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Basic Lab Frame Setup






















h

Accelerator Seminar, CEBAF Center, September 10, 2009, Jefferson Lab, USA



Microbunching Instability in a Chicane: Two-dimensional Mean Field Treatment / Gabriele Bassi Page 3

Self Consistent Vlasov-Maxwell Treatment for Sheet Beam in Lab Frame I

• Sheet Beam model: f(Z, X, Y, PZ , PX , PY ; u0) = δ(Y )δ(PY )fL(R,P; u0).

3D Wave equation

(∂2

Z + ∂2

X + ∂2

Y − ∂2

u)E = δ(Y )S(R, u), E(R, Y = ±g, u) = 0,

where u = ct, E(R, Y, u) = (EZ , EX , BY ), R = (Z, X)T and ˙= d/du.

Vlasov equation

∂ufL + Ṙ · ∂RfL + Ṗ · ∂PfL = 0, fL(R,P; u0) = fL0(R,P),

where

Ṙ =
P

mγ(P )c
,

Ṗ =
q

c

[

(

EZ(R, u)

EX(R, u)

)

+ [Bext(Z) + BY (R, u)]
1

mγ(P)

(

PX

−PZ

)

]

,

P = (PZ , PX)T and (EZ(R, u),EX(R, u),BY (R, u)) ≡ E(R, 0, u).
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Self Consistent Vlasov-Maxwell Treatment for Sheet Beam in Lab Frame II

Field formula:

FL(R, u) = − 1

4π

∞
∑

k=−∞

(−1)k

∫

R2

dŔ
S(Ŕ, u − [|Ŕ − R|2 + (kh)2]1/2)

[|Ŕ − R|2 + (kh)2]1/2
,

where FL(R, u) = (EZ(R, u),EX(R, u),BY (R, u)) and the source is

S(R, u) = Z0QH(u − u0)









c∂ZρL + ∂uJL,Z

c∂XρL + ∂uJL,X

∂XJL,Z − ∂ZJL,X









, JL = (JL,Z , JL,X)T ,

where H is the unit step function.

The Vlasov equation and the self fields are coupled by QρL and QJL

ρL(R, u) =

∫

R2

dPfL(R,P, u),

JL(R, u) =

∫

R2

dP(P/mγ(P))fL(R,P, u).
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Self Consistent Vlasov-Maxwell Treatment for Sheet Beam in Beam Frame I

Beam frame Frenet-Serret coordinates defined in terms of the reference orbit

Rr(s) = (Zr(s), Xr(s))
T in the Y = 0 plane.

Phase space transformation (R,P; u) → (s, ps, x, px; u)

R = Rr(s) + xn(s), P = Pr(pst(s) + pxn(s)).

Lab to beam transformation steps

(R,P; u) → (s, ps, x, px; u) → (u, ps, x, px; s) → (z, pz, x, px; s),

where z := s − βru and pz := (γ − γr)/γr.

Exact relation between lab, fL, and beam, fB, phase space densities

fB(r,p; s) =
P 2

r

β2
r

fL{Rr(s) + xn(s), Pr[ps(p)t(s) + pxn(s)]; (s − z)/βr}.
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Self Consistent Vlasov-Maxwell Treatment for Sheet Beam in Beam Frame II

Approximate beam frame equations of motion

z′ = −κ(s)x, p′z = Fz1(z, x; s) + pzFz2(z, x; s),

x′ = px, p′x = κ(s)pz + Fx(z, x; s),

where the self forces are

Fz1 =
q

Prc
E‖(R(s, x);

s − z

βr

) · t(s), Fz2 =
q

Prc
E‖(R(s, x);

s − z

βr

) · n(s),

Fx =
q

Prc
[E‖(R(s, x);

s − z

βr

) · n(s) − cBY (R(s, x);
s − z

βr

)].

The associated Vlasov IVP for the evolution of the beam frame phase space density

∂sfB + r′ · ∇rfB + p′ · ∇pfB = 0,

fB(r,p; 0) = fB0(r,p).
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Beam to Lab Density Transformations

• To solve Maxwell equations in lab frame must express lab frame charge/current

density in terms of beam frame phase space density

• To a very good approximation

ρB(r; s) ≈ ρL(Rr(s) + xn(s); (s − z)/βr),

thus

ρL(R; u) ≈ ρB(s(R) − βru, x(R); s(R)).

Replacing s by βru + z and expanding in z gives ρL(Rr(βru) + M(βru)r; u) ≈
ρB(r; βru + z). Finally, inverting gives (and similarly for JL)

ρL(R; u) ≈ ρB(r(R, u); s(R, u)),

JL(R, u) ≈ βrc{ρB[s(R) − βru, x(R); s(R)]t(s(R))

+ τB[s(R) − βru, x(R); s(R)]n(s(R))},

where τB(r, s) = βr

∫

R2 pxfB(r,p; s)dp.
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Field in Terms of Beam Frame Density and Causality Issue

• To solve the beam frame equations of motion we need (ignoring shielding)

FL(Rr(s) + xn(s), (s − z)/βr) =

− 1

4π

∫

R2

dŔ
S[Ŕ; (s − z)/βr − |Ŕ − Rr(s) − xn(s)|]

|Ŕ − Rr(s) − xn(s)|
.

To compute this we need ρL[Ŕ; (s − z)/βr − |Ŕ − Rr(s) − xn(s)|], as Ŕ varies

over the support of ρL in R
2, given ρB(·; ś) for 0 ≤ ś ≤ s.

There is a causality issue here, since the calculation of ρL requires values of ρB for

ś slightly outside the range 0 ≤ ś ≤ s.

This issue can be easily resolved with the following slowly varying approximation

fB(r,p; s) ≈ fB(r,p; s + ∆),

where ∆ is of the order of the bunch size.
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Field Calculation: Polar Coordinates (at Present)

• Transform to polar coordinates (χ, θ), and then take the temporal argument v in

place of the radial coordinate χ: make the transformation Ŕ → (θ, v) via

Ŕ − R = χe(θ) , e(θ) = (cos θ, sin θ)T , v = u − [χ2 + (kh)2]1/2 .

This conveniently gets rid of the integrable singularity, giving the field simply as an

integral over the source (ignoring shielding)

FL(Rr(s) + M(s)r, s/βr) = − 1

4π

∫ s/βr

ui

dv

∫ θM

θm

dθ S[R̃(θ, v; r, s), v],

where R̃(θ, v; r, s) = Rr(s) + M(s)r + (s/βr − v)e(θ)

• θ integration: superconvergent trapezoidal rule (localization in θ for v ≪ s/βr)

• v integration: adaptive Gauss-Kronrod rule (non uniform behaviour in v)

The computational effort is O(NzNxNvNθ), where Nz and Nx are the number of

grid points in z ans x respectively, Nv is the number of evaluations for the

v−integration, and Nθ is the number of evaluations for the θ−integration.

For Nz = 1000, Nx = 128, Nv = Nθ = 1000, O(NzNxNvNθ) = O(1012).
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Field Calculation: Search for Improvement

• Polar coordinates

Optimize subroutine to find support of θ integration

For v close to s/βr, make a change of variable to avoid an adaptive integrator

• Beam frame coordinates (a natural coordinate system to consider)

Let R(τ) := Rr(s) + xn(s), where τ = (x, s)T . Then Ŕ → τ́ via Ŕ = R(τ́) gives

FL(Rr(s) + xn(s), (s − z)/βr) =

− 1

4π

∫

R2

dτ́
1 + x́κ(ś)

|R(τ́) − R(τ)|S(R(τ́);
s − z

βr

− |R(τ́) − R(τ)|).

Focusing on E||, the nonsingular part of the integrand is

(
S1

S2

)(R(τ́);
s − z

βr

− |R(τ́) − R(τ)|)(1 + x́κ(ś)) = QZ0c{[(
1

γ2
r

−β2

r x́κ(ś))D1ρB() + D3ρB()]t(ś) + (1 + x́κ(ś))[D2ρB() + D1τB()]n(ś)},

where () = (ź, x́; ś) and ź = ś − s + z − βr|R(τ́) − R(τ)|.
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Density Estimation: Orthogonal Series Method (at Present)

• From scattered beam frame points at s → smooth/global lab frame charge/current

density via a 2D Fourier method.

1D Example: 1D orthogonal series estimator of f(x), x ∈ [0, 1]

fJ(x) :=
J
∑

j=0

θjφj(x), θj =

∫

1

0

φj(x)f(x)dx, φ0(x) = 1, φj(x) =
√

2 cos(jπx), j = 1, 2, ...

Since f(x) is a probability density (X,Xn random variables distributed via f)

θj = E{φj(X)}, thus from Monte Carlo a natural estimate is θ̂j :=
1

N

N
∑

n=1

φj(Xn).

• The computational effort is O(NJzJx), where N is the number of simulated

particles, Jz and Jx the number of Fourier coefficients in z and x respectively.

For N = 5 × 108, Jz = 150 and Jx = 50, O(NJzJx) = O(1012).
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Density Estimation: Search for Improvement

• Cloud in cell charge deposition followed by computation of the Fourier coefficients

of the truncated Fourier series by a simple quadrature (implemented).

The computational effort is O(N ) + O(NzNxJzJx), where N is the number of

simulated particles, Nz and Nx are the number of grid points in z ans x

respectively, and Jz and Jx the number of Fourier coefficients in z and x

respectively.

For Nz = 1000, Nx = 128, Jz = 150 and Jx = 50, O(NzNxJzJx) = O(109).

• Kernel density estimation using standard kernels like bivariate Gaussians or bivariate

compact support kernels (e.g. Epanechnikov kernels).

The computational effort is O(N ÑzÑx), where N is the number of simulated

particles and ÑzÑx is the number of grid points inside the circle of radius h (band

width) centered at the scattered particle position z, x.

For N = 5 × 108 and Ñz = Ñx = 4, O(N ÑzÑx) = O(1010).

• Wavelets-denoising (G. Bassi, B. Terzić, PAC09), (implemented).

The computational effort O(MNzNx), where M is the with of the wavelet family, is

comparable to the computational effort for charge deposition + Fourier method.
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Interaction Picture

• Interaction picture to isolate CSR dynamics.

From Fz = Fx = 0 =⇒ ζ = Φ(s|0)ζ0

∴ ζ ′
0

= Φ(0|s)F, F = (0, Fz, 0, Fx),

where Fz = Fz1 + Fz2.

• In component form

z′
0

= −R56(s)Fz − D(s)Fx, p′z0
= Fz,

x′
0

= (sD′(s) − D(s))Fz − sFx, p′x0
= −D′(s)Fz + Fx,

where D and R56 are standard lattice functions.
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Numerical Results: FERMI@Elettra First Bunch Compressor ∗

Table 1: Chicane parameters and beam parameters at first dipole

Parameter Symbol Value Unit

Energy reference particle Er 233 MeV
Peak current I 120 A
Bunch charge Q 1 nC
Norm. transverse emittance γǫ0 1 µm
Alpha function α0 0
Beta function β0 10 m
Linear energy chirp h -12.6 1/m
Uncorrelated energy spread σE 2 KeV
Momentum compaction R56 0.057 m
Radius of curvature ρ0 5 m
Magnetic length Lb 0.5 m
Distance 1st-2nd, 3rd-4th bend L1 2.5 m
Distance 2rd-3nd bend L2 1 m

∗ G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock, PRSTAB 12, 080704 (2009)
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Initial 2D Spatial Density
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Gain factor
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H. Huang and K.Kim, PRSTAB 5, 074401, 129903 (2002); S.Heifets, G.Stupakov and S.Krinsky, PRSTAB 5,
064401 (2002), G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock, PRSTAB 12, 080704 (2009).
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Spectra Longitudinal Density I
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Spectra Longitudinal Density II
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Longitudinal Density

 0

 100

 200

 300

 400

 500

-0.0015 -0.001 -0.0005  0  0.0005  0.001  0.0015

ρ(
z
,s

)

z (m)

 0

 500

 1000

 1500

 2000

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

ρ(
z
,s

)

z (mm)

 0

 500

 1000

 1500

 2000

-0.4 -0.3 -0.2 -0.1  0  0.14  0.2  0.3  0.4

ρ(
z
,s

)

z (mm)

 0

 500

 1000

 1500

 2000

-0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4

ρ(
z
,s

)

z (mm)

λ0 = 100µm at s = 0 (top left), λ0 = 100µm at s = sf (top right),
λ0 = 60µm at s = sf (bottom left), λ0 = 40µm at s = sf (bottom right).

Accelerator Seminar, CEBAF Center, September 10, 2009, Jefferson Lab, USA



Microbunching Instability in a Chicane: Two-dimensional Mean Field Treatment / Gabriele Bassi Page 20

Stationary Grid
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2D spatial density and longitudinal force at s = sf
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Discussion

• FERMI@Elettra microbunching studies at λ0 ≥ 40µm:

- Very small effect of µBI on mean power and transverse emittance

- Gain factor at long wavelengths shows breakdown coasting beam assumption

- Gain factor at short wavelengths indicates deviations from analytical gain formula

• Work in progress and future work:

- Study wavelengths shorter than λ0 = 40µm

- Study dependence on the amplitude of the initial modulation and on the

uncorrelated energy spread

- Study initial perturbation with more than one frequency

- Study energy modulations
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Computational Issues

• Intensive memory requirement and expensive computational cost:

Typical simulations done on the parallel clusters ENCANTO in New Mexico and

NERSC at LBNL: N procs = 200-1000, N particles = 2×107-5×108, few hours

of CPU time

Memory requirement: for λ0 = 50µm store 3D array of dimension

1500 × 128 × 200 on master processor (to avoid massive communications

between slave processors)

• To reduce storage/computational cost:

Analytical work + state of the art numerical techniques:

- integration

- interpolation

- density estimation
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FERMI@Elettra First Bunch Compressor II
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FERMI@Elettra First Bunch Compressor III
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2D spatial density in grid coordinates at s = sf for λ0 = 200µm
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2D spatial density in grid coordinates at s = sf for λ0 = 100µm

-0.6 -0.4 -0.2  0  0.2  0.4  0.6
-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6
 0

 0.5

 1

 1.5

 2

 2.5

,xn,s)

     2.6
     2.4
     2.2
       2

     1.8
     1.6
     1.4
     1.2
       1

     0.8
     0.6
     0.4
     0.2

z

Accelerator Seminar, CEBAF Center, September 10, 2009, Jefferson Lab, USA



Microbunching Instability in a Chicane: Two-dimensional Mean Field Treatment / Gabriele Bassi Page 28

2D spatial density in grid coordinates at s = sf for λ0 = 80µm
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Longitudinal force in grid coordinates at s = sf for λ0 = 200µm
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Longitudinal force in grid coordinates at s = sf for λ0 = 100µm
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Longitudinal force in grid coordinates at s = sf for λ0 = 80µm
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