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Ultimately, everything is limited by strength of materials and heat transfer.

H. Stevens



Outline

- History
» The Muon Cooling RF R&D Program
- What we are doing
- What x-rays tell about the local surface
- Our Model of breakdown
- Our experimental program
- Does our model apply to SCRF data?

- Some questions



Breakdown in gasses has been understood for a long time.

* Paschen explained it in 1889, Lord Kelvin produced the data in 1860.

- J. J. Thompson discovered the electron in 1998, which made things rigorous,
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- Can electrons be seen in the lab? What happens at small distances?.



Michelson and Millikan were interested in high gradient limits.

Michelson

Millikan ¢n 1907)

at the U of C in 1899.




The limits of avalanche breakdown.

* Breakdown at small distances is interesting - no space for an avalanche.

-+ Two mechanisms are easily seen. There is no better data.
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*  Millikan and Michelson liked the “"hot sparks”, bought a vacuum pump, and invented
vacuum ultraviolet spectroscopy.



Our work is directed at Muon Collaboration problems.

» Cooling muons requires absorbers and rf. Muon Cooling, in Phase Space
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» X rays make backgrounds in the Muon Ionization Cooling Exper'imen’r (MICE)
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* Goals: 1) Insure we can reach full E field with 3 - 5 T solenoid.
2) Reduce backgrounds in spectrometers.



We have a program directed at understanding rf limits.
This was started to understand muon cooling problems.
* There are three coordinated efforts:
1) Low frequency cavity studies  (Muon Collabration)
2) Atom Probe Tomography (ILC and Muon Collaboration)
3) Modeling (generally applicable)
+ We are converging on a general theory of vacuum breakdown.
 We are producing unique data on high gradient environments.
- Our work should be relevant to ILC/SCRF, CLIC, DC. ..

* We argue that High Gradient Studies is one field.

Superconducting rf,
Normal Conducting rf are limited by same mechanisms,
DC vacuum breakdown .. at the same value of E.



Muon Test Area: RF Tests

- High pressure tests started in May.

» Installation of clean room
Final connections o magnet and 805
Final cleaning of room and floor
Installation of shielding.
underway




Muon Test Area Experimental Program

- 805 MHz cavity
Curved windows
Button tests of different materials
Magnetic field studies
High pressure cavities

- 201 MHz cavity
Conditioning and breakdown studies
Magnetic field studies

- Surface modification and control

(the flat ones were unstable)
(damage in different materials)
(we need to operate at 5T)
(high pressures may be good)

(needed for MICE, x ray levels, etc.)
(Can we reach 16 MV/m? @ 3T)

(Can we do better?)



Data at Fermilab measured the local environment at emitters.
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Measuring local electric fields is straightforward.

» The slope of the curve logioI vs. logiE
gives the exponent of I~ E™".
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+ Stresses are determined by £y,
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Our Breakdown Model
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» Electric fields produce tensile stresses that fracture the surface.



Local fields with £E > 6 6V/m damage surfaces.

* Dark currents describe asperities with Ej,cq ~ 4-10 6V/m, dimensions ~ 0.1 .

* At this field the electrostatic tensile stress ~ tensile strength.
We see damage in normal rf systems
There seems to be damage in superconducting rf systems

The atom probe system shows damage

»+ The damage can trigger breakdown.

Fragments / clusters are torn off. e R

: : : e” beam
Field emitted beams vaporize fragments
| h iti \ heaind
Lossy plasmas short cavities. : OO peared
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+ Details in 3 recent Phys. Rev. STAB papers, a NIM paper, PACO5, EPAC . ..



Accelerating gradients are limited by local E fields.
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“rf breakdown triggers” are seen with Atom Probe Tomography

Failure of atomic
bonds in metal

-€

LEAP data correlates with rf data. LEAP turn-on is unstable.

Problems occur at about the right fields. (Oxide layers ?)

Field Evaporation at ~30 GV/m
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Ton Optics of fragments clusters and atoms.

 The local asperity gives single atoms enough kick to take them away from the
emitter.

» Clusters and fragments move more slowly, and are heated by intense field emitted
electron beams.

Field Emitted Electrons
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The highest power density in the universe ? ? ?
* Highest electric field compatible with macroscopic solids.

» Highest currents compatible with these electric fields
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Our model is consistent with data.

DC to 30 GHz - breakdown occurs when tensile stress ~ tensile strength.

10" to0 10° Torr - weak pressure dependence.

Different materials - harder materials better (oxides may matter - not neat).
Temperature dependence - weak dependence is predicted.

Secondary emitters - may determine operating fields - we have new data
Strong magnetic fields - torques within emitters seem to dominate.

Cavity conditioning - occurs at constant local electric fields.

Rapid Development of spark - determined by high power density of FE e'.
Atom probe data - at 5 - 10 6V/m, surface layers belch and pop.
Superconducting RF - similar mechanisms, gradient limit at Ejoca ~ 5 GV/m(?).

Light and power switching - in the lab, and in the home.



Behavior during conditioning.

at KEK

Enhancement factor * Surface, field = 6-7GV/m

AAAAAAAAAAAA

Emitters and electron beams.

- The beams we see are consistent with the surface
we had in the cavity. o 72

emitters




Magnetic field data is consistent with J x B effects.

+ jx Bforces are driven by field emission currents in the emitter.

Accelerating field, MV/m
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Recent modeling results 8

- Zeke Insepov has been modeling
cluster emission using his code.
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High fields cause mechanical failures.
+ Stresses cause failures in Field Ton Microscopes.

+ Studies on sample stress in early '70's, (Birdseye and Smith).

(a)

(b)

- We can see the surface under field emission conditions.



Secondary emitters.

- Secondary emitters are produced in breakdown events. We see them.

N1 The Initial distribution of
field emitter enhancements.
B 8 = enhancement factor
N1 After the hottest emitters ~ shar'pness ~ bump he'ghT
have been burned off
B
N T But each burnt emitte 4
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The secondary emitter spectrum - first measurements.

» Sources on an undamaged Be surface at different fields. . . .

* Emitter intensity as a function of field, in MV/m, from polaroids.
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The data does not support models that involve melting.

The conventional wisdom argues that field emitted currents melt emitters. This
seems to be inconsistent with data.

» There is no thermal dependence in breakdown triggers
SLAC Data
CERN Data

- Emitters can emit for months at high current densities without changing.

* Measured electric fields imply stresses equal to tensile strength of solid.

* Materials with low field emission are not better.

* Microflashes occur with positive voltage (no field emission heating) in LEAP.

- SCRF?



Consequences of the model

* Most measurable parameters depend on details of materials science.
No systematic measurements have ever been made.

- Frequency dependence is due to the surface, which is dependent on Egiored.
» The power density in field emitted beams is comparable to nuclear weapons.
+ Atom Probe Tomography is a fantastic tool.
The technology is rapidly evolving.
Surface science is not commonly done with these machines.
Northwestern is the only university using this technology.
* Gas Cluster Ion Beams Look interesting.

» There is a lot of information in X Rays!

» The mechanisms that determines the maximum gradient in all machines (field
evaporation of fragments) have never been studied systematically.
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The LEAP is a giant leap forward
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Atom Probe Data '(A)q.é.... — Ale Mgo Sce (B)

E. Marquis D.N.Seidman PRL 2003

(A) 3D reconstruction of an Al35c precipitate
with a slice taken through it showing the (110)
planes.
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(B) 3D reconstruction of an analyzed volume
from a specimen aged at 300°C for 1040 hours
showing the isoconcentration surface used to ©).
delineate the Al/Al35c interface. Sc (Mg)
atoms are in pink-red (light green), and Al is in
blue.

(C) Proximity histogram showing Al, Mg. and
Sc concentrations with respect to distance
from the interface, which is an average for

many precipitates
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Atom Probe samples look like field emission (breakdown) sites.

» Atom Probe work is useful for two reasons:
1) It provides a detailed look at high electric field on materials.

2) It provides a way of looking at surface composition.

Emitter in Cavity | Atom Probe Sample

Surface field 4 -8 GV/m 4 - 40 GV/m
Size ~100 nm ~100 nm
Temperature 300+ K 20 - 300 K
Pulsing 200 - 12000 MHz 0.2 MHz

Stored energy 1-100 J <10°J




Atom Probe Data: Fluorine Contamination on Niobium

» Tons are identified by time of flight (over ~10 cm, ~1 sr).
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Oxide Parameters

* We measure the density of different forms of the oxide with depth.
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Questions

* What physical mechanisms occur at > 5 GV/m?
What can happen over 30 years?
How does this depend on the surface?
How much control do we have?

 How do x-ray measurements on normal and SC cavities compare?
What are the parameters of emitters?
What does enhancement spectrum look like (for new and used cavities)?
Can the pattern of emitters be imaged?

- How much of experience with copper cavities applies to superconductors?
Is some SCRF cavity conditioning behavior similar?
Can the Q slope be partially due to field emission? ( losses ~ E%°)



How similar are SCRF cavities?

» Do they condition like copper cavities?

* Preliminary data

Enhancement factor, 3
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Conclusion

 There is a lot we don't know about the limits of high gradient cavities.



