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What�s New in this Work
. Many of the the newer Thomson Sources are based on a PULSED Laser (e.g. 

all of the high-energy single-pulse lasers are pulsed by their very nature)
. Previously developed a general theory to cover the calculations in the general 

case of a pulsed, high field strength laser interacting with electrons in a 
Thomson backscatter arrangement. Have extended this theory to cover more 
general scattering geometries

. The new theory shows that in many situations the estimates people do to 
calculate flux and brilliance, based on a constant amplitude models, are just 
plain wrong.

. The new theory is general enough to cover all �1-D� undulater calculations 
and all pulsed laser Thomson scattering calculations.

. The main �new physics� that the new calculations include properly is the fact 
that the electron motion changes based on the local value of the field strength 
squared. Such ponderomotive forces (i.e., forces proportional to the field 
strength squared), lead to a detuning of the emission, angle dependent Doppler 
shifts of the emitted scattered radiation, and additional transverse dipole 
emission that this theory can calculate.
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Ancient History
. Early 1960s: Laser Invented
. Brown and Kibble (1964): Earliest definition of the field strength parameters K 

and/or a in the literature that I�m aware of

Interpreted frequency shifts that occur at high fields as a �relativistic mass 
shift�.

. Sarachik and Schappert (1970): Power into harmonics at high K and/or a . Full 
calculation for CW (monochromatic) laser. Later referenced, corrected, and 
extended by workers in fusion plasma diagnostics.

. Alferov, Bashmakov, and Bessonov (1974): Undulater/Insertion Device 
theories developed under the assumption of constant field strength. Numerical 
codes developed to calculate �real� fields in undulaters.

. Coisson (1979): Simplified undulater theory, which works at low K and/or a, 
developed to understand the frequency distribution of �edge� emission, or 
emission from �short� magnets, i.e., including pulse effects
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Coisson�s Spectrum from a Short Magnet
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*R. Coisson,  Phys. Rev. A 20, 524 (1979)
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Thomson Scattering
. Purely �classical� scattering of photons by electrons
. Thomson regime defined by the photon energy in the electron rest frame being 

small compared to the rest energy of the electron, allowing one to neglect the 
quantum mechanical �Dirac� recoil on the electron

. In this case electron radiates at the same frequency as incident photon for low 
enough field strengths

. Classical dipole radiation pattern is generated in beam frame

. Therefore radiation patterns, at low field strength, can be largely copied from 
textbooks

. Note on terminology: Some authors call any scattering of photons by free 
electrons Compton Scattering. Compton observed (the so-called Compton 
effect) frequency shifts in X-ray scattering off (resting!) electrons that 
depended on scattering angle. Such frequency shifts arise only when the 
energy of the photon in the rest frame becomes comparable with 0.511 MeV.
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Simple Kinematics

Beam Frame Lab Frame
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( )Φ−= cos1' βγLL EE

In beam frame scattered photon radiated with wave vector

( )'cos,'sin'sin,'cos'sin,1'' θφθφθµ c
Ek L=

Back in the lab frame, the scattered photon energy Es is
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Cases explored

Backscattered

Provides highest energy photons for a given beam energy, or 
alternatively, the lowest beam energy to obtain a given photon 
wavelength. Pulse length roughly the ELECTRON bunch length
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Cases explored, contd.

Ninety degree scattering

2/π=Φ
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cos1
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−

= θγ
θβ L

z
Ls EEE

Provides factor of two lower energy photons for a given beam 
energy than the equivalent Backscattered situation. However, 
very useful for making short X-ray pulse lengths. Pulse length a 
complicated function of electron bunch length and transverse 
size.
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Cases explored, contd.

Small angle scattered (SATS)
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Provides much lower energy photons for a given beam energy 
than the equivalent Backscattered situation. Alternatively, need
greater beam energy to obtain a given photon wavelength. Pulse 
length roughly the PHOTON pulse length.
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Dipole Radiation

Assume a single charge moves in the x direction

( )( ) ( ) ( )zytdxetzyx δδδρ −=),,,(

( ) ( )( ) ( ) ( )zytdxxtdetzyxJ δδδ −= �),,,( "!
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Dipole Radiation

Use far field approximation,  r =  |   | >> d (velocity terms small)

Perform proper differentiations to obtain field and integrate by
parts the delta function.

�Long� wave length approximation, λ >> d (source smaller than λ)

Low velocity approximation,              (really a limit on excitation 
strength)
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Dipole Radiation
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Dipole Radiation
Define the Fourier Transform
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negative frequencies together in a single positive frequency integral. The reason is that we would like to 
apply Parseval�s Theorem easily. By symmetry, the difference is a factor of two.
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Dipole Radiation
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For a motion in three dimensions
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Co-moving Coordinates

. Assume radiating charge is moving with a velocity close to light in a 
direction taken to be the z axis, and the charge is on average at rest in this 
coordinate system

. For the remainder of the presentation, quantities referred to the moving 
coordinates will have primes; unprimed quantities refer to the lab system

. In the co-moving system the dipole radiation pattern applies
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New Coordinates

Resolve the polarization of scattered energy into that 
perpendicular (σ) and that parallel (π) to the scattering plane
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Polarization

It follows that
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Comments/Sum Rule

. There is no radiation parallel or anti-parallel to the x-axis for x-dipole motion

. In the forward direction              , the radiation polarization is parallel to the x-
axis for an x-dipole motion

. One may integrate over all angles to obtain a result for the total energy 
radiated
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Sum Rule

Parseval�s Theorem again gives �standard� Larmor formula
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Relativistic Invariances

To determine the radiation pattern for a �moving� oscillating 
charge we use this solution plus transformation formulas from
relativity theory. As an example note photon number 
invariance: The total number of photons emitted must be 
independent of the frame where the calculation is done. In 
particular,
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must be frame independent. Rewriting formulas in terms of
relativistically invariant quantities can simplify formulas. 
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Wave Vector Transformation Law

Follows from relativistic invariance of wave phase, which 
implies                                  is a 4-vector( )zyx kkkck ,,,/ωµ =
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Solid Angle Transformation
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Energy Distribution in Lab Frame 

By placing the expression for the Doppler shifted frequency and 
angles inside the transformed beam frame distribution. Total energy 
radiated from d'z is the same for same dipole strength. 
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Bend
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Weak Field Undulater Spectrum
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Strong Field Case
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High K
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High K

Inside the insertion device the average (z) velocity is
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Figure Eight
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"Figure Eight" Orbits
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Energy Distribution in Lab Frame
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In the Forward Direction

In the forward direction even harmonics vanish (n+2k� term 
vanishes when �x� Bessel function non-zero at zero argument, 
and all other terms in sum vanish with a power higher than 2 as 
the argument goes to zero), and for odd harmonics only 
n+2k�=1,-1 contribute to the sum
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Summary

. Coisson�s Theory may be generalized to arbitrary observation angles by using 
the proper polarization decomposition

. Emission (in forward direction) is at ODD harmonics of the fundamental 
frequency, in addition to the fundamental frequency emission. The strength of 
the emission at the harmonics is quantified by a Bessel function factor.

. All kinematic parameters, including the angular distribution functions and 
frequency distributions, are just the same as before except unstarred quantities 
should be replaced by starred quantities

. In particular, the (FEL) resonance condition becomes
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Finite Pulse Thomson Scattering

Generalize the work done so far to cover cases with

1. High field strength lasers

And

2. Finite energy spread from the pulsed photon beam itself

Roughly speaking, the conclusion is that the energy spectra of 
the scattered photons is increased by a width of order of 1/N, 
where N is the number of oscillations the electron makes for 
weak fields, but is considerably broader for strong fields.
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Electron in a Plane Wave
Assume linearly-polarized pulsed laser beam moving in the
direction (electron charge is �e)
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Electromagnetic Field
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Our goal is to find xµ(τ)=(ct(τ),x(τ),y(τ),z(τ)) when the 4-velocity 
uµ(τ)=(cdt/dτ,dx/dτ,dy/dτ,dz/dτ)(τ) satisfies duµ/dτ= �eFµνuν/mc 
where τ is proper time. For any solution to the equations of motion.
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ξ is exactly proportional to the proper time!
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On the orbit

Integrate with respect to ξ instead of τ. Now

where the unitless vector potential is f(ξ)=-eA(ξ )/mc2.
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Electron Orbit
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In Rest Frame of Electron
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Energy Distribution: Beam Frame
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Effective Dipole Motions
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Energy Distribution: Lab Frame
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Effective Dipole Motions: Lab Frame
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Weak Field Thomson Backscatter
With Φ = π and f <<1 the result is identical to the weak field 
undulater result with the replacement of the magnetic field 
Fourier transform by the electric field Fourier transform

Undulator Thomson Backscatter

Driving Field

Forward
Frequency

( ) ( )( )( )zzx cE βθβω +− 1/cos1~( )( )zzy cB βθβω /cos1~ −

2
0

2γ
λλ ≈ 2

0

4γ
λλ ≈

Lorentz contract + Doppler Double Doppler
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Summary

. Overall structure of the distributions is very like that from the general dipole 
motion, only the effective dipole motion, incuding physical effects such as the 
relativistic motion of the electrons and retardation, must be generalized beyond 
the straight Fourier transform of the field

. At low field strengths (f <<1), the distributions reduce directly to the classic 
Fourier transform dipole distributions

. The effective dipole motion from the ponderomotive force involves a simple 
projection of the incident wave vector in the beam frame onto the axis of 
interest, times the general ponderomotive dipole motion integral

. The radiation from the two transverse dipole motions are compressed by the 
same angular factors going from beam to lab frame as appears in the simple 
dipole case. The longitudinal dipole radiation is also transformed between 
beam and lab frame by the same faction as in the simple longitudinal dipole 
motion. Thus the usual compression into a 1/γ cone applies
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For a flat incident laser pulse the main results are very similar 
to those from undulators with the following correspondences

Undulator Thomson Backscatter

Field Strength

Forward
Frequency

a

'cos* θβ +z
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2
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2

2

2
0 K
γ
λλ 
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2
1

4

2

2
0 a
γ
λλ

Transverse Pattern 'cos1 θ+

K

NB, be careful with the radiation pattern, it is the same at small 
angles, but quite a bit different at large angles

High Field Strength Thomson Backscatter
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Realistic Pulse Distribution at High a
In general, it�s easiest to just numerically integrate the lab-
frame expression for the spectrum in terms of Dx , Dy, and Dz. 
A 105 to 106 point Simpson integration is adequate for most 
purposes. We�ve done two types of pulses, flat pulses to 
reproduce the previous results and to evaluate numerical 
error, and Gaussian Laser pulses.

One may utilize a two-timing approximation (i.e., the laser 
pulse is a slowly varying sinusoid with amplitude a(ξ)), and 
the fundamental expressions, to write the energy distribution 
at any angle in terms of Bessel function expansions and a ξ
integral over the modulation amplitude. This approach 
actually has a limited domain of applicability (K,a<0.1)
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Forward Direction: Flat, Undulator-like Pulse
20-period
equivalent undulator: ( ) ( ) ( ) ( )[ ]000 20/2cos λξξλπξξ −Θ−Θ= AAx

( ) 2
00

2
0

22
0 /  ,/24/21 mceAaccz =≈+≡ λπγλπγβω
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( )2/1/1 2a+
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Forward Direction: Gaussian Pulse

( ) ( )( ) ( )0
2

0
2 /2cos156.82/exp λπξλξ zAA peakx −=

Apeakpeak and and λλ00 chosen for same intensity and same chosen for same intensity and same rmsrms pulse length as previous slidepulse length as previous slide

2/ mceAa peakpeak =
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Radiation Distributions: Backscatter

Flat Pulse σ at first harmonic peak
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Radiation Distributions: Backscatter

Flat Pulse π at first harmonic peak
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Radiation Distributions: Backscatter
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Radiation Distributions: Backscatter
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Radiation Distributions: Backscatter

Gaussian σ at second harmonic peak
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90 Degree Scattering
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90 Degree Scattering
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For Flat Pulse
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Radiation Distribution: 90 Degree

Flat Pulse σ at first harmonic peak
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Radiation Distribution: 90 Degree

Flat Pulse π at first harmonic peak
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Radiation Distribution: 90 Degree

Gaussian Pulse σ at first harmonic peak
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Radiation Distributions: 90 Degree

Gaussian Pulse π at first harmonic peak
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Polarization Sum: Gaussian 90 Degree
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Radiation Distributions: 90 Degree

Gaussian Pulse second harmonic peak
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THz Source
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Wideband THz Undulater

Primary requirements: wide bandwidth and no motion and deflection. Implies 
generate A and B by simple motion. �One half� an oscillation is highest 
bandwidth!
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THz Undulater Motion Spectrum



Thomas Jefferson National Accelerator Facility

CASA Beam Physics Seminar 4 February  2005

Total Energy Radiated
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Some Cases
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laser pulse (Sarachik and Schappert)

( )8/31'
3
1

'
' 22

22

aa
c

e
dt
dE += ω



Thomas Jefferson National Accelerator Facility

CASA Beam Physics Seminar 4 February  2005

Other Flat Pulse Cases

Backscatter
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Undulater
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Exact formula for the �1-D� undulater, f=-eAx/mc2
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For Circular Polarization
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Sokolov and Ternov, in Radiation from Relativistic Electrons, 
give

and the general formula checks out
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Conclusions
. An introduction to Thomson Scatter source radiation calculations and a general 

formula for obtaining the spectral angular energy distribution has been given
. I�ve shown how dipole solutions to the Maxwell Equations can be used to obtain 

and understand very general expressions for the spectral angular energy 
distributions for weak field Insertion Devices and general weak field Thomson 
Scattering photon sources

. A �new� calculation scheme for high intensity pulsed laser Thomson Scattering 
has been developed. This same scheme can be applied to calculate spectral 
properties of �short�, high-K wigglers.

. Due to ponderomotive broadening, it is simply wrong to use single-frequency 
estimates of flux and brilliance in situations where the square of the field strength 
parameter becomes comparable to or exceeds the (1/N) spectral width of the 
induced electron wiggle

. The new theory is especially useful when considering Thomson scattering of Table 
Top TeraWatt lasers, which have exceedingly high field and short pulses. Any
calculation that does not include ponderomotive broadening is incorrect.
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Conclusions

. Because the laser beam in a Thomson scatter source can interact with the electron 
beam non-colinearly with the beam motion (a piece of physics that cannot happen 
in an undulater), ponderomotively driven transverse dipole motion is now possible

. This motion can generate radiation at the second harmonic of the up-shifted 
incident frequency. The dipole direction is in the direction of laser incidence.

. Because of Doppler shifts generated by the ponderomotive displacement velocity 
induced in the electron by the intense laser, the frequency of the emitted radiation 
has an angular asymmetry.

. Sum rules for the total energy radiated, which generalize the usual Larmor/Lenard 
sum rule, have been obtained.


