The Gluon Contribution to the Nucleon Spin

Antje Bruell, Jlab EIC meeting, MIT, April 7 2007

- Introduction
- ΔG from scaling violations of $g_1(x,Q^2)$
- The Bjorken Sum Rule
- ΔG from charm production

Where is the nucleon spin?

World Data on F₂^p Structure Function

Next-to-Leading-Order (NLO) perturbative QCD (DGLAP) fits

World Data on F2p

4 orders of magnitude in x and Q2

World Data on g_1^p

< 2 orders of magnitude, precision much worse!

The gluon spin distribution Δg

Not much information until recently:

$$\frac{d g_1}{d \log(Q^2)} \propto \frac{\alpha_s}{2\pi} P_{qg} \otimes \Delta g(x, Q^2) + \text{quark contrib.}$$

$$\Delta G \approx 1.8 \ (@1 \mathrm{GeV}^2)$$

"axial anomaly" Altarelli et al.

$$\Delta G \approx 0.4$$

$$\Delta G \approx -1.7$$

World Data on F₂^p

EIC Data on g₁^p

Region of existing g_1^p data

makes it possible!

ΔG from scaling violations of g_1

Bjorken's sum rule

$$\int_0^1 \mathrm{d}x \, g_1^{ep-en}(x,Q^2) = \frac{1}{6} \frac{g_A}{g_V} \left\{ 1 - \frac{\alpha_s(Q^2)}{\pi} - \frac{43}{12} \frac{\alpha_s^2(Q^2)}{\pi^2} - 20.215 \frac{\alpha_s^3(Q^2)}{\pi^3} \right\}$$

high-order perturbation theory

$$+\frac{M^2}{Q^2} \int_0^1 x^2 dx \left\{ \frac{2}{9} g_1^{ep-en}(x, Q^2) + \frac{1}{6} g_2^{ep-en}(x, Q^2) \right\}$$

target-mass corrections

$$-\,\frac{1}{Q^2}\frac{4}{27}\mathcal{F}^{u-d}(Q^2) \qquad \qquad {\bf Twist-4\ matrix\ elements} \, \sim \, \left\langle\, \bar{q}\tilde{F}q\,\right\rangle$$

Precision QCD. Currently tested at ~10%.
 Can it be tested at ~1 or 2%?

Bjorken Sum Rule: $_{1}^{p} - _{1}^{n} = 1/6 g_{A} [1 + _{s}]$

- Sub-1% statistical precision at ELIC (averaged over all Q²)
- 7% (?) in unmeasured region, in future constrained by data and lattice QCD
- 3-4% precision at various values of Q²

Needs: O(1%) Ion Polarimetry!!!

Holy Grail: excellent determination of $\alpha_s(Q^2)$

very clean process!

LO QCD: asymmetry in D production directly proportional to Δ G/G

problems: luminosity, charm cross section, background!

starting assumptions for EIC:

- vertex separation of 100μm
- full angular coverage ($3<\Theta<177$ degrees)
- perfect particle identification for pions and kaons (over full momentum range)
- detection of low momenta particles (p>0.5 GeV)
- measurement of scattered electron (even at very small scattering angles)
- 100% efficiency

very demanding detector requirements!

Background suppression:

Separation of primary and secondary vertex absolutely essential!

Pion/kaon separation very helpful!

invariant mass of K π system

aroma - kinematics of decay particles

Momenta of decay kaon and pion: 1.5 < p < 10 (15) GeV

Angles of decay kaon and pion: $160^{\circ} < \Theta < 177^{\circ}$

Precise determination of Δ G/G for 0.003 < x_a < 0.4

at common Q² of 10 GeV²

however...

Precise determination of Δ G/G for 0.003 < x_g < 0.4

at common Q² of 10 GeV²

lf:

- We can measure the scattered electron even at angles close to 0⁰ (determination of photon kinematics)
- We can separate the primary and secondary vertex down to about 100 μm
- We understand the fragmentation of charm quarks (
- We can control the contributions of resolved photons
- We can calculate higher order
 QCD corrections (

charm production: detector consequences

- Need to measure the scattered electron at angles close to 0⁰ → how?
- Need to separate the primary and secondary vertex down to about 100 μm \rightarrow how to determine the primary vertex ?
- For charm decay products need to instrument only ± 15-20^o around proton direction
- Simple set of silicon disks might be sufficient for vertex detection
- Momenta of decay products between 1.5 and 10(15) GeV

charm production: influence of fragmentation

$$x_g^{rec} = x(s_{hat}/Q^2+1)$$

 $s_{hat} = 4 M_{inv}^2$

correction presently by simple parametrisation of x_g-x^{rec} vs xg

Future: Polarized gluon distribution from RHIC

Future: Polarized gluon distribution from RHIC

Future: Polarized gluon distribution from RHIC

Future: $x \Delta g(x,Q^2)$ from RHIC and EIC

EIC 0.003 < x < 0.5 uncertainty in x∆g typically < 0.01 !!!

Polarized gluon distribution vs Q²

Next Steps

- determine sensitivity of g_1 to different "realistic" models for ΔG (including different functional forms!)
- generate pseudo EIC data and include in full QCD fit procedure (including estimates of systematic uncertainties!)
- determine precision of Bjorken Sum measurement as function of Q² (including extrapolations)
- study fragmentation in charm production
- include other charm decay channels (including D* tagging)
- get first estimates of systematic uncertainties
- specify more clearly detector requirements for different processes

Summary

EIC is the ideal machine to finally determine the contribution of the gluons to the nucleon spin!

- measurements of g_1 will allow
 - \triangleright a determination of $\Delta G/G$ from its scaling violation
 - ➤ a statistically very precise determination of the Bjorken Sum (systematics due to uncertainty in proton beam polarization ???)
- measurements of charm cross section asymmetries will provide a precise determination of $\Delta G/G$ for 0.003
 x<0.5 at a fixed value of Q² of ~10 GeV²
- provided we can
 - measure the scattered electron at extremely small angles
 - separate the primary and secondary vertex with sufficient precision
 - control the contribution of resolved photons
- more work needed to define the necessary detector requirements!