Coherent Electron Cooling

Use of an Electron Beam for Stochastic Cooling

Yaroslav Derbenev
Thomas Jefferson National Accelerator Facility
Newport News, Virginia, USA

Cool 07 International Workshop
Bad Kreuznach, September 10-14, 2007
Outline

Principal idea
Polarization of electron plasma (beam) by a fast ion
Potentially possible amplification
Region of amplification
Limitation of cooling rate due to ion shielding
Arrangements for microwave instabilities in e-beam
Shottky-noise limitation and suppression of noise
Limitation due to non-linear saturation
Phasing
CEC on FEL (preliminary estimates)
Conclusions and outlook
Coherent electron cooling (CEC) was proposed 27 years ago

- General idea: amplify response of e-beam to an ion by a micro-wave instability of the beam
- A few instabilities have been shown
- CEC advantages/disadvantages compared to:
 - EC: Gain in cooling rate
 - Complicate BT
 - SC: Very large FB (30 GHz – optics)
 - Precise phasing required
 - OSC: Effective in a wide energy range
 - Small signal delay
 - Intense e-beam required
 - Signal gain is limited

What changed in last 10 years?
- Relativistic DC EC realized (FNAL)
- ERL realized (JLab)
- SASE FEL realized (UCLA - DESY)
- ERL-based HEEC on the way (BNL)
 And more…
Fast ion wake in electron gas

Fast ion produces polarization of e-gas:

\[n = n_0 + \tilde{n}; \quad \tilde{n} + \omega_e^2 \tilde{n} = -\omega_e^2 Ze \delta(r - \tilde{v}t) \]

\[\langle \text{In magnetized beam:} \quad T_e \Rightarrow T_{ez} \approx e^2 n_0^{1/3} \approx 10^{-4} eV \rangle \]

Ion interacts with charge image spread over distances \(\rho \):

\[\frac{\nu_e}{\omega_e} \equiv \rho_D < \rho \leq \rho_{sh} \equiv \frac{\nu}{\omega_e} \quad \text{-area of collective response} \]

In stable plasma, ion receives drag force

\[F_0 = \frac{(Ze)^2}{\rho_{sh}^2} \int \frac{d\rho}{\rho} \]

Polarization is small:

\[\frac{\tilde{n}}{n_0} \approx \frac{\delta\rho}{\rho_{sh}} \approx \frac{1}{n_0 \rho_{sh}^3} \]

Thus, there is an enhancement potential

\[G \leq n_0 \rho_{sh}^3 \quad (\approx 10^6)! \]

• A micro-wave instability is called…
• E-beam should be cool enough…
• Phasing is required…
Maximum CEC rate

• Maximum field initiated by a single ion
 (after amplification at absence of friends…)

\[E \Rightarrow 4\pi n_0 e \rho_{sh} = 4\pi n_0 e \nu / \omega_e \]

• The momentum transfer is then

\[\Delta p_\perp = F \cdot \tau \cong Z e^2 4\pi n_0 / \omega_e^2 = Z m_e \nu = \frac{Z}{A} \frac{m_e}{m_p} p_\perp \]

• And, the cooling time then would be

\[\tau_c \cong \frac{A}{Z} \frac{m_p}{m_e} \frac{1}{f_0} \]
Microwave electron instabilities -1

Introduce **parametric plasma resonance** \(\ddot{n} + \omega^2_e(t)\dot{n} = 0 \)

- Change electron density up and down every 90 degree of plasma phase advance

Possible way:

- E-beam in modulated solenoid: \(\omega^2_e(s) = \frac{4J/A}{\gamma vr^2(s)} \), \(r(s) = r_1 \leftrightarrow r_2; \)

- Start at \(\dot{n} = 0 \), then after each single period:

- After \(q \) periods: \(\frac{\dot{n}_{q+1}}{\dot{n}_0} = \left(\frac{r_2}{r_1}\right)^q \)

Correction: magnetized plasma is non-isotropic: \(\omega_e \Rightarrow \omega_e \times \cos \theta \)
Microwave electron instabilities-2

- Negative longitudinal mass instability

An example:

- Beam angle
 \[\theta_0 := \frac{B_u / B_s}{\kappa_u \lambda_c - 1} \quad \hat{\lambda}_c = \frac{p}{eB_s} \]

- The angle grows with energy at \(\kappa_u \hat{\lambda}_c < 1 \)

- Translation velocity:
 \[\nu_z^2 = 1 - \frac{1}{\gamma^2} - \theta_0^2 ; \]

 decreases with energy at
 \[\frac{1}{\mu} = \frac{d\nu_z}{d\gamma} = \frac{1}{\gamma^3} - \frac{1}{2} \frac{d\theta_0^2}{d\gamma} < 0 \]

Coulomb instability:

\[\Lambda = \sqrt{\frac{4\pi ne^2}{-\mu c^2}} \]
Microwave electron instabilities -3

FEL instability

• Undulator period
 \[2\pi \hat{\kappa}_u \]

• Radiation wave length
 \[\lambda = \frac{1}{2} \lambda_u \left(\frac{1}{\gamma^2} + \theta_u^2 \right) \]

• Plasma beat wave length
 \[l_e = \frac{\gamma_r}{2} \sqrt{\frac{\gamma J_A}{J(1 + \gamma^2 \theta_u^2)}} \]

• SASE gain length
 \[l_G \approx l_e \left(\frac{\hat{\kappa}_u}{l_e \gamma^2 \theta_u^2} \right)^{1/3} \]
 at \[\sqrt{\hat{\kappa}_u l_G} \leq \gamma_r \]

• Optimal arrangement:
 \[\hat{\kappa}_u \approx \gamma_r \min(1, \frac{l_e}{l_c}) \]
Limitations of CEC due to ion interactions

• Conventional stochastic cooling limit:

\[
(\tau_c)_{\text{min}} \geq \frac{N_{\Delta \varphi} \Delta \varphi}{2 \pi \Delta f_0} = \left(\frac{J_{\text{peak}}}{e} \right) \frac{f_0}{(\Delta \omega)^2} \frac{\Delta f_0}{\Delta f_0}
\]

\[
\Delta \omega = \frac{c}{l_\perp}
\]

• CEC:

\[
\Delta \omega = \frac{\gamma \beta c}{\min(\rho_{sh}, \sigma_\perp)}
\]

Reduction of mixing limit by a factor of

\[
\left[\frac{\gamma l_\perp}{\min(\rho_{sh}, \sigma_\perp)} \right]^2
\]
Schottky noise limitation of CEC

- Normal Schottky impact:

\[\dot{T}_{\text{scat}} \approx -\frac{m_e}{m_i} \dot{T}_{\text{cool}} \]

Rates gain in CEC:

\[\dot{T}_{\text{cool}} \rightarrow \times G \quad \dot{T}_{\text{scat}} \rightarrow \times G^2 \]

It yields

\[G_{\text{max}} \approx \frac{m_i}{m_e} \]

Suppressed Schottky noise:

\[\dot{T}_{\text{scatt}} \rightarrow \times \Gamma^{-2} \]

Then

\[G_{\text{max}} \Rightarrow \frac{m_i}{m_e} \Gamma^2 \]
Suppression of Schottky noise

• Frequency range: \[\omega = k / \beta c \quad k \geq 1 / \sigma \]

Possible ways:
• 3/2 e-gun regime: \[\Gamma^2 \approx (eU / T_{cath})^{1/2} \]
• Adiabatic acceleration (more suppression)
• Thermal relaxation along a low energy drift (most effective, in principle)
• Fast acceleration case: implement plasma gymnastics to compensate for instability mode (not effective in case of FEL amplification)

An “absolute” suppression limit:

\[\Gamma_{max}^2 \approx \frac{e^2 n_e \rho_{sh}^2}{T_{ez}} = \frac{m}{M} \frac{T_i}{T_{ez}} ; \quad G_{max} \approx \frac{T_i}{T_{ez}} \quad (\Rightarrow 10^7 - 10^9) \]
Gain limitation due to non-linear saturation

Maximum gain for an absolute cooled e-beam:

\[G_1 \approx (n_e \sigma^3 / \gamma) \approx N_e \frac{\sigma \parallel}{\gamma \sigma_z} \]

Maximum gain for a real e-beam

\[G_2 \approx \Gamma (n_e \sigma^3 / \gamma)^{1/2} \quad (\Gamma < \sqrt{n_e \sigma^3 / \gamma}) \]

Maximum gain for real i-beam:

\[G_3 \approx (n_e \sigma^3 / \gamma)/(n_i \sigma^3 / \gamma)^{1/2} \]

Max. gain, at all:

\[G \leq \min(G_2, G_3, \Gamma^2 \frac{m_p}{m_e}) \quad (\approx 10^3 - 10^4) \]
Transverse vs longitudinal CEC

- Due to beam transport conditions and nature of microwave instabilities, transverse e-polarization is low compared to the longitudinal one. Therefore, the transverse drag force is small compared to the longitudinal one.
- Solution in general: arrange for dispersive cooling
- Method: ion dispersion + tilt of electron ellipsoids

Non-achromatic chicane installed at the exit of the FEL before the kicker section turns the fronts of the charged planes.

An alternative option: create transverse gradient of electron energy, by introducing the gradient SRF (no bend required...).
CEC phasing

• The “good mixing” in CEC is extraordinary good (super-large frequency bandwidth!)

\[\Delta s = \frac{\Delta \gamma}{\gamma^3} l \approx \frac{\lambda}{4} \frac{4l}{\lambda_u} \frac{\Delta \gamma}{\gamma} < \frac{\lambda}{4} \]

• The “bad mixing” for non-bent ion beam is not bad…

• However, the e-beam response experiences some delay (necessary for amplification)

• The most advantageous way to compensate for delay time seems to be:

 Increase (or modulate) electron energy

• In case of CEC on FEL, the “light” overtakes the ion…

Optimal phasing needs more study
FELs and high-energy electron cooling

Vladimir N. Litvinenko
BNL, Upton, NY, USA
Yaroslav S. Derbenev
TJNAF. Newport News, VA, USA

29th International FEL Conference
August 26-31, 2007, BINP, Novosibirsk
And so, my fellow Americans, ask not what your country can do for you; ask what you can do for your country.

And so, my fellow FELers, ask not what storage ring can do for FELs: ask what FELs can do for your storage rings!

Vladimir Litvinenko

29th International FEL Conference
August 26-31, 2007, BINP, Novosibirsk
ultra-relativistic case (\(\gamma >> 1\)), longitudinal cooling

Most versatile phasing option

- Hadrons
- Electrons

Modulator: region 1 about a quarter of plasma oscillation
Longitudinal dispersion for hadrons
Amplifier of the e-beam modulation via SASE FEL

Most economical option

Kicker: region 2
CEC on FEL

- **Modulator: Interaction region 1**
 Length: about a quarter of plasma oscillation

\[
\omega_{pe} = \sqrt{\frac{4\pi n_e e^2}{m_e}} = c \sqrt{4\pi n_e r_e}
\]

Each hadron generates modulation in the electron density with total charge of about minus charge of the hadron, \(Z \)
CEC on FEL

Longitudinal dispersion for hadrons, time of flight depends on its energy:

\[(T-T_0) \nu_o = -D \frac{(E-E_0)}{E_o}\]

Amplifier of the e-beam modulation- SASE FEL

Electron density modulation is amplified in SASE FEL and made into a train with duration of N alternating hills (high density) and valleys (low density) with period of FEL wavelength

\[\lambda_o = \lambda_w \left(1 + a_w^2 \right) / 2 \gamma^2 ; N_c \sim L_{gain} / \lambda_w\]

Maximum gain of the electron density of SASE FEL is \(\sim 10^3\).
A hadron with central energy (E₀) phased with the hill where longitudinal electric field is zero, a hadron with higher energy (E>E₀) arrives earlier and is decelerated, while hadron with lower energy (E<E₀) arrives later and is accelerated by the collective field of electrons.
Cooling of hadron beams

<table>
<thead>
<tr>
<th>Machine</th>
<th>Species</th>
<th>Energy GeV/n</th>
<th>Synchrotron radiation, hrs</th>
<th>Electron cooling, hrs</th>
<th>CEC, hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHIC</td>
<td>Au</td>
<td>100</td>
<td>20,961 ∞</td>
<td>~ 1</td>
<td>0.03</td>
</tr>
<tr>
<td>RHIC</td>
<td>protons</td>
<td>250</td>
<td>40,246 ∞</td>
<td>> 30</td>
<td>0.8</td>
</tr>
<tr>
<td>LHC</td>
<td>protons</td>
<td>450</td>
<td>48,489 ∞</td>
<td>> 1,600</td>
<td>0.95</td>
</tr>
<tr>
<td>LHC</td>
<td>protons</td>
<td>7,000</td>
<td>13/26</td>
<td>∞ ∞</td>
<td>< 2</td>
</tr>
</tbody>
</table>
Conclusions

- Coherent electron cooling seems to be a promising method to enhance the capabilities of electron/stochastic cooling. It might find important applications in a wide energy range of hadron beams in accelerators.
- At high energies, it might take full advantage of high gain FELs based on high brightness ERLs.
- Proof of principle experiment of cooling Au ions in RHIC at ~ 40 GeV/n is feasible with existing R&D ERL (oper. starts in 2009).
- Cooling 100 GeV/n ions and 250 GeV protons in RHIC seems to be straightforward.
- Cooling protons in LCH at 7 TeV seems to be possible, but may require slightly more elaborate scheme (buncher, etc.).
- Question of possible short-noise suppression in electron beam is very interesting and should be further studies.
Afterwards

It seems we see the prairie, but was the horse laying there?

A comprehensive study to follow…