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Simulations indicate that the dynamic aperture of proposed ILC 
Damping Rings is dictated primarily by the nonlinear properties of 
their wiggler transfer maps.  Wiggler transfer maps in turn depend 
sensitively on fringe-field and high-multipole effects.  Therefore it is 
important to have detailed magnetic field data including knowledge 
of high spatial derivatives.  This talk describes how such information 
can be extracted reliably from 3-dimensional field data on a grid as 
provided, for example, by various 3-dimensional field codes 
available from Vector Fields.  The key ingredient is the use of surface 
data and the smoothing property of the inverse Laplacian operator. 

Abstract



Objective

• To obtain an accurate representation of the wiggler field that is 
analytic and satisfies Maxwell equations exactly.  We want a 
vector potential that is analytic and                   .

• Use B-V data to find an accurate series representation of 
interior vector potential through order N in (x,y) deviation from 
design orbit.

• Use a Hamiltonian expressed as a series of homogeneous 
polynomials

• We compute the design orbit and the transfer map about the 
design orbit to some order.  We obtain a factorized symplectic 
map for single-particle orbits through the wiggler:
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Fitting Wiggler Data

x

Data on regular Cartesian grid  

4.8cm in x, dx=0.4cm

2.6cm in y, dy=0.2cm

480cm in z, dz=0.2cm

Field components Bx, By, Bz in one 
quadrant given to a precision of 0.05G.

Fit data onto elliptic cylindrical surface 
using bicubic interpolation to obtain the 
normal component on the surface.

Compute the interior vector potential 
and all its desired derivatives from 
surface data.

y

x
4.8cm

2.6cm

11.9cm

3.8cm

Place an imaginary elliptic cylinder between
pole faces, extending beyond the ends of the 
magnet far enough that the field at the ends is
effectively zero.

fringe region



Elliptic Coordinates
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Defined by relations:

where f=a (distance from origin to focus).

Letting z=x+iy, w=u+iv we have

Jacobian: 
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• Fitting done in a source-free region, so we can use a scalar 
potential satisfying                                where

• Search for product solutions in elliptic coordinates

• Then we find that V and U satisfy the Mathieu Equations

with

• Periodicity in v forces        to have certain characteristic values              
and                .
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d2V
dv 2 + λ − 2qcos(2v)[ ]V = 0

d2U
du2 − λ − 2qcosh(2u)[ ]U = 0,

q = −
k 2 f 2
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λ(q)
λ = am (q) λ = bm (q)
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Boundary-Value Solution

• Normal component of field on bounding surface defines a 
Neumann problem with interior field determined by angular 
Mathieu expansion on the boundary:

• Angular Mathieu coefficients             on boundary are 
integrated against a kernel that falls off rapidly with large k,
minimizing the contribution of high-frequency noise.

• On-axis gradients are found that specify the field and its 
derivatives.

• Power series representation in (x,y)
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• The vertical field then takes the form:

• With similar expressions for the other components of      and
the components of .
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Dipole Field Test

Pole location:  d=4.7008cm

Pole strength:  g=0.3Tcm2

Semimajor axis: 1.543cm/4.0cm

Semiminor axis: 1.175cm/0.8cm

Boundary to pole:  3.526cm/3.9cm

Focal length:  f=1.0cm/3.919cm

Bounding ellipse:  u=1.0/0.2027

y

x
d

z

x

y

+g

-g

160cm

Simple field configuration in which scalar 
potential, field, elliptical moments, and on-
axis gradients can be determined 
analytically.

Tested for two different aspect ratios:  4:3 
and 5:1.

Direct solution for interior scalar potential
accurate to 3*10-10:  set by convergence/roundoff

Computation of on-axis gradients C1, C3, C5
accurate to 2*10-10 before final Fourier transform
accurate to 2.6*10-9 after final Fourier transform



Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder

Note precision of data.

Fit to vertical field By 
at x=0.4cm, y=0.2cm. 



Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder

No information
about Bz was
used to create
this plot.

Fit to 
longitudinal field 
Bz at x=0.4cm, 
y=0.2cm. 



Residuals of fit to Cornell field data: field peaks near 17kG





Reference orbit through proposed ILC wiggler at 5 GeV

Maximum
deviation
0.6 mm

Exit
displacement



exit

x (m)

entrance

x (m)



Phase space trajectory of 5 GeV on-axis reference particle

Mechanical 
momentum

X (m)



Ray trace for proposed ILC wiggler

Initial grid of spacing 5mm in the xy plane.

+ initial values, x final values.

Defocusing in x, focusing in y

Result of numerical 
integration for several 
5 GeV rays with normal 
entry.



REFERENCE ORBIT DATA

At entrance:
x (m) =  0.000000000000000E+000

can. momentum p_x  =  0.000000000000000E+000
mech. momentum p_x =  0.000000000000000E+000

y (m) =  0.000000000000000E+000
mech. momentum p_y =  0.000000000000000E+000

angle phi_x (rad) =  0.000000000000000E+000
time (s) =  0.000000000000000E+000

p_t/(p0c) = -1.0000000052213336

************************************  

matrix for map is :

1.05726E+00  4.92276E+00  0.00000E+00  0.00000E+00  0.00000E+00 -5.43908E-05
2.73599E-02  1.07323E+00  0.00000E+00   0.00000E+00  0.00000E+00 -4.82684E-06
0.00000E+00  0.00000E+00  9.68425E-01   4.74837E+00  0.00000E+00  0.00000E+00
0.00000E+00  0.00000E+00 -1.14609E-02   9.76409E-01   0.00000E+00  0.00000E+00
3.61510E-06  -3.46126E-05  0.00000E+00  0.00000E+00   1.00000E+00  9.87868E-05
0.00000E+00  0.00000E+00  0.00000E+00  0.00000E+00  0.00000E+00  1.00000E+00

nonzero elements in generating polynomial are :

f( 28)=f( 30 00 00 )=-0.86042425633623D-03
f( 29)=f( 21 00 00 )= 0.56419178301165D-01
f( 33)=f( 20 00 01 )=-0.76045220664105D-03
f( 34)=f( 12 00 00 )=-0.25635788141484D+00

. . . .  Currently through f(923) – degree 6.

At exit:
x (m) = -4.534523825505101E-005

can. momentum p_x    =  1.245592900543683E-007 
mech. momentum p_x =  1.245592900543683E-007

y (m) =  0.000000000000000E+000
mech. momentum p_y =  0.000000000000000E+000

angle phi_x (rad) =  1.245592900543687E-007
time of flight (s) =  1.60112413288E-008

p_t/(p0c)  = -1.0000000052213336

Bending angle (rad) =  1.245592900543687E-007

defocusing

focusing



Alternative Wiggler Field Fitting Techniques

• The model form used for the wiggler field fitting by Cornell is written as:

where each term is written in one of three forms.  For the present wiggler, 
each term is of the form:

• The set of parameters                                        is allowed to vary 
continuously, in such a way as to minimize the merit function:
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Comparison of on-axis gradient C1 with
the gradient obtained from Cornell’s
field fit



Comparison of on-axis gradient C1
[2] with

the gradient obtained from Cornell’s
field fit









Comparison of on-axis gradient 
C5 with the gradient obtained from 
Cornell’s field fit



Advantages of Surface Fitting

Uses functions with known (orthonormal) completeness 
properties and known (optimal) convergence properties.

Maxwell equations are exactly satisfied.  (Other procedures.)

Error is globally controlled.  The error must take its extrema on 
the boundary, where we have done a controlled fit.

Careful benchmarking against analytic results for arrays of 
magnetic monopoles.

Insensitivity to errors due to inverse Laplace kernel smoothing.  
Improves accuracy in higher derivatives.  Insensitivity to noise
improves with increased distance from the surface:  advantage 
over circular cylinder fitting.



Theory of Smoothing
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Note that the gradient = integration of angular Mathieu coefficients 
against a sequence of weight functions determined by boundary 
geometry.

•Clean angular Mathieu coefficients cut off around k=2/cm.  We expect noise to 
introduce high-frequency contributions to the spectrum of angular Mathieu coefficients 
Fm(k).

•Kernels (weights) die off quickly for large k, providing an effective cutoff that serves 
as a low-pass filter to eliminate high-frequency components.

•Insensitivity to noise is improved by choosing geometry such that kernels approach 
zero quickly.
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Wiggler Spectrum

cmL 40=Wiggler period:

Peaks occur at frequencies corresponding to 
odd harmonics

Amplitudes fall off by a factor of at least 0.1 
for each harmonic; only the
harmonics 1,3,5 contribute significantly.

Angular Mathieu coefficient F1



Angular Mathieu coefficient F5



Weight Functions for an Elliptic Cylinder Boundary

Kernels W 
corresponding to the 
lowest 5 moments are 
plotted.

Note that these 
weight functions 
(kernels) cut off near 
k=4/cm, with cutoff 
increasing with order 
of kernel.

Nontrivial 
dependence on k.



Comparison with Circular Case

There is one kernel for each gradient in the circular case.  The kernels for C3(z) 
appear below.  The circular kernel takes the form               with R=1.

The first 4 elliptic kernels are shown for the case ymax=1, xmax=4.
)(/2 kRIk ′

circular 
case

circular 
case



How Does Geometry Affect Smoothing Properties?

∝ f 2 sinh(2ub )

ymax / xmax = tanh(ub )

We expect accuracy to improve with enclosed cross-sectional area                       .  
Interested in the following limiting behavior.

Simple Scaling – Fix aspect ratio                                .   Boundary scales linearly with f.  
How do the kernels behave for large focal distance f?  

Elongation – Fix semiminor axis        .  What happens as the semimajor axis grows?

Circular – Fix focal length f.  As  ub increases, this degenerates to the circular case.

)(2 )12(
12

122 kBe
kR

k n
r

kRlr +
+

−++ π

max

44

max

max

max

max)12(
12

122 2)( kx

n

n
r

lr e
y

x
x
ykBkk −

+

+
+

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∝ π

(No clean asymptotic form yet.)

maxy



Effect of domain size on smoothing

(xmax,ymax)=(1,0.6)cm  a.r.=5/3

(xmax,ymax)=(4.4,0.6)cm  a.r.=22/3

(xmax,ymax)=(4.4,2.4)cm  a.r.=11/6

Gradient C_5(z) Computed Using 5/3 Aspect Ratio Domain

Gradient C_5(z) Computed Using 22/3 Aspect Ratio Domain Gradient C_5(z) Computed Using 11/6 Aspect Ratio Domain
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