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Abstract Summary 
  Developing methods to produce accurate charged-particle transfer maps for 

realistic beam-line elements of accelerator devices. 

  Such methods use accurate 3-d field data provided by finite element 
modeling (Opera) to incorporate fringe field effects, nonlinear multipoles 
into a map description of beam dynamics. 

  Once accurate transfer maps have been found for individual beam-line 
elements, one can determine all single-particle properties of the machine:  
dynamic aperture, tunes, chromaticities, anharmonicities, linear and 
nonlinear lattice functions, etc. 

  Key is the use of surface data to compute interior data.  Surface must 
enclose design trajectory and lie within all iron or other sources. 
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I.  Toward the International Linear Collider 



The International Linear Collider (ILC) is a proposed new 200-500 GeV linear 
electron-positron collider, designed with a planned upgrade to 1 TeV.

Construction projected to begin around 2015, contingent on results from the LHC and
international agreement.

Purpose:  Study precision physics at the Terascale in conjunction with the Large Hadron 
Collider (LHC) at CERN--in particular, properties of the Higgs and possible super-
symmetric particles.

Possible sites:

•   Near Fermilab outside Chicago, Illinois, USA

•   CERN facility, Geneva, Switzerland

•   One of several candidate sites in Japan



Layout of the ILC

Driven by 1.3 GHz superconducting rf cavities with 31.5 MV/m

2x1010 particles per 300 µm bunch
2670 bunches per 1 ms pulse
Pulse rate of 5 Hz
Peak luminosity 2x 1034cm-2s-1

6.7 km 5 GeV damping rings12 km linacs 

operating parameters 



Design of the ILC Damping Rings

Damping rings must balance many competing requirements, including:

•  Small equilibrium emittance

•  Short damping time

•  Large acceptance (dynamic aperture)

Damping rings serve to condition injected bunches from the sources into small, 
cleanly separated bunches for use in the main linac. 

Synchrotron radiation damping is used to damp the large emittance of the injected 
beams (decrease phase space volume of particle beam) to values required to obtain 
high luminosity:
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Damping is achieved by passing the beam through 200 m of wiggler magnets with 
large, oscillating vertical fields, repeatedly for ~ 10,000 turns. 

5.7 nm x 640 nm beam spot 
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Layout of the Damping Rings



II.  Map Methods

  

€ 

z fin =Mz in

Given the phase space coordinates                             , we represent the dynamics of a 
single particle in each beamline element as a mapping:

where         and          are the initial coordinates at entry and final coordinates at 
exit, respectively. 

Maps for adjacent beamline elements may be composed (concatenated) to obtain a 
single map for one full revolution around the ring. 

Maps resulting from Hamiltonian motion are symplectic.  The Jacobian matrix 
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Lie methods for symplectic maps
Given an analytic function     , define a corresponding Lie operator          which acts on 
analytic functions     such that
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Similarly, the Lie transformation generated by     is defined by the series
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Any analytic symplectic map which also maps the origin into itself can then be written
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where        is the linear part of the map, represented by a matrix       , and
each       is a homogeneous polynomial of degree      .         
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The Hamiltonian for charged particle motion in electric and magnetic fields is given 
by 

It is convenient to treat the longitudinal coordinate z as the independent variable, and to 
treat time and its corresponding conjugate momentum as dependent variables.

Map must satisfy the evolution equation 

producing a set of differential equations for       and the coefficients of the 
generators       .    
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Requires expansion about the design orbit         ,         ,         ,         etc. through the 
beamline element: 
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III. Computing Realistic Maps

Suppose           .  To obtain the          , we need expressions of the form:
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Field data may be available on some 3-d mesh  
•   measured data (3d magnetic sensors) 
•   electromagnetic field solvers (eg., finite-element codes) 
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Numerical differentiation is unreliable for high-order          due to amplification of noise. 
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Noise spectrum ~ flat to 
Introduces weight to high frequencies not present in true field  
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accentuates large spatial frequencies  
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Surface Fitting 
•  Fit measured/numerical field data to the boundary surface of a domain   
containing the design trajectory and excluding all iron or other sources (eg., 
“cylinder” infinite in z with uniform cross-section). 

•  Interpolate inward using Maxwell’s equations.  In a source-free region, 
solutions are smooth functions. 

•  Obtain an analytic representation of the interior vector potential A and its 
Taylor coefficients          in terms of surface data alone. 

•  Highly accurate and robust against numerical errors.  Errors are damped as 
 one moves away from the surface into the interior.   € 
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Advantages of Surface Fitting 

  Maxwell equations are exactly satisfied.   

  Error is globally controlled.  The error must take all extrema on the boundary, 
where we have done a controlled fit. 

  Careful benchmarking against analytic results for arrays of magnetic monopoles. 

  Insensitivity to errors due to inverse Laplace kernel smoothing.  (High frequency 
errors are preferentially damped, improving accuracy in high-order derivatives.)  
Insensitivity to noise improves with increased distance from the surface. 

  Techniques can also be applied to electric and radio-frequency beamline elements. 



• Solenoids and multipoles -- circular cylinder (M. Venturini) 

• RF cavities -- circular cylinder (D. Abell) 

• Wiggler magnets -- elliptical / rectangular / circular cylinder (C. Mitchell) 

• Bending dipoles -- bent box / bent cylinder (C. Mitchell, P. Walstrom) 

Realistic transfer maps can now be computed for all beamline elements of any machine, 
e.g. the ILC damping rings, using surface methods: 



IV. Results for Various Geometries 
Straight-axis geometries: 

 circular cylinder 
 elliptical cylinder 
 rectangular cylinder 

“Bent” geometries: 
 use new geometry-independent integration kernels 

We investigate: 

•  Error estimates 

•  Dependence of smoothing properties on domain geometry 

•  Numerical benchmarks 

Consider the elliptical cylinder case. 

use known Green’s function 



Fitting ILC Wiggler Data Using Elliptical Cylinder 

x

 Data on regular Cartesian grid   

4.8cm in x, dx=0.4cm 

2.6cm in y, dy=0.2cm 

480cm in z, dz=0.2cm 

 Field components Bx, By, Bz in one 
quadrant given to a precision of 0.05 G. 

 Fit data onto elliptic cylindrical surface 
using bicubic interpolation to obtain the 
normal component on the surface. 

 Compute the interior vector potential and 
all its desired derivatives from surface data. 

y 

x 
4.8cm 

2.6cm 

11.9cm 

3.8cm 

 Place an imaginary elliptic cylinder between 
pole faces, extending beyond the ends of the 
magnet far enough that the field at the ends is 
effectively zero. 

fringe region 



Elliptic Coordinates 
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Defined by relations: 

where f=a (distance from origin to focus). 

Letting z=x+iy, w=u+iv we have 
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•  Fitting done in a source-free region, so we can use a scalar potential  to write                .   
     Then                      gives the Laplace equation                 . 
     Make the Fourier decomposition 

                                                                                                      , 

     from which it follows that                                             .                                       

•  Separation of variables in elliptic coordinates gives the solution: 
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where  ub  is the value of u on the boundary, and         

Boundary-Value Solution 



Power Series Expansion in x and y 
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Various identities involving Mathieu functions and Bessel functions enable  
the expansion of                  as a power series in x and y with z-dependent 
coefficients, and corresponding  power series expansions of the vector 
potential  A in the form: 
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•  The quantities             and             are called generalized on-axis 
    gradients.  Note that 

                              , where                    , etc. 

•  The vertical field then takes the form: 

    Here, for simplicity, we have assumed that  B  has midplane symmetry. 

•  There are similar expressions for the other components of  B  and 
      the components of    A .  The coefficients           are proportional to the on-axis 

gradients. 
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Dipole Field Benchmark 

•  Field values are fit to the surface and used to compute on-axis gradients 
numerically.  Tested for ellipses of two different aspect ratios:  4:3  and 5:1. 

•  Resulting on-axis gradients C1, C3, C5, C7 and their derivatives accurate to better 
than 1 part in 104  (error relative to peak). 

•  Similar benchmarks performed for circular and rectangular cylinder geometries. 

Exactly soluble field in which all derivatives of the vector potential and on-axis 
gradient functions can be determined analytically. 
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Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder 

Note finite precision of data. 

Fit to vertical field By  
at x=0.4cm, y=0.2cm.  

Residuals ~ 0.5G / 17kG 



Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder 

No information 
about Bz was 
used to create 
this plot. 

Fit to 
longitudinal field 
Bz at x=0.4cm, 
y=0.2cm.  



Numerical Smoothing 
We have seen that the generalized on-axis gradients               are given as the 
Fourier integrals of the angular Mathieu coefficients          and          multiplied by 
certain kernels (weights).  For example, 
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• Noise in the surface values contributes 
weight to the high-frequency 
components of the angular Mathieu 
coefficients Fm(k). 

• Kernels (weights) die off quickly for 
large k and m, providing an effective 
cutoff that serves as a low-pass filter to 
minimize the effect of these high-
frequency components on the          . 
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For our model of noise, let By(0,0,z)  denote the on-axis monopole doublet field and 
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By
noise (x j ,y j ,z j ) = εBy (0,0,z j )δy ( j)
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, where 

are uniformly distributed random variables in the interval [-1,1]. 

and 

real parts of the functions             
for r=1,3,5 generated by a pure 
noise field 
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ab
c

rms value of generalized gradients  
produced using 12 random seeds  

solid line – circular cylinder 
dashed – elliptical cylinder 

R=2 cm; semimajor axis  4 cm 



The Bent Box and Other Geometries 

•  For the straight-axis cylinder domains, only the normal component of  B on 
the surface is used to determine interior vector potential. 

•  The circular, elliptical, and rectangular cylinder are special in that Laplace’s 
equation is separable for these domains. 

•  For elements with significant sagitta, such as dipoles with large bending 
angles, we must generalize to more complicated domains in which Laplace’s 
equation is not separable. 

•  Surface data for general domains can again be used to fit interior data provided 
both            and        are available on the surface.  The magnetic 
vector potential in the interior can be determined by the integration of surface 
data against a geometry-independent kernel. 
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General Surfaces:  Large-Sagitta Dipole

Can be fit using a “bent box” 
geometry  

Proton Storage Ring (PSR) at Los Alamos  
LANSCE facility.  Dipole on the right has 
a bending angle of 36 degrees, path length 
of 2.54948 m and sagitta of 23.83 cm. 



General Surfaces:  Helical Dipole

Proposed helical dipole design with 
oscillating aperture (helical fields 
serve to rotate spin polarization of the  
beam). 

Design of the “Warm Snake” helical 
dipole appearing in the Alternating 
Gradient Synchroton (AGS) at 
Brookhaven National Laboratory. 



General Surfaces:  Bent Transport Line

The MECO Apparatus 

Superconducting  

Transport Solenoid   

(2.5 T – 2.1 T) 

Muon Stopping 
Target 

Proposed Muon-Electron 
Conversion (MECO) experiment at 
AGS in Brookhaven National 
Laboratory to search for lepton 
flavor violation.  Abruptly 
cancelled August, 2005. 

•  Curved solenoid transport line eliminates transport of 
line-of-sight photons and neutrons.
•  Curvature drift, collimators serve to momentum 
select beam.
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Using the Helmholtz theorem and results relating to Dirac monopoles, we 
may write the interior vector potential in terms of surface data in the form 

The kernels are given by: 
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where m is a unit vector pointing along some line that does not intersect 
the interior (a Dirac string), and n is the unit normal to the surface at      . 

, where 
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General Surfaces 



Given a point along the design orbit, we may construct a power series for  A  
about     by integrating the surface data against the power series for the     ’s, 
term-by-term. 

nG tG

G
dr

This has been implemented numerically to compute coefficients      of the vector 
potential about any point on the design orbit. 
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The kernels        and       satisfy the properties: 

•   Analytic in the variables  r  at all points in the interior. 

•                                                                        for all points r  in the interior. 

•                                                                       for all points r  in the interior.                               
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∇ × (∇ ×G t (r; ′ r )) =∇ × (∇ ×Gn (r;r',m)) = 0

As a result, the vector potential A is guaranteed to satisfy Maxwell’s equations 
                                  and the Coulomb gauge condition                . 
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∇ ⋅ A = 0
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∇ × (∇ × A) =∇ × B = 0

Each Taylor coefficient is obtained from a single surface integration. 



1)  Vector potential A at any interior point (gauge specified by orientation 
of strings)

2)  Taylor coefficients of A about any design point through degree N

which in turn are used to compute…
3)  Interior field B at any point
4)  Taylor coefficients of B about any point
5)
        as Taylor series through degree N-1

Code accepts as input 3d data of the form           on a mesh and will 
produce as output: 
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∇ ⋅ A, ∇ × A, ∇ ⋅ B, ∇ × B
benchmark tools 
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(B,ψ)

Code produces interior fits that satisfy Maxwell’s equations exactly and 
even if the required surface integrals are performed approximately.

Transfer maps are then computed from the Taylor expansion of     along the design
orbit.
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Benchmarks for various domains 

The procedure has been benchmarked for the above domains using arrays of magnetic 
 monopoles to produce test fields.  Power series for the components of      at a given 
 point      are computed from the power series for     .    These results can be compared 
 to the known Taylor coefficients of the field.  We find, using a surface fit that is  
accurate to 10-4 , that all computed coefficients are accurate to 10-6. 

Similarly, we verify that               ,                , and                 to machine precision.  

dr
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Box Fit to ILC Wiggler Field 
As an additional test, data provided by Cornell of the form                  
at grid points was fit onto the surface of a nearly-straight box filling the  
domain covered by the data.  Box: 10 x 5 x 480cm  Mesh:  0.4 x 0.2 x 0.2cm    

Using this surface data, the power series for the vector potential was computed 
about several points in the interior.  From this, the value of      was computed 
at various interior points and compared to the initial data. 

Difference (0.4, 0.2, 31.2) cm (2, 2, 1) cm (0, 1.4, 31.2) cm 

Bx (G) 0.0417 0.187 0.230
By (G) 0.299 2.527 0.054
Bz (G) 0.161 0.626 0.916

Peak field=17kG                Largest error/peak ~ 10-4 
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Properties of solution: 

•   Guaranteed to satisfy Maxwell’s equations exactly. 
•   Sources of error are controlled:  surface interpolation and   
multivariable integration--can be treated as error in the surface 
functions          and       .   
•   Error is globally bounded. 
•   High-frequency random numerical errors on the surface are 
damped in the interior (smoothing). 

Challenges: 

Reduce runtime.  Operation count ~ LMNp.  Computation 
can be parallelized. 

L - number of points evaluated along design orbit 
M - number points on surface mesh 
N - degree of coefficients required by Lie map 
p(N) - operations required by TPSA expansion of kernel 
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V.  Conclusions -- What we did: 
  Developed and implemented surface-fitting routines for domains of various 

geometry required for computing maps for general beamline elements.   

  Involved developing routines to compute Mathieu functions, spline functions, 
and expansions of geometry-independent integration kernels. 

  Studied error bounds and smoothing of numerical noise for these routines. 

  Rewrote existing GENMAP routine for integrating map equations using 
truncated power-series algebra (TPSA) routines. 

  Applied to compute maps for the prototype wiggler of the ILC damping rings.   

  Ongoing applications to Brookhaven (NSLS-II) dipoles, LHC final-focus 
quadrupoles. 



Future Applications to ILC Damping Ring Studies 
  Characterize all beamline elements by realistic symplectic transfer maps in Lie 

form 

  Potential to compute all single-particle properties of the DR from a single 
combined one-turn map, using only real field data for the entire ring. 

  Includes all fringe-field effects on dynamic aperture, tunes, chromaticities, 
anharmonicities, linear and nonlinear lattice functions, etc.  

  Can be used to check models of beamline elements, but use of models is no 
longer required. 

  Could produce hybrid code using both Lie maps and PIC-computed space 
charge effects.   
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