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Motivations

• Future accelerator-based experiments demand high-brightness
electron beams from photoinjectors

• The electron beam has a low energy so space-charge forces can 
be important relative to external magnetic and rf fields

• There are two main challenges for simulations of high-
brightness photoinjectors:

- Resolution of small length/time scale space-charge fields relative to long length/time 
scales of injector, e.g. 1-10 ps bunch lengths for 1.3-2.8 GHz 

- Removal of unphysical simulation effects such as numerical grid dispersion and 
numerical Cherenkov effects in FDTD methods 
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Existing Space Charge Modeling
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Existing Electrostatic Algorithm

• SCHEFF (Space Charge EFFect)

- breaks up the macro-particles into a set of annular rings
- calculates the electrostatic space-charge forces in the 
beam rest frame and Lorentz transforms to the lab frame

• PARMELA (Phase And Radial Motion in Electron Linear Accelerators) 

- “Workhorse” of photoinjector design codes
- imposes external rf-fields computed from SUPERFISH 
and external magnetic fields computed from POISSON
- cannot calculate wakefields self-consistently

• ASTRA (A Space charge TRacking Algorithm)
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Existing Electromagnetic Algorithms

• Yee/PIC algorithm (FDTD method)
- solves Maxwell’s equations on the two interleaved E and B 
grids

• MAFIA
• Numerical Dispersion 
• Numerical Cherenkov Radiation

• TREDI (Three Dimensional Injectors)
- Lienard-Wiechert Potentials
- no conducting boundaries
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Other EM SC Method

• Mode analysis and Series Expansions (Salah et al)

- solves wave equations using series expansions 
and Fourier transformation in normal modes.
- calculates the space-charge fields to arbitrary 
accuracy for given beam charge and current 
densities
- needs a sufficient amount of eigenmodes and 
Fourier modes
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Space Charge Effects
in RF Photoinjector
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Electromagnetic Space-Charge
Potentials and Fields

• The relations of EM 
fields and potentials

• Lorenz Gauge

• Wave Equations
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Time-Dependent Green’s Functions

• For the special case of currents in the axial direction in an pipe 
with a cathode, the potentials are given by

• Time Dependent Green’s Function:
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Electromagnetic Space-Charge Fields

• Arbitrary pipe cross-section with longitudinal currents
• Rectangular pipe cross-section with arbitrary currents
• Circular pipe cross-section with longitudinal currents
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Numerical Implementation

• IRPSS (Indiana RF Photocathode Source Simulator)
• IRPSS is a 3-D electromagnetic particle/slice pushing algorithm
• Handles metallic boundary conditions self-consistently 

(boundary will consist of cathode, circular side walls)
• Uses electromagnetic Green’s function formalism for solving 

fields
• Time-dependent Green’s function formulation has the 

advantageous property that electromagnetic waves from tight 
electron bunches
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Specify 
trajectory and 
charge density 
of the beam

Compute E and 
B due to space-
charge

Simulate beam 
dynamics of 
test particles
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Bunched Beam Model

• The multi-sliced bunch model is introduced to generalize
the finite size bunch length.

• We set up uniformly spaced (in time), equally charged
slices, which form one complete bunch.

• Needs an enough number of slices
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Eigenmode Summations
The required eigenmode numbers can be 
estimated from the expansion of the charge 
density of the beam. The number of transverse 
eigenmodes necessary for accurately 
determining the fields is inversely proportional 
to the transverse size of the beam.
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Eigenmode Summation (cont’d)

• From the expansion of 
the beam density 
function, we can get the   
inequality,

• In order to model the 
fields within 1% 
accuracy, it is necessary 
to sum over at least 2000 
modes corresponding to 
BNL 2.856 GHz 
Photocathode gun.

π20 >>
a
rj b

M
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Numerical Time Integration

In the Ez calculations, the longitudinal field strongly depends on the beam trajectory. The 
oscillation periods of  the Green’s functions are determined by the transverse eigenmode
number,  M, and the integration step size, ∆t'. A smaller ∆t' reduces the amplitude of the 
oscillation.
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Benchmark Modeling

vv
Q-Q

v
Q

• IRPSS simulation of a disk bunch 
of charge emitted at time t = 0 from 
the cathode surface moving 
uniformly with speed v

•Analytical model of two disks of 
charge moving uniformly in opposite 
directions for all time and 
intersecting at t = 0
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Benchmark Comparison
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Blue: Benchmark       Red: IRPSS

Er vs. r Ez vs. z
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Simulating Beam Dynamics
with ANL AWA 1.3 GHz RF Photoinjector

• The rf fields within AWA gun are approximately 

• The longitudinal rf fields make 
beam trajectories
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Transverse Space-Charge Forces

ct/a = 0.005 ct/a = 0.040
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• Large discrepancies for earlier time
• Small differences for later time
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Longitudinal Space-Charge Forces

ct/a = 0.005 ct/a = 0.040
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• The difference is smaller than transverse case
• For longer bunch length, this will be increased
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Ez Space-Charge Fields

• A  key result is that as the laser 
pulse length is increased, the 
discrepancy between electrostatic 
and electromagnetic SC fields is 
increased at the cathode when the 
back of the bunch is emitted. 

• The size of the discrepancy also 
depends on the beam radius. 
Qualitatively, as the beam radius is 
increased, i.e., the beam becomes 
more pancake like, and the 
discrepancy becomes smaller. 
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Beam Dynamics w/o Space-Charge Effects

• With only rf fields, particles are radially focused near the cathode

Pr/mc vs. r    phasespace

z = 0.0 cm z = 0.03 cmz = 0.003 cm
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Beam Dynamics with Space-Charge Effects

z = 0.003 cm z = 0.03 cm
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Q = 100 pC
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Beam Dynamics with Space-Charge Effects
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z = 0.003 cm z = 0.03 cm

Q = 500 pC
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Beam Loss Measurements

• By varying the amount of 
laser power, P, (proportional 
to bunch charge) 

• We measure the beam 
current, I
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Experimental Measurements

• Performed an experimental beam loss measurement on the 1.3 GHz rf gun at 
the ANL AWA experiment. Below are plots of measured beam charge vs. 
measured laser pulse intensity. If no beam loss was to occur then the plot 
should be linear with a uniform slope. However, at a critical bunch charge. i.e., 
Ez(rf) = Ez(critical), for fixed  laser pulse length and radius, one would expect 
beam loss to occur and a reduction in the slope of the curve. 

tb = 3.4 psec tb = 10.4 psec9/11/2009 27Jefferson Lab



Space Charge Effects
with Transverse Currents
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Electromagnetic Field
for Circularly Symmetric Sources

• Generalize the exact formalism for the SC fields of a 
cylindrically symmetric beam in a circular conducting pipe

• Include the effect of the transverse currents
• Construct electromagnetic SC fields using the time-

dependent Green’s function method in the cylindrical 
conducting boundary conditions

• Can model the high SC dominated systems, such as high-
power microwave sources

• Compare to Electrostatic (ES) result which is frequently 
used to model high-power microwave sources, such as 
klystron
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Expansions of Charge and Current Densities

• Beam source and the system are cylindrically symmetric*
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TM Mode Space-Charge Fields
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• EM fields generated by Jr and Jz
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Numerical Example

• Simulate radially “breathing beam” 
• Radial beam current, but no longitudinal beam current
• Compare EM SC fields with ES SC fields
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Numerical Requirements
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• Similar to the photoinjector modeling
• Less number of eigenmodes due to larger beam radius
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Transverse Space-Charge Fields
with Transverse Currents

• ES fields are also found using Green’s function method
• The beam oscillation starts with the initial beam radius, rb/a=0.25

• a=9.08 cm
• ω=j01c/a
• m=1000
• ∆t′=0.0001a/c
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t = 0.0
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Transverse Space-Charge Fields
with Transverse Currents (cont’d)

t = 0.25T t = 0.50T
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t = 0.75T t =T
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Longitudinal Space-Charge Fields
with Transverse Currents

r/a = 0.0 r/a = 0.25
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• The effects of the SC Ez fields are important near the beam edge
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Summary

• Developed electromagnetic space-charge models of electron beams in 
the presence of the conducting boundaries

• Developed a novel computational code, IRPSS, to compute the SC 
fields numerically

• Is capable of simulating beams with arbitrarily small bunch Lengths, 
since it uses a Green’s function approach

• Simulated the beam dynamics of the beam near the cathode in the rf
photoinjector

• Extended Green’s function methods by including the transverse 
currents

• Investigated the electromagnetic SC fields for a radially breathing 
beam oscillation
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Future Plans

• Extend IRPSS code by including the effects of iris(es) or 
discontinuities of the cavity

• Improve the code to self-consistently calculate the trajectories 
due to both the external and SC fields

• Study how the beam dynamics are affected due to the SC fields 
in the designs of magnetic focusing schemes for emittance
compensations

• Include an arbitrary beam currents, such as azimuthally 
varying currents
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Thank You!
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