

BETACOOL Program for Simulation of Beam Dynamics in Storage Rings

<u>A. O. Sidorin,</u> I. N. Meshkov, A. V. Smirnov, G. V. Trubnikov, R.V.Pivin

Electron Cooling Group Joint Institute for Nuclear Research Dubna, Russia

A.Fedotov, BNL

CONTENTS

- 1. Introduction
- 2. Physical motivation
- 3. BETACOOL algorithms
- 4. Structure of effects
- 5. Intrabeam scattering and electron cooling
- 6. Software structure, code benchmarking
- 7. Possible applications for electron-ion collider design

Collaboration with Scientific Centers

- BNL (USA)
- Fermilab (USA)
- RIKEN (Japan)
- NIRS (Japan)
- Kyoto Univ. (Japan)
- CERN (Switzerland)

- ITEP (Russia)
- BINP (Russia)
- Juelich (Germany)
- GSI (Germany)
- Erlangen Univ. (Germany)
- Uppsala Univ. (Sweden)

816(676)

(since 1995) TSL, Uppsala MSL, Stockholm JINR. Dubna 100 **ITEP, Moscow BINP. Novosibirsk** FZJ, Jülich CANADA **GSI.** Darmstadt AZAKHSTAN Fermilab. Batavia IONGOLI Erlangen Univ. NORTH KORE **BNL**, Upton RIKEN, Wako CHIN MPI, Heidelberg² Tech-X, Boulder ALGERIA I DRYS NIRS, Chiba CERN, Geneva U.S. . Kyoto Univ. München Univ NIGER Beijing IMP, Lanzhou NDONESTA BRAZIL AUSTRALIA OCEAN CHILE NEW ZEALAND PACIFIC ATLANTIC OCEMI. OCILA Antarctica

May 14, 200 http://lepta.jinr.ru/betacool/betacool.htm

Physical motivation

Accelerator design, beam stability investigation can be provided using:

MAD, CERN UAL (Unified Accelerator Library), BNL

> General goal of the BETACOOL program is to simulate long term processes (in comparison with the ion revolution period) leading to variation of the ion distribution function in 6 dimensional phase space.

Competitive programs: **MOCAC** (Monte-Carlo Code) ITEP, Moscow, P. Zenkevich, A. Bolshakov

SIMCOOL (Simulation of Cooling), **TRUBS** – BINP, Novosibirsk, V. Parkhomchuk, V. Reva

- The ion beam motion inside a storage ring is supposed to be stable and it is treated in linear approximation.
- Ion beam is presented by rms parameters of the distribution function or by array of model particles
- Each effect calculates characteristic times of emittance variation and kick of the ion momentum components and changes the particle number

Basic models

Kit of algorithms:

-Evolution of rms parameters -Evolution of distribution function - Tracking

Library of effects:

- IntraBeam Scattering,
- Interaction with internal target and rest gas,
 - Beam-beam effect,
 - Electron cooling,
 - Stochastic cooling,
 - Laser cooling,
 - External heating

Models of storage ring and ion beam

Physical Effects involved in BETACOOL program

🛗 Task Growth Rates 📃 🗆 🔀								
step multiplier		Rates	Evolution	Horizont Vertio	cal Long	3D rate		
	Electron Cooling							
	Rest Gas	Hori	zontal	3.93678220	07E-5	[1/sec]		
	Internal Target	Vert	ical	-1.7533117	'2E-9	[1/sec]		
	Collision Point	Lon	nitudinal	0.00011011	395098	[1/sec]		
	Particle Losses	Louis	gituamai			[IVSCC]		
	Intrabeam Scattering	Part	icle numb	er 0		[1/sec]		
	Additional Heating	Calcu	ulate F	ind betacool.ex	e	Open		
	Stochastic Cooling							
	Optical Stoch. Cooling	I▼ Draw Evolution of Rates						
	Laser Cooling							
7 듣								
Active	AB seminar, Newport News			Cal	culate o			
effects				gro	wth rate			

8

Lattice Structure using MAD

Scool

BETACOOL Algorithms

- **RMS Dynamics** evolution of RMS parameters of ion beam (Gaussian distribution)
- Model Beam Monte-Carlo method with modeling particles
- **Tracking** particles dynamics over the real lattice with using Molecular Dynamics technique

RMS Dynamics

- Ion beam has Gaussian distribution during the evolution
- Algorithm is considered as a solution of the equations for R.M.S. parameters
- Maxima of all the distribution functions coincide with equilibrium orbit
- Real lattice structure is used for IBS calculation only

3D Diagrams for HESR heating and cooling rates

RMS Dynamics for HESR (ECOOL+IBS)

Model Beam algorithm

Ion beam is presented by array of model particles.

For each model particle the program solves Langevin equation:

$$P_i(t + \Delta t) = P_i(t) - F_i \Delta t + \sqrt{\Delta t} \sum_{j=1}^3 C_{i,j} \xi_j$$

 ξ_i are independent Gaussian random numbers.

The algorithm is equivalent to solution of Fokker-Plank equation, if

$$\sum_{k=1}^{3} C_{i,k} C_{j,k} = D_{i,j}$$

Each effect calculates a kick of the ion momentum components and changes the particle number

Initial distribution for RHIC

Distribution after 4 hours of cooling

Tracking procedure

Ion beam is presented by array of real or macro particles

- Each effect is related with some optic element
- The effect works as a transformation map
- IBS is calculated as a Coulomb scattering using Molecular Dynamics technique
- The ring structure is imported from modified input MAD file

MD simulation of crystalline beams

<u>String (λion < 0.709)</u>

<u>Zigzag (0.709 < λion < 0.964)</u>

Helix or Tetrahedron (0.964 < $\lambda ion < 3.10$)

Shell + String $(3.10 < \lambda ion < 5.7)$

Intrabeam scattering simulation

RMS dynamics

For uncoupled transverse motion at zero vertical dispersion the heating rates are calculated in accordance with:

M. Martini "Intrabeam scattering in the ACOOL-AA machines", CERN PS/84-9 AA, Geneva, May 1984.

For uncoupled motion at non-zero vertical dispersion:

M.Venturini, "Study of intrabeam scattering in low-energy electron rings", Proceedings of the 2001 PAC, Chicago (J.D. Bjorken, S.K. Mtingwa, "Intrabeam scattering", Particle Accelerators, Vol. 13, p.115, 1983.)

The models require lattice functions of the ring

+ a few simplified models to speed up the calculations

Intrabeam scattering simulation

Model Beam

-Simplified kinetic model:

Constant diffusion and friction linearly depending on the ion velocity. The friction coefficient and the diffusion tensor are calculated in accordance with Venturini model.

-Local model

-"Core-Tail" model (Bi-Gaussian distribution)

Tracking

IBS is calculated as a Coulomb scattering using Molecular Dynamics technique

The models require optic structure of the ring

May 14, 2007

Local model for IBS

Core-tail model

Theoretical and MD simulation for ESR

Equilibrium between ECOOL and IBS

Ordered state of ion beam

Ion co-ordinates at the entrance

Model of coolerSolution of the ion motion equationsTransformation of the ion co-ordinatesThin lens							
to the frame referenced to the electron beam orbit Cooler at non zero length Magnetic field errors Electron beam space-charge							
Electron beam model	ture Uniform cylinder						
Transformation of the ion velocity to PR	Gaussian cylinder						
friction force components to LRF	Gaussian bunch						
Calculation of local electron density and	Hollow beam						
Friction force library:	Non-magnetized,						
Calculation of	by Parkhomchuk,						
force components in PRF,	Derbenev-Skrinsky,						
dP _{loss} /ds	Erlangen University						

May 14, 2007

Ion coordinates at the exit, loss probability

Software structure

Platforms of C++ Compilers

- ✓ Borland C++Builder (Windows)
- ✓ Borland C++BuilderX (Windows / LINUX)
- ✓ Microsoft Visual Studio (Windows)✓ GNU (LINUX)

Physics guide of BETACOOL code, http://www.agsrhichome.bnl.gov/AP/ap_notes/ap_note_262.pdf

User guide is in preparation now - will be ready this year

The code benchmarking

- Comparison with competitive codes: MADX – Intrabeam scattering simulations MOCAC SimCool, TRUBS
- 2. Comparison with experimental data:
 - Equilibrium beam parameters at ESR, TSR, COSY, CELSIUS, RECYCLER, LEIR...
 - Interaction with internal target in experiments at ESR, COSY, CELSIUS
 - Stochastic cooling + Internal target at COSY
- 3. Dedicated experiments:
 - Electron cooling COSY, CELSIUS, RECYCLER
 - Intrabeam scattering RHIC
 - Ion beam ordering COSY, S-LSR

Possible applications for Electron-Ion Collider design

- Ion beam life-time due to interaction with residual gas, requirements to vacuum conditions
- IBS rates estimation, luminosity life-time without cooling
- Electron cooling system design. Requirements to the electron beam intensity and quality, accuracy of magnetic field in the cooling section, beam alignment etc.
- Luminosity evolution in time. An opposite (electron) bunch can be imported from external program in the forms: RMS parameters, parameters of bi-Gaussian distribution or as array of particles.