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• Conclusions



Operated by the Southeastern Universities Research Association for the U. S. Department of EnergyThomas Jefferson National Accelerator Facility

EIC Accelerator Workshop, Jean Delayen     27 February 2002

Energy Recovery Linacs
• Energy recovery is the process by which the energy invested in 

accelerating a beam is returned to the rf cavities by decelerating the 
same beam. 

• There have been several energy recovery experiments to date
• Stanford SCA/FEL
• Los Alamos FEL
• CEBAF front end

• Same-cell energy recovery with cw beam current up to 5 mA and 
energy up to 50 MeV has been demonstrated at the Jefferson Lab IR 
FEL. Energy recovery is used routinely for the operation of the FEL as 
a user facility.



Operated by the Southeastern Universities Research Association for the U. S. Department of EnergyThomas Jefferson National Accelerator Facility

EIC Accelerator Workshop, Jean Delayen     27 February 2002

The JLab 1.7 kW IRFEL and Energy 
Recovery Demonstration

G. R. Neil, et al., “Sustained Kilowatt Lasing in a Free Electron Laser with Same-
Cell Energy Recovery,” Physical Review Letters, Volume 84, Number 4 (2000)
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Demonstration of Energy Recovery
Gradient modulator drive signal in a linac cavity measured 
without energy recovery (signal level around 2 V) and with
energy recovery (signal level around 0).

GASK

-0.5

0

0.5

1

1.5

2

2.5

-1.00E-04 0.00E+00 1.00E-04 2.00E-04 3.00E-04 4.00E-04 5.00E-04

Time (s)

Vo
lta

ge
 (V

)



Operated by the Southeastern Universities Research Association for the U. S. Department of EnergyThomas Jefferson National Accelerator Facility

EIC Accelerator Workshop, Jean Delayen     27 February 2002

Demonstration of Energy Recovery
With energy recovery the required linac rf power is ~ 16 kW, 
nearly independent of beam current. It rises to ~ 36 kW with 
no recovery at 1.1 mA.
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Linac–Ring Collider: Schematic Layout

Energy Recovery Electron Linac

Proton Ring 

Electron Beam Dump

Polarized Electron Source
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Features of Energy Recovery

• With the exception of the injector, the required rf power is nearly 
independent of beam current.
• Increased overall system efficiency. 

• The electron beam power to be disposed of at beam  dumps is reduced 
by ratio of Emax/Einj. 
• Thermal design of beam dumps is simplified
• If the beam is dumped below the neutron production threshold, 

then the induced radioactivity (shielding problem) will be reduced.
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RF to Beam Multiplication Factor for an ideal ERL
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RF to Beam Multiplication Factor for an ideal ERL
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RF to Beam Multiplication Factor for an ideal ERL

• The efficiency of an ERL (as measured by the rf to beam multiplication factor) 
increases with current
• Asymptotic value is Emax/Einj

• The efficiency increases with the loaded Q of the energy-recovering cavities
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Qext Optimization
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Generator Power vs. Loaded Q

7-cell, 1500 MHz
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Qext for ERL Injector and Linac Cavities

• ERL Injector (2-cell) cavities: 
• f0=1300 MHz, Q0= 5x109, Vc= 1 MV per cavity, Lcav = 23 cm
• For I0=100 mA ⇒ Optimum QL= 4.6x104 ⇒ Pg = 100 kW per   cavity 

• Note: I0Va = 100 kW ⇒ optimization is entirely dominated by beam loading 

• ERL linac (9-cell) cavities: 
• f0=1300 MHz, Q0=1x1010, Vc=20 MV/m, Lcav= 1.04 m, 
• R/Q=1036 ohms, δfm=25 Hz
• Resultant beam current, Itot = 0 mA (energy recovery) 
• ⇒ Optimum QL=2.6x107 ⇒ Pg = 8 kW per cavity with δfm=25 Hz

• Note: optimization is entirely dominated by amplitude of microphonic noise
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Increasing the Efficiency of  ERLs
What is the maximum achievable loaded Q for energy-recovering cavities?
• Microphonics control 
• Lorentz force detuning 

• Non-ideal energy recovery
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Self-Excited Loop-Principle of Stabilization
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Controlling the external phase shift  θ l can compensate 
for the fluctuations in the cavity frequency ωc so the 
loop is phase locked to an external frequency 
reference ωr.

Instead of introducing an additional external controllable 
phase shifter, this is usually done by adding a signal 
in quadrature
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Self-Excited Loop – Block Diagram
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Non-Ideal  Energy Recovery
• Ideal energy recovery assumes perfect cancellation of 2 large and opposite 

vectors
• Accelerated and decelerated beams are equal in magnitude and 1800 out of 

phase at the fundamental frequency
• In practice there will be a residual net current:

• Phases may not differ by precisely 180o

• Typical expected path length control adjustment leads to ~ 0.5o deviation 
from 180o

• Beam loss may occur, resulting in beam vectors of unequal magnitude
• High-frequency beam current fluctuations

⇒All of the above give rise to a net beam loading vector, of random amplitude 
and phase, but that will typically be  reactive

⇒ Increase of rf power requirements and reduction of κ
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Energy Recovery Phasor Diagram
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Sensitivity Analysis: Beam Loss
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Sensitivity Analysis: Phase Errors
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Amplitude and Phase Stability Requirements

• Specifications set by the users on energy spread and timing jitter will 
impose requirements on the phase and amplitude stability in the 
cavities

• These requirements will determine the characteristics of the LLRF 
control system, including gain and bandwidth of the feedback loops

• In ERLs, additional constraints on the LLRF system design may be
imposed due to possible longitudinal instabilities 
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RF Instabilities

• Instabilities can arise from fluctuations of cavity fields.
• Two effects may trigger unstable behavior:

• Beam loss which may originate from energy offset which shifts 
the beam centroid and leads to scraping on apertures.  

• Phase shift which may originate from energy offset coupled to 
M56 in the arc

• Instabilities predicted and observed at LANL, a potential limitation on 
high power recirculating, energy recovering  linacs. 

M56 is the momentum compaction factor and is defined by: 
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RF Stability Flow Chart
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RF Stability Studies
• Model has been developed (Lia Merminga) in support of the Jlab FEL program.  It 

includes:
• beam-cavity interaction, 
• low level rf feedback 
• FEL interaction

• Solved analytically and numerically 

• Model predicts instabilities that agree with experimental measurements performed on 
JLab IRFEL
• Agreement is quantitative with FEL off
• Agreement is qualitative with FEL on

• Instabilities can be controlled by LLRF feedback
• Further analysis and modeling is needed to understand the rf stability issues of 

ERLs with much higher current (Control of random reactive loading currents in 
superconducting cavities)
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Higher Order Modes

• Even in the case of perfect energy recovery cancellation of accelerated and 
decelerated beam occurs only at the fundamental mode frequency

• Coupling to other monopole modes
• HOM power dissipation

• Coupling to dipole modes
• Beam breakup instabilities
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HOM Power Dissipation
• Accelerated and decelerated beams will couple to the (non fundamental) monopole 

modes and will deposit energy in those modes

• Power dissipated depends on product of bunch charge and average current

• For typical TESLA-type cavities k ~ 8.5 V/pC for σz ~ 1 mm
〈I〉 ~ 250 mA,  Q ~ 2 nC

Pdiss ~ 8 kW/cavity

• Need a better understanding of where that power goes
Only a small fraction ends up on the cavity walls

• Need engineering development of HOM absorbers

2dissP k Q I=
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Beam Breakup Instabilities

• Coupling of accelerated and decelerated beams to dipole modes

• Single bunch, single pass effects: limit the bunch charge
• Energy spread induced by variation of longitudinal wake field across 

bunch
• Emittance growth induced by single-bunch transverse BBU
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(Multi-Bunch) Beam Breakup Instabilities

• Multi-pass, multi-bunch effects: limit the average current

• Recirculating beam through a cavity can lead to transverse instabilities
• Transverse displacement on successive recirculations can excite HOMs that 

further deflect initial beam
• Feedback loop between beam and cavities
• Threshold current above which the system becomes unstable
• Because of their high Q, superconducting systems can be more sensitive to 

this type of instability

• TDBBU: 2d beam breakup code used for simulation (Krafft, Bisognano, Yunn)
• Being benchmarked at the JLab FEL
• Predicts threshold current of ~ 250 mA, and rise time of ~ 2 msec.
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Conclusions
• Energy recovery superconducting linacs are very efficient devices for certain 

applications
• They can approach the efficiency of storage rings while preserving the 

beam properties of linacs 
• Concept has been fully demonstrated and is used routinely in a user facility
• Studies have uncovered no fundamental show stoppers
• The ultimate limits of the energy-recovering concept have not been fully 

determined
• Highest Ql for the cavities while maintaining phase and amplitude stability

requirements
• Highest current that can be accelerated/decelerated 

• Preservation of rf stability 
• Avoidance BBU instabilities
• Extraction of HOM power
• Control of beam loss
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