Highlights of the 27th International FEL Conference

Shukui(Joseph) Zhang CASA Beam Physics Seminar, September 15, 2005

Thomas Jefferson National Accelerator Facility

Thomas Jefferson National Accelerator Facility

<u>General</u>

Conference hosted by SLAC

held at Arrillaga Alumni Center, Stanford University

- Aug.21~26, 2005
- ~254 presented papers
- ~285 participants

FEL Prize went to Prof. <u>Avrahama Gover</u>, Israeli FEL Project, Tel-Aviv University

New power records: JLab

4.2 kW at 2.8 microns,1.1 kW at 1.1 microns 1 kW at 1.6 microns,80 W broadband tunable from 1.1 to 3.1 μm

New ideas and ambitious plans X-Ray FEL increased momentum (LCLS, 4GLS...) 100KW optics-free FEL proposal

Thomas Jefferson National Accelerator Facility

FEL Prize Talks

> Hiroyuki Hama

Dream of Isochronous Ring Again

Concept to preserve microbunch form-factor

fs pulse production through thermionic RF gun preserve "microbunches" in a ring "zero" momentum compaction factor Cancel out path-length deviation from betatron motion Coherent THz SR and RING-SASE-MODE Possible extended performance of isochronous ring

> Valdimir N. Litvinenko

Optics-Free FEL Oscillator

"Electron-out-coupling"/e-beam feedback Free from the spectral/power limitation caused by optics Requires high quality electron beam

Thomas Jefferson National Accelerator Facility

The Year of Physics and New Lasing

The Year of Physics Talk Andrew Sessler (LBNL) Einstein: His Impact on Accelerator, His impact on the world Interesting history about his work and life

≻New Lasing

- S. Schreiber (DESY), VUV-FEL at DESY SASE, saturated at 32nm
- H.Yamada (SLLS, Shiga)
 Photon Storage Ring FIR Laser
 - 20Mev Synchrotron/ Lase at 30, 100 and 160 μm
- S.Benson (JLab), Progress and status at JLab 4.2 kW at 2.8 microns, 1.1 kW at 1.1 microns
 - 1 kW at 1.6 microns,80 W broadband tunable from 1.1 to 3.1 μm
- Y.Wu (Duke FEL)

Two OK-5 wigglers in optical klystron configuration

Thomas Jefferson National Accelerator Facility

High Gain Single Pass FELs

Luca Giannessi'

- Superradiant pulse passing through cascade FEL
- Regeneration at wavelength of higher order harmonic
- Strongly chirped, compression to as pulses

Pohang Accelerator Laboratory(Korea)

- Started SASE-based XFEL project (PAL-XFEL)
- Upgrading 2.5GeV to 3.7GeV possibly 4.5GeV
- Wavelength ~ 0.18nm. Use IVU.

Project at Spring-8 Compact SASE

- Source (13th harmonic of Ti:S laser generated in Xe gas)
- Very short wavelengths, compactness, tunability
- Demonstration experiment expected in 2006

High Power, Long Wavelength FELs

- Progress in high-power FEL oscillators (S.Benson, JLab)
 - Challenges towards higher power: energy recovery with large exhaust energy spread, output coupling and maintaining mirror figure High current operation in ERL
 - Achievements and future roadmap
- BNL likes amplifiers (llan Ben-zvi)
 - Application for very high average power generation
 - High power, high brightness/efficiency photo-injectors plus ERL
 - 100 kW FEL/0.5 ampere ERL plan
- KAERI developed a user facility with compact THz FEL
 - FEL wavelength 100-1200um
 - IKW peak power, pulse 30 ps, 0.3 mJ/3us
 - •. Application: THz bio-medical imaging
 - THz spectral characteristics of several materials studied

FEL Technology I: Accelerators

- ERL, L.Merminga(JLab)
 - Challenges in designing various ERLs
 - Progress and development plans
- Overview of XFEL facilities (Winfried Decking, DESY)
 - LCLS, XFEL (DESY), SCSS (Spring8), all SASEs!
 - Challenges of required e-beam quality Space charge forces, CSR, wakefields Low-emittance gun, buncher, accelerating structure/undulator
- Compression

Luca Serafini talked about

- Velocity and Magnetic Compressions
- How to achieve the merits of both and to mitigate issues
- T. Limberg analytical and numerically studied
 - Stability Dependence on RF Parameters
 - Sensitivity of compression factor on phase and amplitude jitter

FEL Technology II: Undulators

In-vacuum undulator (IVU)

- Technical challenge, PM, Impedance, Field correction
- 1st at KEK, 20 installed at Spring8. Future CryoUndulator

European XFEL ~ 0.1nm

- Stringent requirements on performance 200m/40-50 segments
- A Photon Diagnostic Station, beam steering in undulator, gap tuning, phase matching

Chamber material for LCLS undulator

- Fabrication, investigation of relative magnetic permeabilities 316LN, 20Cb-3, Nitronic 33, Nitronic 40 and 310S
- 3" long vacuum chambers fabricated with permeability measurement, field variations i/o vacuum

Operated by the Southeastern Universities Research Association for the U.S. Dept. of Energy

J. Pflueger (DESY)

T. Tanaka(Spring8)

S.H.Lee (ANL)

FEL Oscillator and Storage Ring FELs

"Chaos Control" Serge Bielawski(PhLAM/CERCLA)
 Feedback Control Of Dynamical Instabilities
 Results on the stabilization of ML lasers, super-ACO, ELETTRA and UVSOR FELs

M. Hosaka (UVSOR, Okazaki)

- Saturation and bunch heating
- Energy spread, bunch lengthening from bunch-laser pulse interaction
- New beam optics for low emittance
- Change of saturation process according to the chromatic or achromatic optics

•K. Chalnut (Duke U.)

- Giant Pulses Phase-Space Tomography
- Two profiles to reconstruct phase space

Thomas Jefferson National Accelerator Facility

High Brightness E-Beams and Diagnostics

- *PITZ*(*Photo Injector Test Facility at DESY Zeuthen*)
 - Tested, optimized transverse emittance,
 - 1.4 mm mrad for 90% of a 1 nC bunch/127Mev
 - Longitudinal bunch profile/structure revealed (<50fs Res.)
- Cornell 100mA injector
 - 100mA/ 570KV DC gun, 5-15 MeV/5 two-cell/1300 MHz cavities. Power limited to 575 kW
 - Genetic algorithm based computational, rms normalized emittances
 0.1 mm-mrad at 80 pC/bunch, 0.7 mm-mrad at 1 nC/bunch.

Three ongoing injectors at AES

LANL/700MHz/NRF/100mA (2006), JLab/748.5 MHz/SRF/100mA(2007) BNL/half-cell 703.75 MHz/ SRF/500mA(2007)

Thomas Jefferson National Accelerator Facility

High Brightness E-Beams and Diagnostics

- "Dream Beam"
 - shaping bunch Luiten (TUE, Eindhiven)
 - Real problem: space charge density distribution, Not high space charge density
 - Ideal "Waterbag" electron bunches Uniformly filled, hard-edged ellipsoids
 - Linear self-fields/thermal-emittance-limited KA bunch by compression
 - Extracting electrons from ultra-cold plasma, Thermal emittance below 0.1 micron
 - shaping laser pulse Limborg-Deprey (SLAC)
 - To compensate space charge effects with arbitrarily shaped laser pulse

 Normal conducting RF guns, ideal 3D-ellipsoidal shape bunch

New Concepts

Laser Plasma Sources for High Brightness Beams: From THz to X-rays W.Leemans (LBNL)

Laser driven accelerator, 2 laser beam, channel guiding, 100Mev/0.3nC produced

FEL Applications in EUV Lithography Michael Goldstein (Intel Co.) Novel hybrid klystron, high gain harmonic generation FEL with oblique laser seeding Opportunity/challenges for FELs as 2nd generation (year 2011-2013) source

- Feasibility Study of a Beat-Wave Seeded THz FEL at the Neptune Laboratory Sven Teiche (UCLA)
 - seed the FEL with two external laser beams
 - Difference (beatwave) frequency matched to resonant FEL frequency in THz range
- •Femtosecond Synchronism of X-Rays to Visible Light in an XFEL

Berhard Adams (ANL)

Emittance slicing in a free-electron laser with transition undulator radiation (TUR)

Harmonic Lasing in an FEL Amplifier Harmonic lasing by disrupting the interaction between the fundamental radiation field and electrons while allowing harmonic interaction to evolve unhindered

A Coherent Compton Backscattering High Gain FEL using an X-Band Microwave Undulator Claudio Pellegrini (UCLA)

FEL Theory

 Z.Huang(SLAC) presented understanding startup, exponential growth and saturation of high-gain process, emphasizing SASE, various errors/wakefield effects

- Rodolfo Bonifacio (INFN-Milano) introduced Quantum Theory of SASE-FEL with Propagation Effects, demonstrate ''quantum purification'' of SASE
- Avraham Gover (Tel-Aviv) showed Unified analysis for Superradiant emission from bunched e-beams in various kinds of radiation scheme
- Giuseppe Dattoli has extended
 Pulse propagation of low gain FEL oscillators to high gain regime

Soft and Hard X-Ray FELs

□ <u>Overview</u>

Reviews of Existing Soft and Hard X-Ray FEL Projects
 Giuseppe Dattoli

 Recent Results from SPPS, Includg. Pump-Probe Timing Measurements
 David A. Reis

 Characterization of X-Ray FEL Radiation

Richard Bionta (LLNL)

- Advantages/drawbacks of different conception
- Outlook to future development
- SLAC hard x-ray pulses as short as 80fs
- Plans for the instrumentation in LCLS

Thomas Jefferson National Accelerator Facility

Soft and Hard X-Ray FELs

□ FS Pulses, Reduced Line Width, Synchronization

Pump-probe and EO sampling measurement down to 100fs
 Philip Bucksbaum (Mich. U)

Distributed optical system tested, 200fs jitter/over 1 km fiber link *Axel Winter (DESY, MIT)*

FERMI FEL, single-stage HG > 40 nm, 2-stage cascade from 40 ~10 nm, <1ps
 C. Bocchetta (ELETTRA)

•Optical Heterodyning Techniques and Synchronization of ML Lasers Using Two Spectral Lines for jitter down to few fs J. Staples (LBNL)

•OPA Synchronized to DESY VUV-FEL, 0.5ps jitter/Two-Color Pump-Probe Experiments Ingo Will (MBI)

Thomas Jefferson National Accelerator Facility

Soft and Hard X-Rays FELs

□ <u>X-Ray Optics, Detectors, Absorption, Scattering and Imaging</u>

Nano-Focusing: to focus hard x-rays below 100 nm, toward 1 nm T. Ishikawa (Riken)

■3D Coherent X-Ray Diffraction Microscopy: a novel form of diffraction microscopy, 7nm resolution at Spring8 J.Miao (UCLA)

Diffraction Simulations of the LCLS FEL Pulse on Crystals. Coherence degradation due to multi-eigenmodes and collective beam motion, proposed TC measurement

Sven Reiche(UCLA)

Thomas Jefferson National Accelerator Facility

JLab Presentations

- Recent Results from the IR Upgrade FEL at Jefferson Lab
- <u>Design Challenges in High Power Free-Electron Laser Oscillators</u> (Invited) <u>S.Benson</u>
- High Power CW Operation of a Hole-Outcoupled Free-Electron Laser
 - M.Shinn

S.Benson

- <u>Calculations and Mitigation of THz Mirror Heating at the Jefferson Lab FEL</u> G.Williams
- Incorporation of a PbSe Array Based Spectrograph into EPICS using LabView at the JLab FEL Facility
 D.Hardy
- Laser Safety System for the IR Upgrade FEL at Jefferson Lab J.Coleman
- <u>Temporal Characterization of Electron Beam Bunches with a Fast Streak</u>
 <u>Camera at the JLab FEL Facility</u>
 <u>S.Zhang</u>
- <u>Characterization and Performance of a High-power Solid-State Laser for a</u> <u>High-Current Photocathode Injector</u>
 <u>S.Zhang</u>

Information

• FEL2006 will be in Berlin, Germany

Thomas Jefferson National Accelerator Facility