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Microbunch structures observed after compression
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LCLS Distribution After BC2 Chicane
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Introduction

» FEL interaction in the undulator requires very bright
electron beams (high current, small emittance and
energy spread)

» Such a bright beam interacting with self-fields in the
accelerator may be subject to undesirable instabilities

» Bunch compressors designed to increase the peak
current can give rise to a microbunching instability that
may degrade the beam quality significantly

» This talk discusses physics of this instability, how to
suppress it for short-wavelength FELs, and some
experimental evidence relevant to the instabitily



Bunch compression
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Instability mechanism

e Initial density modulation induces energy modulation through
longitudinal impedance Z(k), converted to more density modulation
by a compressor (Saldin, Schneidmiller, Yurkov, NIMA, 2002)

Cu“rrent Gain=10_, 10%
> L
Impedance
Erlergy Re

AN VL

=>» growth of slice energy spread (and emittance) ‘

z



CSR wake and impedance

« Powerful radiation generated for A~ bunch length or bunch
micro-structure lengths

e Radiation from bunch tall
catch up the head, increase

_ ding radius
energy spread and emittance

» Steady-state, line-charge CSR energy loss
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CSR “wake”, stronger at smaller scale
e Longitudinal CSR impedance Z(k) (k =2n/})

— _iA cZo k1/3 | Derbenev et al., 1995
47 ,02 /3 | Murphy et al., PAC 1995




CSR Microbunching Movie
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Emittance damping to CSR microbunching
« Consider a microbunched beam moving in a dipole
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L, UMTZ Microbunching normal direction

Longitudinal CSR force direction

9=Ld/p
e Characterize density modulation by a bunching factor
b(k) = Nec](k) — Nec 25 I(2)e "z d,

e Smearing of microbunching when projected to longitudinal z
direction in the bend

%0 “d\fesB ~ N/27



Integral equation and approx. solution
 Linear evolution of b(k;s) governed by an integral equation

b(k(s);s) =b,(k(s);s)+ J:drK(r, s)b(k(z);7)

kernel K(z,s) =1k(S)R.,(z — S) I}/(IT) Z(k(7))x {exp(...g, 05...2

A

Landau aamping
* [terative solution for a 3-dipole chicane - Heifets, Stupakov, Krinsky
b(k;s) = by (k;s) + jds K (5", 5)b (k'3 PRST, 2002
one - stage ampllflcatlon * Huang, Kim, PRST, 2002

(1—>3)+I (2 —>23)

+j05 ds'K(s',s)_[OS'ds"K(s",s')bo(k";s”)

two - stage aanIification
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Numerical example: Berlin Benchmark

e Elegant and CSR_calc (matlab based) codes used
 a few million particles are loaded with 6D quiet start

 CSR algorithm based on analytical wake models
| . . . .

0;=2%10°, ye,=1 um

Theory

] elegant «— Borland
CSR_calc<—— Emma
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A (pm)
* More about CSR, see http://www.desy.de/csr/



LSC Impedance
* Free-space longitudinal space charge impedance

Z(k) = 25 [1 - 2k (M2)
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At low energy in the injector region, space charge oscillation
dynamics (typically requires careful SC simulations)

At higher linac energy, beam density modulation freezes
and energy modulation accumulates due to LSC, can

dominate microbunching gain at very high frequencies
(Saldin, Schneidmiller, Yurkov, NIMA, 2004)

 CSR impedance much stronger than LSC, but LSC instability is
not subject to emittance damping (chicane is achromat)



LSC instability gain and Landau damping
e Gain due to upstream impedances (LSC, linac wake)
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Energy R56

 All beams have finite incoherent (uncorrelated) energy
spread, smearing of microbunching occurs if
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Uncorrelated energy spread of PC RF gun
Parmela at 1 nC TTF measurement at 4 nC
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* “Intrinsic” energy spread mostly generated from r-
dependent LSC force in the gun (Huang et al., PAC 2005)

e 3 keV (rms), accelerated to 14 GeV, & compressed x32
= 3x10°x32/14 < 1x10° relative energy spread



Heating within FEL tolerance

e LCLS FEL parameter p ~ 5x104, not sensitive to

energy spread until 65 ~ 1104
L
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ve = 1.2 um g s [ ]
lp = 34 KA £ | quantum:
p=20m o diffusion:
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* 10~ “intrinsic” energy spread too small and cannot be used in
LCLS undulator due to QE (no effect on FEL gain when <104)

=>»can increase o by a factor of 10 without FEL degradation
In order to suppress microbunching instability



LCLS accelerator systems

o SC wiggler at 4.5 GeV
photomjecto% /
/' JL AL _{LZ_

I I I
Laser heater | jnac 1 \Linac 2 \ Linac 3

at 135 MeV 14 GeV
BC1 (X4) BC2 (X8)

e Two bunch compressors to control jitters and wakefield effect

e Impedance sources: LSC, CSR, and linac wakefields

 Two Landau damping options (to increase E-spread 10X)

a SC wiggler before BC2 to suppress CSR microbunching
or a laser heater for LSC instability (suggested by Saldin et al.)



Growth of slice energy spread

e High BC1 gain =» significant energy modulation in Linac-2
=» temporally smearing in BC2 to become effective slice
energy spread (= SC wiggler too late)

Final long. phase space at 14 GeV for

|n|t|al 15-,um 1% modulaﬂon at 135 MeV
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Need ~0.1% initial density modulation at injector end

or suppress BC1 gain effectively




Beam-radiation interaction in an undulator

e Undulator radiation ,
X4 1= (1+Kj

0=K/y ~_

* FEL interaction: energy exchange between e- and field
(veE=v,E,) can be sustained due to the resonant condition

 Some e- loss energy, others gain = energy modulation

with a relative amplitude
[ D T T / 2 \
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laser peak power 8.7 GW laser rms spot size



LCLS laser heater design
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800 nm «— 05m —» Injector at 135 MeV
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o Laser-electron interaction in an undulator induces rapid
energy modulation (at 800 nm), to be used as effective
energy spread before BC1 (3 keV=> 40 keV rms)

Inside a weak chicane for easy laser access, time-
coordinate smearing (Emittance growth is negligible)

Huang et al., PRST-AB 7, 2004
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Matched laser spot size

Large laser spot size
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Gain suppression depends on laser spot size

e Large laser spot generates “double-horn” energy distributioin,
Ineffective at suppressing short wavelength microbunching
e Laser spot matched to e-beam size creates better heating
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Start-to-end simulation

e Injector space charge dynamics modeled by ASTRA, Linac by
ELEGANT with LSC/CSR/machine impedances

Example: final long. phase space at 14 GeV for initial 8% uv
laser intensity modulation at A=150 um
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SDL zero-phasing experiment

(Graves et al. PACO01)

RF zero-phase L4 phase = -90, L3 phase = +90, L2 phase varies, L1 phase = 0,
time F'm'ﬁ le amplitude varies amplitude varies amplitude amplitude
(adds known (removes chirp constant constant

chirp) from L2)
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Zero phasing sensitive to energy modulation

e rf zero phasing energy spectrum is very sensitive to beam

energy modulation

61.
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« Small energy modulation gets projected to large horizontal
density modulation (enhanced by A /A, ~ 1000)
 Measurement can be used to reveal energy modulations




Modulation wavelength
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Shaftan, Huang, PRST, 2004



Energy modulation amplitude

« Zero-phasing modulation can be used to extract energy
modulation amplitude

= (25 - 35 keV at 200 A or 2X10“ at 177 MeV)
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| Simulated energy modulation
assuming 4% initial density
modulation after chicane,

1 which is comparable to drive
laser modulation amplitude
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e Such energy modulations can be converted to large density
modulations if a downstream bunch compressor is used, and

may hurt a short-wavelength FEL



Summary

» Microbunching instability driven by LSC, CSR and other
machine impedances is a serious concern for short-wavelength
FELs

» Strong LSC-induced energy modulation (and maybe
density modulation) is characterized in DUV-FEL

» Beams from PC RF gun are too “cold” in energy spread,
*heating” within FEL tolerance (~10X) to control the instability

» A laser heater with a laser spot matched to the transverse e-
beam size is most effective in suppressing microbunching and
Is designed for LCLS

» It also gives flexible and desirable control of slice energy
spread to manipulate FEL signal



Thanks for your attention!

Thank Lia and Alex for
the Invitation!
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