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Electron-Ion Collider at CEBAF

12 GeV CEBAF 

Upgrade

Green-field design of ion 

complex directly aimed 

at full exploitation of 

science program.

(Large booster)

Beam energy GeV 250/10 150/7 50/5

Figure-8 ring km 2.5

Bunch collision freq MHz 499/1499

Beam current A 0.66/1.65 0.46/0.99 0.57/1.15

Particles/bunch 109 2.7/6.9 1.9/4.1 2.3/4.8

Energy spread 10-4 3/3

Bunch length, rms mm 5/5

Hori. emit., norm. μm 0.70/51 0.42/35.6 0.28/25.5

Vertical emit., norm. μm 0.03/2.0 0.017/1.4 0.028/2.6

Beta* mm 5/5

Vert. b-b turn-shift/IP 0.01/0.1

Peak lumi. per IP 1034 cm-2s-1 2.9/8.6 1.2/3.6 1.1/3.3

Number of IPs 4

Luminosity lifetime hours 24

Energy CM  20~100 GeV, asymmetry ~ 10 

Luminosity 1033 up to 1035 cm-2 s-1 per IP

Ion Species Polarized H, D, 3He,  up to A = 208

Polarization

• Longitudinal at the IP for both beams 

• Transverse polarization of ions

• Spin-flip of both beams

• All polarizations >70% desirable

ELIC luminosity Concepts

• High bunch collision frequency (1.5 GHz)

• Short ion bunches (5 mm)

• Super strong final focusing  (β* ~ 5 mm)

• Large beam-beam parameters   

• Need High energy electron cooling

• Need crab crossing colliding beams



Introduction: Beam-Beam Physics

Transverse Beam-beam force 

between colliding bunches 
• Highly nonlinear forces

• Produce transverse kick between colliding 

bunches

Beam-beam effect
• Can cause beam emittance growth, size 

expansion and blowup

• Can induce coherent beam-beam instabilities

• Can decrease luminosity

linear part  tune shift

nonlinear part  tune spread & instability

Electron 

bunch

Proto
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bunch
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Electron bunch
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One slice from each 

of opposite beams

Beam-beam force



Luminosity and Beam-beam Effect

Luminosity of a storage-ring collider
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ELIC Beam-beam Problem

ELIC IP Design
• Highly asymmetric beams (3-9GeV/1.85-2.5A and 30-225GeV/1A)

• Four interaction points and Figure-8 rings

• Strong final focusing (beta-star 5 mm)

• Very short bunch length (5 mm)

• Employs crab cavity

• Electron and proton beam vertical b-b parameters are 0.087 and 0.01

• Very large electron synchrotron tune (0.25) due to strong RF focusing

• Equal betatron phase advance (fractional part) between IPs

Short bunch length and small beta-star

• Longitudinal dynamics is important, can’t be treated as a pancake

• Hour glass effect, 25% luminosity loss

Large electron synchrotron tune

• Could help averaging effect in longitudinal motion

• Synchro-betatron resonance



Simulation Model, Method & Codes

Particle-in-Cell Method
• Bunches modeled by macro-particles

• Transverse plane covered with a 2D mesh

• Solve Poisson equation over 2D mesh

• Calculate beam-beam force using EM fields 
on maeh points

• Advance macro-particles under b-b force

mesh point 

(xi, yj)

BeamBeam3D Code

• Developed at LBL by Ji Qiang, etc. (PRST 02)

• Based on particle-in-cell method

• A strong-strong self-consistent code

• Includes longitudinal dim. (multi-slices)

Basic Idea of Simulations

Collision @ IP  +  transport @ ring

• Simulating particle-particle collisions by 
particle-in-cell method

• Tracking particle transport in rings

Code Benchmarking

• several codes including SLAC codes by 

Y. Cai etc. & JLab codes by R. Li etc.

• Used for simulations of several lepton 

and hardon colliders including KEKB, 

RHIC, Tevatron and LHC

SciDAC Joint R&D program

• SciDAC grant COMPASS , a dozen 

national labs, universities and companies

• JLab does beam-beam simulation for 

ELIC. LBL provides code development, 

enhancement and support  



BeamBeam3D:
Parallel Strong-Strong / Strong-Weak Simulation Code

• Multiple physics models:

– strong-strong (S-S); weak-strong (W-S)

• Multiple-slice model for finite bunch length effects

• New algorithm -- shifted Green function -- efficiently models 

long-range parasitic collisions  

• Parallel particle-based decomposition to achieve perfect load 

balance

• Lorentz boost to handle crossing angle collisions

• Multi-IP collisions, varying phase adv,…

• Arbitrary closed-orbit separation (static or time-dep)

• Independent beam parameters for the 2 beams

• Conducting wire, crab cavity, electron lens compensations



Particle-In-Cell Method

Advance momenta 

using radiation 

damping and 

quantum excitation 

map

Advance momenta using beam-

beam forces

Field solution on grid to 

find beam-beam forces

Charge deposition on 

grid

Field interpolation at 

particle positions

Setup for solving Poisson 

equation 

Initialize

particles

(optional)

diagnostics

Advance positions & 

momenta using 

external transfer map
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A Schematic Plot of the Geometry of  Two Colliding Beams

Field Domain

Head-on collision

Long-range collision

Crossing angle collision



Green Function Solution of Poisson’s Equation

;  r = (x, y) ')'()',()( drrrrGr 
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Direct summation of the convolution scales as N4 !!!!

N – grid number in each dimension



Green Function Solution of Poisson’s Equation (cont’d)



F(r)  Gs(r,r')(r')dr'
Gs(r,r') G(r  rs,r')



c(ri)  h Gc(ri
i '1

2N

  ri' )c(ri' )



(ri)  c(ri)  for i =  1,  N

Hockney’s Algorithm:- scales as (2N)2log(2N)

- Ref: Hockney and Easwood, Computer Simulation using Particles, McGraw-Hill Book Company, New York, 1985.

Shifted Green function Algorithm:



Comparison between Numerical Solution and 

Analytical Solution (Shifted Green Function)

Ex

radius

inside the particle domain



Green Function Solution of Poisson’s Equation

(Integrated Green Function)



c(ri)  Gi(ri
i '1

2N

  ri' )c(ri' )



Gi(r,r')  Gs(r,r')dr'

Integrated Green function Algorithm for large aspect ratio:

x (sigma)
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B.Erdelyi and T.Sen, “Compensation of beam-beam effects in the Tevatron with wires,” (FNAL-TM-2268, 2004).

Model of Conducting Wire Compensation

(xp0,yp0)

test particle
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ELIC e-p Nominal Parameters

Simulation Model
• Single or multiple IP, head-on collisions

• Ideal rings for electrons & protons

 Using a linear one-turn map

 Does not include nonlinear optics

• Include radiation damping & quantum 
excitations  in the electron ring

Numerical Convergence Tests
to reach reliable simulation results, we need 

• Longitudinal slices  >= 20 

• Transverse mesh    >= 64 x 128

• Macro-particles       >= 200,000

Simulation Scope and Limitations
• 10k ~ 30k turns for a typical simulation run 

(multi-days of NERSC supercomputer)

• 0.15 s of storing time (12 damping times) 

 reveals short-time dynamics with accuracy 

 can’t predict long term (>min) dynamics

Proton Electron

Energy GeV 150 7

Current A 1 2.5

Particles 1010 1.04 0.42

Hori. Emit., norm. μm 1.06 90

Vert. Emit., norm. μm 0.042 3.6

βx / βy mm 5 / 5 5 / 5

σx / σy μm 5.7/1.1 5.7/1.1

Bunch length mm 5 5

Damping time turn --- 800

Beam-beam 

parameter

0.002 

0.01

0.017 

0.086

Betatron tune      

νx and νy 

0.71 

0.70

0.91   

0.88

Synchrotron tune 0.06 0.25

Peak luminosity cm-2s-1 7.87 x 1034

Luminosity with 

hour-glass effect

cm-2s-1 5.95 x 1034



Simulation Results: Nominal Parameters
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• Simulations started with two Gaussian bunches with design 

parameters, reached equilibrium after one damping time

• No coherent beam-beam instability observed. 

• Luminosity stabled at 4.3·1034 cm-2s-1 after damping time

• Sizes & lengths for both bunches remain design values except

• Vertical size & emittance of electron bunch increased by a 

factor of 1.8 and 2.7 respectively

Electron proton

Luminosity 4.3·1034 cm-2s-1

x_rms (norm) 1.00 1.00

x_emit (norm) 0.97 1.00

y_rms (norm) 1.76 1.00

y_emit (norm) 2.73 1.01

z_rms (norm) 1 1

z_emit (norm) 1 1

h. tune shift 0.017 0.002

v. tune shift 0.087 0.010
Normalized to 

design parameters

x

y

z
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Electron current dependence of Luminosity

• Increasing electron beam current by increasing 
bunch charge while bunch repetition rate remains the 
same, hence also increasing beam-beam interaction

• Luminosity increase as electron current almost 
linearly (up to 6.5 A)

• Proton bunch vertical size/emittance blowup when 
electron current is at above 7 A

• When electron beam reaches 5 A, proton dynamical 
vertical tune shift is 0.01 and above, while electron 
vertical tune shift goes down due to blowup of proton 
beam

• Coherent b-b instability observed at 7 ~ 7.5 A
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Coherent Beam-Beam Instability
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• Electron current is 7.5 A

• Coherent motion only in vertical size

• Not a dipole mode since <x>=<y>=0

• Proton vertical beam size blowup at 

and above this beam current value
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Proton current dependence of Luminosity
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• Increasing proton beam current by increasing proton 
bunch charge while bunch repetition rate remain 
same, hence also increasing beam-beam interaction

• Luminosity increase as proton beam current first 
approximately linearly (up to 1.5 A), then slow down 
as nonlinear beam-beam effect becomes important

• Electron beam vertical size/emittance increase 
rapidly

• Electron vertical and horizontal beam-beam tune 
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Betatron Tune Working Point

• Equilibrium luminosity strongly depends on 

synchrotron and betatron tune working point

• Working point should be away from synchrotron-

betatron resonance lines

• Tune footprint, enlarged by beam-beam effect should 

avoid cross low order resonance lines

• Simulations have shown a better working point
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New Working Point (cont.)
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Simulation studies show 

• systematic better luminosity over beam current regions with new working point,

• coherent instability is excited at same electron beam current, ~ 7 A



Multiple IPs and Multiple Bunches

ELIC full capacity operation

• 4 interaction points, 1.5 GHz collision frequency

• 20 cm bunch spacing, over 10500 bunches stored for each beams

• Theoretically, these bunches are coupled together by collisions at 4 IPs

• Bunches may be coupled through other beam physics phenomena 

• A significant challenges for simulation studies

What concerns us
• Multiple bunch coupling

• Multiple IP effect 

• Introducing new instability and effect on working point

• Earlier inciting of coherent beam-beam instability

• New periodicity and new coherent instability (eg. Pacman effect)



Reduction of Coupled Bunch Set
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Dip-ip

ELIC ring cir.:  ~ 2100 m,   IP-IP distance:  ~ 90 m      2100/90 ~23.3

Simplified model:      ring cir. = 24 Dip-ip

• A 24-bunch set of one beam will collide with only a 24 bunch set 
of the other beam 

• 10k bunches decoupled into multiple 24-bunch independent sets 
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Multiple IPs and Multiple Bunches

Collision Table

• Even and odd number bunches also 

decoupled

• When only one IP, one e bunch 

always collides one p bunch 

• When two IPs opens on separate 

crossing straights and in symmetric 

positions, still one e bunch collides 

with one p bunch 

Full scale ELIC simulation model 

• 12 bunches for each beam

• Collisions in all 4 IPs

• Bunch takes 24 steps for one 

complete turn in Figure-8 rings

• Total 48 collisions per turn for 

two 12-bunch sets



Multiple IPs and Multiple Bunches (cont.)

• Simulated system stabilized (luminoisty, transverse size/emittance) after one damping 

time (more than 100k collisions)

• Luminosity per IP reaches 5.48x1034 m-1s-2, a 5% additional loss over hour-glass effect

• Very small additional loss due to multiple-bunch coupling

• No coherent beam-beam instability observed at ELIC nominal design parameters

• More studies (parameter dependence, coherent instability, etc.) in progress   
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Summary

• Beam-beam simulations were performed for ELIC ring-ring design with 
nominal parameters, single and multiple IP, head-on collision and ideal 
transport in Figure-8 ring

• Simulation results indicated stable operation of ELIC over simulated time 
scale (10k ~ 25k turns), with equilibrium luminosity of 4.3·1034 cm-2s-1,
roughly 25% reduction for each of hour-glass and beam-beam effects

• Studies of dependence of luminosity on electron & proton beam currents 
showed that the ELIC design parameters are safely away from beam-
beam coherent instability

• Search over betatron tune map revealed a better working point at which 
the beam-beam loss of luminosity is less than 4%, hence an equilibrium 
luminosity of 5.8·1034 cm-2s-1

• Multiple IP and multiple bunch simulations have not shown any new 
coherent instability. The luminosity per IP suffers only small decay over 
single IP operation 



Outlook

• Toward more realistic model of beam transport

 Needs of including real lattice and magnet imperfections 

 Trade-off (due to computing power limit): full particle-tracking in ring and 

weak-strong beam model

 Short term accurate vs. long term (inaccurate) behavior

• Move to space charge dominated low ion energy domain

 pancake approximation of beam-beam force vs. full 3D mash calculation

 New limit = Laslett tune-shift + beam-beam tune-shift ?

• Advanced interaction region design

 Crab crossing

 Traveling focusing

 Crab waist



Future Plan

• Continuation of code validation and benchmarking

• Single IP and head-on collision

– Coherent beam-beam instability

– Synchrot-betatron resonance and working point

– Including non-linear optics and corrections   

• Multiple IPs and multiple bunches

– Coherent beam-beam instability

• Collisions with crossing angle and crab cavity

• Beam-beam with other collective effects

• Part of SciDAC COMPASS project

• Working with LBL and TechX and other partners for developing and 

studying beam dynamics and electron cooling for ELIC conceptual 

design
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