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{s Advances in Self-Consistent
| Electromagnetic Modeling

« Complex cavity computations with particles have
been improved through algorithms, including
parallelization, making possiblle computations of
wakefields in complex structures, intrabunch effects,
injectors, ...

e Summary of some of what has made this possible
— Local charge and current deposition methods
— Parallelization
— Improved stability
— Boundary representations

e Comparison with
— Finite element approaches
— Unitary separation approaches




3 The goals of modeling?
 Part of the design process

— Create
— Simulate
— Build
— Test
e Simulation for prediction of
— Cavity losses
— Instability
* In general for
— Exploration
— Confirmation

— Elucidation



. Modeling allows one to answer questions
without construction cost

NLC

ILC (Tesla)




~ Basic problem

e Maxwell

@ =-VxE
ot
oE »
——=c"[VxB-uj]
ot

e« Particle sources
J= E q;Vio(X —X;)

« Particle dynamics

dt mi

d(}/V) _ qi [E(Xi,f)+Vi

in charge particles moving
in EM fields

Auxiliary equations

x B(x;,1)] oy,



V4 With much other physics added for a
-~ complete model

 Particle injection

* Dark currents

e Multipactoring

* Photon (short wavelength) production
* Surface resistance

* Secondary emission



ELECTROMAGNETICS




% Yee: 2nd order accurate spatial

9B, __0&, + oLy
ot dy 0z

e At the midpoint

aEZ _ Ez,j+1 _Ez,j +0(Ay2)
dy Ay
» Leads to special layout

of values 1n a cell

o Yee mesh gives 2nd
order accuracy of spatial
derivatives

E

z

differentiation

y

Y




Second-order in time by leap frog

ot Jdy 0z

n n n n
prtl/2 _ pn1/2 _ o Eoiik—Ezijnie Eyijke1—Eyiik
x,i,j.k = Px,ij k= Al A +
y Az
 Time centered differences give second order accuracy in At
« (Can get time-collocated values by half-stepping in B

 Similar for E update, except c? factor



% Matrix representation useful for stability

dB E_. E E i)

xX,i,].k _ i,k Tz, j+Lk + vii, . k+1 Ty j.k
dt Ay Az
db de 1o 2
Lo—Cee T_2Cp YD _2cicep--Deb

Magnetic and electric spaces are different

C, C’ are adjoints, so D 1s self-adjoint (symmetric)
e Diagonalize into separate harmonic oscillators

Leap frog for harmonic oscillator, stability limit at
1

Atery =
W Atepy =2 CFL ) \/1 11

+ +
Ax? Ay2 Az
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«+ Gershgorin Circle Theorem gives stability
| bound

* Frequencies are eigenmodes of D =¢? C’C
« Eigenvalues 1n range

0 <w” <max E‘Dzj over i
J

« Gives precise range for infinite grid

e Points to relation between coefticients and
frequencies for other cases
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1’ V4 Many other methods available

»N.

O

-

.

 Finite element - later

« Hamiltonian splitting (de Raedt): into exactly solvable

parts d(gt’e)=A-(b,e)=M'N‘(b,e)

dU y,

— known: dUy

” =M-e UM =Ne UN
— stable approximate solution (since unitary):
UAr)=Upn(A1/2)2 Uy (At)e Up(A2/2)

— Similar to drift-kick of symplectic integration

— Lee and Fornberg (2005) have improved method
based on Zheng et al (1999)

« Smith, Cary, Carlsson now have implicit, charge-

conserving algorithm
12



PARTICLES
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% Computing particle-particle interactions is
prohibitive

« Coulomb interaction leads to sz force
computations

dyl =%E]

Som

;- J\
+ Lenard-Weichert (retarded potentials) - worse due
to need to keep history

dyvi _ g
pra Eq] F)(x;X ;(t - 7))
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¢+ Particle In Cell (PIC) reduces to N scaling

Particle contributions to
charges and currents are

added to each cell: O(N,,)
operations

Forces on a particle are = . -

found from interpolation of o Peogle o .: °s |
the cell values: O(N ) :: *ole loe
operations oj® (o Lo
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 Linear weighting for each
dimension
— 1D: linear
— 2D: bilinear = area weighting
— 3D: trilinear = volume weighting

 Force obtained through 1st
order, error 1s 2nd order

* For simplicity, no loss of
accuracy, weight first to nodal
points

¢ Finding the force: interpolation (gather)

E Ex node

Xx,yee

Xx,yee

—

>
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Efficiency

Avoiding Poisson




N Only certain EM algorithms ensure
b EGEE . - g
| Poisson satisfied

|

AE, AE, AE,

VeE=p/egy  satisfied + + = /&g
always if Ax Ay Az
oE > :
EYR [VxB - uoj] finite difference version
and
Co. AE
VeE=pley initially  AFx, "0y, AE, _ o/eg
Ax Ay Az
and
é)_p=_VoJ %=_ij A]y A]Z
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% A special

., =

Principle: apportion via some weighting
Computing the charge density

— Compute the current density and find
the charge density from finite
difference

— Directly weight particles to the grid

If these two methods do not agree, then
one can have false charge buildup from
the Ampere-Maxwell equation.
Requires Poisson solve to remove.

Villasenor/Buneman explicitly
conserves charge, but 1s noisier

scatter ensures finite difference
charge conservation

\

Current contrib. to this
interface must match charge
difference change across
separated cells

]
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% EM algorithm must take numerically
divergenceless to numerically divergenceless

n
AE", . AE, . AE? _0
Ax Ay Az

and
El’l+1 _ M ° El’l
implies

1 n+l +1
AEYT . AEy . AE] _0
Ax Ay Az
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Mardahl and Verboncoeur show
importance of getting this right

ELSEVIER Computer Physics Communications 106 (1997) 219-229

Charge conservation in electromagnetic PIC codes; spectral
comparison of Boris/DADI and Langdon-Marder methods

P.J. Mardahl !, J.P. Verboncoeur

Cory Hall Box 173, Depariment of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720-1770,
USA

Received | April 1997, revised 11 August 1997

() Marder corrected beam (a) Uncorrected beam
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x-y phase space for electrons
x-y phase space for electrons
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Parallelism: domain decomposition

Domain 3

Domain 1 A—/
\\‘ "’.”,-é ........ /

Domain 4

Domain 2

Junnnnnnnnduunnnnnnmmunnnnnnnhannnnnnn
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Parallelism rules of thumb

Communication 1S expensive
* Global solves are really expensive

23



Overlap of communication and
computation needed for speed

db

e Non overlap algorithms: CrardPlue
— Compute domain

— Send skin (outer edge)
— Recerve guard

— Repeat

* Overlap algorithms
— Compute skin
— Send skin

— Compute interior

Skin Guard

Body

— Receive guard
— Repeat

24



e Receive currents and add in

¢ Similar overlap possible for particles
» Move particles and weight

currents to grid

Send currents needed by
neighboring processors

Send particles to neighboring
pProcessors

Update B for half step

- ¢ Update E, B
* & Receive particles

update fluids i St start EM update

Without charge conserving current deposition, further
costly global solve 25



highly scalable manner

Object-oriented and flexible

(Arbitrary dimensional) s
e Self-consistent EM modeling

— Full EM or electrostatic + cavity
| mode

— Particle in cell with relativistic or
nonrelativistic dynamics

 But has other capabilities

% VORPAL implements basic algorithms in

| . . . 7
— Impact and field 1onization v # processors 104
— Fluid methods for plasma or neutral VORPAL scales well to
gases 1,000’s of processors
. Implicit EM (strong scaling)

— Secondary emission
e And 1s modern

— Serial or Parallel (general domain decomposition)
— Cross-platform (Linux, AIX, OS X, Windows)
— Cross-platform binary data (HDFS) 26



Simplest algorithm allows complex
computations

B » Example: formation of beams in laser-plasma

interaction

nature

Dream beam

The dav ]f\l}%ll celerator
e C!

—

El.}l

The Earth’s hum
Sounds of air and sea

Prot
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Elumdatlon long pulses shorten to resonance,
capture, loading, acceleration
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Simulations have found the hosing
problem
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Complications: boundaries

30



. Modes computed with combination of FFT

and fitting
 Spherical cavity - —— -
* Resonant current n}V\
driver : | | | | :
0 2x107® 431078 Gx1g? gx 1078 131578
 FFT measurement
By
of frequency, for 1 | | T
accuracy by fitting
RELANENENILY PO
0 207" 4x 1070 Gxig™ EE I 131078

—100 =
—120¢t . , . .
0 5.0 107 1.0x10® 1.5x14 2,010




y-{« Early work on structured meshes had

stair-step boundary conditions

120x24x24 = 71,424 cells
= 215,000 degrees of freedom

N (L/Ax) cells 1n each direction
Error of (Ax/L)? at each surface cell
O(N?) cells on surface

Error = N2(Ax/L)? = O(1/N)
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Convergence studies confirm result,
indicate modeling problem

db

Stair-step error is 103
at 5000 cells per
dimension, error linear = .,
with cell size l

1.00E-02 2
1011 cells for 3D T 1o
Problem 1.00E-04 \

I

Error in frequency for sphere " Stair-step

Error

1.00E-05

1.00E+01 1.00E+02 1.00E+03 1.00E+04
N

This approach will not give answer even on large, parallel

hardware 33




% Finite elements give one approach to improved
boundary modeling

« Tau3P, HFSS, ...
B=Y b (up(x) E=Ye/(Huy (x)
0B < db
5=2d—t]‘(t)u;§(x) VxE=Y ¢/(t)Vxuy (x)
E%muf (xX)==Y e, ()V x uf (x)

[ d3x2%(t)ufr up (x) == [dx Y e,(ug (x)* Vxup (x)
k /
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Finite elements require global solves, more

L ‘{ intense particle calculations
* Global mass matrix inversion required at each step
db
Mb o =_Cee¢
. . dt .
» Self consistency difficult and charge conservation not
guaranteed
M '@=62(C’°b—‘u j)
¢ 1 0
jo = qu-viufj(xi((n +1/2)Ar))
ptclsi

 Difficult to follow particles
— List of regions
— List of FE’s with support in that region

— Complex FE element evaluation at each time step
for each particle



% Resurgence of regular grids: cut cells give
same accuracy as finite elements

* For cells fully interior, us Py A
regular update W
* For boundary cells: >
— Store areas and lengths £y
— Update fluxes via
b =—Eyl —Eyl, /

— Update fields via
B,=®, / A

36



%Cut -cell boundary conditions accurately
represent geometry

e Tesla 2000 cavities
o 312x56x56 (10°) cells




»

% Dey-Mittra (1997) cut-cells allow 10
accuracy

» Fewer than 107 cells
for cavity modeling at
one part in 10°

| » Implementation exists
now in VORPAL

* No significant
additional
computational cost

Error in frequency for sphere " Stair-step

1.00E-01

* Dey-Mittra

1.00E-02

y = 0.1781x %%

Error

1.00E-03 N\
\\
)
1.00E-04

\\

1.00E-05

TN
\.,\ y = 0.0669x 4%

1.00E+01

1.00E+02
N

1.00E+03 1.00E+04
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Beam problems provide motivation for
further work

« SRF accelerating cavities
* SRF guns

e (Crab cavities

39



3 { Regular, structured grids allow for self-
&S‘j consistent integration of particles

Wakefield for Tesla cavities computed by VORPAL in 3D



Self-consistent EM gun simulations in
complex cavities

ooooo

 Emitted
beam

||« Wakes from
constrictions




Now simulating dipole modes in
symmetric cavities

0.04

Q.02

Q.00

—Q.02F

—0.04

—-0.04 —0.02 0.00 0.02 0.04
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Crab cavity generation, visualization,
computation of splitting

="

* CAD representations
* Python coding of shapes

L 43



% Dey-Mittra problem: small triangles give
L EEE . i :
| high frequencies, small time steps

» B update matrix coefs ~ length/area
» Length/area becomes infinite as area vanishes
» Get localized, high-frequency modes

» Must throw out small cell fragments
t =0.000 s

2.0

1.0 |

E, [10° V/m]

(=

!\J
-

-0.10 0.00 0.10
X [m]
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Improvement on cut-cell recently
discovered

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS
Int. J. Numer. Model. 2003; 16127-141 (DOI: 10.1002 jnm.488)

A uniformly stable conformal FDTD-method in Cartesian grids
I. A. Zagorodnov®!, R. Schuhmann and T. Weiland

1

AL/ Are

(al drl (b} diL

* New method gives error lower than Dey-Mittra
* Does not have reduction of stable At
« Favorable properties re particle introduction

* Now being implemented

45



y+(« Each new study inspires capability, brings
requests
» Laser-plasma: self-consistency, parallelism
— Higher-order particle shapes
» Accelerating cavities: shape modeling
— Higher-order field to particle near walls
— Resistive walls for complex shapes
— Implicit EM solvers
* Electron guns
— Better emission models

e Crab cavities
— Notch filters, LOM couplers

46




1!

s Summary

3

» Seclf-consistent EM modeling has progressed

— High-performance, self-consistent computations

— Accurate treatment of boundaries

— Secondary emission

— Absolutely stable charge-conserving algorithm
e Remain algorithm needs

— Conformal resistive walls
e Remain implementation needs

— Surface resistance

— Dark currents

— Photonic emission

— Absolutely stable charge-conserving algorithm
* Remains work in simulation setup

— Defines cavity shapes

— Define particle beams
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