 3 w/ x>0.02
ePb_10x40_Q2_1_20_y_0.01_0.95*Shd1*.txt
(can also use for x<0.002)
25k @ ePd_10x40*Shd1*.txt,
eCa_10x40*Shd1*.txt,
eAu_10x40*Shd1*.txt
Pd & Pb & Ca used in Fig.2 w/ x>0.02
Simplified R using $F_2^{\text{EPS09LO}}(x,Q^2)$

$$R(x \to 0, Q^2=1.69\text{GeV}^2) \equiv y_0(A) = 0.890 \left(\frac{A}{12}\right)^{-0.0803} = 0.711 \text{ for Au}$$

$$0.708 \text{ for Pb}$$
Available data files

On /u/group/ldgeom/data/mdbaker

200k events $y>0.3$ to use for $x<0.002$
\textbf{USED FOR Fig.14-15 in prop.}
ePb_10x40_Q2_1_20_y_0.3_0.95*Shd3*.txt

125k events $y>0.2$ to use for $x<0.003$:
ePb_10x40_Q2_1_20_y_0.2_0.95*Shd3*.txt
(can also use for $x<0.002$)

Figure 14: Bjorken x distribution for $Q^2>1$ GeV2, $y<0.95$ and $x<0.002$ for 10x40 GeV e+Pb collisions.

Figure 15: Average thickness for peripheral (42.1%) and central (1.1%) samples tagged using evaporation neutrons in 10x40 GeV e+Pb collisions for $Q^2>1$ GeV2, $y<0.95$ and $x<0.002$.
What would be interesting to see...

Guohui-style plots for $T(b)$ vs. Neutron fraction included for $x<0.002$ genShd=3

& $T(b)$ vs. $T(b)$ fraction included (perfect tagging)

Neutron acceptance fraction vs. Theta after 2nd dipole
Charged particle acceptance fraction vs. Theta and p/Z