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Advances in Self-Consistent
Electromagnetic Modeling

• Complex cavity computations with particles have
been improved through algorithms, including
parallelization, making possiblle computations of
wakefields in complex structures, intrabunch effects,
injectors, …

• Summary of some of what has made this possible
– Local charge and current deposition methods
– Parallelization
– Improved stability
– Boundary representations

• Comparison with
– Finite element approaches
– Unitary separation approaches
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The goals of modeling?
• Part of the design process

– Create
– Simulate
– Build
– Test

• Simulation for prediction of
– Cavity losses
– Instability

• In general for
– Exploration
– Confirmation
– Elucidation
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Modeling allows one to answer questions
without construction cost

NLC

ILC (Tesla)
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Basic problem in charge particles moving
in EM fields

• Maxwell

• Particle sources

• Particle dynamics
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With much other physics added for a
complete model

• Particle injection
• Dark currents
• Multipactoring
• Photon (short wavelength) production
• Surface resistance
• Secondary emission
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ELECTROMAGNETICS
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Yee: 2nd order accurate spatial
differentiation

• At the midpoint

• Leads to special layout
of values in a cell

• Yee mesh gives 2nd
order accuracy of spatial
derivatives

! 

"Bx

"t
= #

"Ez

"y
+
"Ey

"z

Ez

y

yj yj+1

! 

"Ez

"y
=
Ez, j+1 #Ez, j

$y
+O($y

2
)

x

z BxEz

Ez

Ey

Ey

By

Ex

Bz



9

Second-order in time by leap frog

• Time centered differences give second order accuracy in Δt
• Can get time-collocated values by half-stepping in B
• Similar for E update, except c2 factor
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Matrix representation useful for stability

• Magnetic and electric spaces are different
• C, C’ are adjoints, so D is self-adjoint (symmetric)
• Diagonalize into separate harmonic oscillators
• Leap frog for harmonic oscillator, stability limit at
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Gershgorin Circle Theorem gives stability
bound

• Frequencies are eigenmodes of D = c2 C’C
• Eigenvalues in range

• Gives precise range for infinite grid
• Points to relation between coefficients and

frequencies for other cases
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Many other methods available
• Finite element - later
• Hamiltonian splitting (de Raedt): into exactly solvable

parts

– known:
– stable approximate solution (since unitary):

– Similar to drift-kick of symplectic integration
– Lee and Fornberg (2005) have improved method

based on Zheng et al (1999)
• Smith, Cary, Carlsson now have implicit, charge-

conserving algorithm
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PARTICLES
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Computing particle-particle interactions is
prohibitive

• Coulomb interaction leads to Np
2 force

computations

• Lenard-Weichert (retarded potentials) - worse due
to need to keep history
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Particle In Cell (PIC) reduces to Np scaling

• Particle contributions to
charges and currents are
added to each cell: O(Np)
operations

• Forces on a particle are
found from interpolation of
the cell values: O(Np)
operations
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Finding the force: interpolation (gather)
• Linear weighting for each

dimension
– 1D: linear
– 2D: bilinear = area weighting
– 3D: trilinear = volume weighting

• Force obtained through 1st
order, error is 2nd order

• For simplicity, no loss of
accuracy, weight first to nodal
points

Ex,yeeEx,yee
Ex,node



Efficiency

Avoiding Poisson
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Only certain EM algorithms ensure
Poisson satisfied
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A special scatter ensures finite difference
charge conservation

• Principle: apportion via some weighting
• Computing the charge density

– Compute the current density and find
the charge density from finite
difference

– Directly weight particles to the grid
• If these two methods do not agree, then

one can have false charge buildup from
the Ampere-Maxwell equation.
Requires Poisson solve to remove.

• Villasenor/Buneman explicitly
conserves charge, but is noisier

Current contrib. to this
interface must match charge
difference change across
separated cells

j

t
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EM algorithm must take numerically
divergenceless to numerically divergenceless
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Mardahl and Verboncoeur show
importance of getting this right
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Parallelism: domain decomposition

Domain 1

Domain 2

Domain 3

Domain 4
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Parallelism rules of thumb

• Communication is expensive
• Global solves are really expensive
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Overlap of communication and
computation needed for speed

• Non overlap algorithms:
– Compute domain
– Send skin (outer edge)
– Receive guard
– Repeat

• Overlap algorithms
– Compute skin
– Send skin
– Compute interior
– Receive guard
– Repeat

Skin Guard

GuardPlus

Body
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Similar overlap possible for particles
• Move particles and weight

currents to grid
• Send currents needed by

neighboring processors
• Send particles to neighboring

processors
• Update B for half step
• Receive currents and add in
• Update E, B
• Receive particles

Without charge conserving current deposition, further
costly global solve
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VORPAL implements basic algorithms in
highly scalable manner

• Self-consistent EM modeling
– Full EM or electrostatic + cavity

mode
– Particle in cell with relativistic or

nonrelativistic dynamics
• But has other capabilities

– Impact and field ionization
– Fluid methods for plasma or neutral

gases
– Implicit EM
– Secondary emission

VORPAL scales well to
1,000’s of processors

(strong scaling)

Object-oriented and flexible
(Arbitrary dimensional)

• And is modern
– Serial or Parallel (general domain decomposition)
– Cross-platform (Linux, AIX, OS X, Windows)
– Cross-platform binary data (HDF5)
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Simplest algorithm allows complex
computations

• Example: formation of beams in laser-plasma
interaction
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Elucidation: long pulses shorten to resonance,
capture, loading, acceleration
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Simulations have found the hosing
problem
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Complications: boundaries
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Modes computed with combination of FFT
and fitting

• Spherical cavity
• Resonant current

driver
• FFT measurement

of frequency, for
accuracy by fitting



32

Early work on structured meshes had
stair-step boundary conditions

• N (L/Δx) cells in each direction
• Error of (Δx/L)3 at each surface cell
• O(N2) cells on surface
• Error = N2(Δx/L)3 = O(1/N)

120x24x24 = 71,424 cells
= 215,000 degrees of freedom
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Convergence studies confirm result,
indicate modeling problem

• Stair-step error is 10-3

at 5000 cells per
dimension, error linear
with cell size

• 1011 cells for 3D
problem

This approach will not give answer even on large, parallel
hardware
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Finite elements give one approach to improved
boundary modeling

• Tau3P, HFSS, …
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Finite elements require global solves, more
intense particle calculations

• Global mass matrix inversion required at each step

• Self consistency difficult and charge conservation not
guaranteed

• Difficult to follow particles
– List of regions
– List of FE’s with support in that region
– Complex FE element evaluation at each time step

for each particle
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Resurgence of regular grids: cut cells give
same accuracy as finite elements

• For cells fully interior, us
regular update

• For boundary cells:
– Store areas and lengths
– Update fluxes via

– Update fields via
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Cut-cell boundary conditions accurately
represent geometry

• Tesla 2000 cavities
• 312x56x56 (106) cells
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Dey-Mittra (1997) cut-cells allow 10-4

accuracy

• Fewer than 107 cells
for cavity modeling at
one part in 105

• Implementation exists
now in VORPAL

• No significant
additional
computational cost
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Beam problems provide motivation for
further work

• SRF accelerating cavities
• SRF guns
• Crab cavities
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Regular, structured grids allow for self-
consistent integration of particles

Wakefield for Tesla cavities computed by VORPAL in 3D
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Self-consistent EM gun simulations in
complex cavities

• Emitted
beam

• Wakes from
constrictions
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Now simulating dipole modes in
symmetric cavities
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Crab cavity generation, visualization,
computation of splitting

• CAD representations
• Python coding of shapes
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Dey-Mittra problem: small triangles give
high frequencies, small time steps

• B update matrix coefs ~ length/area
• Length/area becomes infinite as area vanishes
• Get localized, high-frequency modes
• Must throw out small cell fragments
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Improvement on cut-cell recently
discovered

• New method gives error lower than Dey-Mittra
• Does not have reduction of stable Δt
• Favorable properties re particle introduction
• Now being implemented
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Each new study inspires capability, brings
requests

• Laser-plasma: self-consistency, parallelism
– Higher-order particle shapes

• Accelerating cavities: shape modeling
– Higher-order field to particle near walls
– Resistive walls for complex shapes
– Implicit EM solvers

• Electron guns
– Better emission models

• Crab cavities
– Notch filters, LOM couplers
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Summary
• Self-consistent EM modeling has progressed

– High-performance, self-consistent computations
– Accurate treatment of boundaries
– Secondary emission
– Absolutely stable charge-conserving algorithm

• Remain algorithm needs
– Conformal resistive walls

• Remain implementation needs
– Surface resistance
– Dark currents
– Photonic emission
– Absolutely stable charge-conserving algorithm

• Remains work in simulation setup
– Defines cavity shapes
– Define particle beams


