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Outline

• Dualmode resonant delay line pulse compression 
system for the Next Linear Collider (NLC)

1. Introduction
2. Components: design and cold tests
3. Dualmode Delay Lines: Design and 

Experimental results
4. High power experimental results



RF Accelerator Structures needs a short, high power, rf 

pulse. For example the current NLC design requires a flat-top 

396 ns rf pulse with a power level of about 95 MW/m at 11.424 GHz, and 

a repetition rate of 120 Hz to feed each accelerator structure. 

One need to transfer the CW wall plug power to rf pulses with high 

power and low duty factor. Hence 

1. A storage system is needed. 

2. A Switch or a switching mechanism is needed to control the charging and 

discharging of the system.  

3. A device to generate the RF power



Storage Systems:
1. Capacitors; i.e. Modulators.

Switches include pulse forming networks, thyrotrons, IGBTs, and 
grided guns on microwave tubes.      

2. Kinetic energy of an electron beam ; i.e. two beam 
accelerator, 
Switches include RF beam kickers

3. In the accelerator structure; i.e. super conducting 
accelerators.

4. In rf transmission lines and cavities; i.e.  rf pulse 
compression systems. 
Switches includes rf phase manipulation between rf  sources, and
solid state switches.



In general most of rf systems, suggested for a linear collider, 
contains elements from several of the above storage system. 

To compare these system one has to consider: 
1- Philosophy of the  design

• Modularity: one may choose to have a unit that contains 
one rf source, and compact pulse compression system such as 
SLED-II
• Flexibility in the operating rf frequency: one may choose 
Two beam systems
•…..  

2- Efficiency
3- Cost



The choice of the system is greatly affected by the available 
technology of the components.

If one has 

1- A  really inexpensive efficient rf source

2- A a very efficient and inexpensive modulator system using 
a very fast switch (such as grided gun on the rf source)

One might use several thousands of these devices to power 
the main Linac of a collider

However, neither the inexpensive rf source nor the very fast
modulator exist, only ideas at the moment. 



The need for RF Pulse compression

1- It is usually easier to build rf sources with low power and long 
pulse width. 
2- Rf sources are expensive, one should get as much energy from 
them as possible, i.e., the longest possible pulse. One should not let an 
expensive rf source in an idle mode most of the time.

Hence, rf pulse compression is needed to match the long pulse low 
power of available rf sources such as klystrons to the high power 
short pulse needed for the accelerator structure. 



• Pulse Compression should be used with as high of a compression ratio 
as possible until 

a) The cost of the compression system starts to exceed that of 
the klystrons and modulator

b) Or, the available pulse width of the klystrons is exhausted

• The cost of the main linac is directly proportional to the efficiency of 
the pulse compression system.



RF Pulse compression for RF 
Linacs and Colliders

• Resonance Delay Lines (SLED-II)
• Binary Pulse Compression (BPC)
• Delay Line Distribution System (DLDS)

• Two-Stage systems, any combination of  
two or more of the above systems



klystrons 

Single or Multi-Moded 
Delay Lines

Short Circuit

Coupling Irises

Accelerator Structures

3 dB 90 Degree Hybrid

Sled-II Pulse compression system

klystrons 

Single or Multi-Moded 
Delay Lines

Short Circuit

Coupling Irises (can be 
actively switched)

Circulator

Accelerator Structures

Sled-II pulse compression system with a circulator and active switches



Single-Moded 
Delay Lines

3 dB 90 Degree Hybrid

Accelerator Structure

Two banks of power sources each has an nk/2 klystrons 

a) Single-moded Binary Pulse Compression

3 dB 90 Degree Hybrid

Accelerator Structure

Two banks of power sources each has an nk/2 klystrons 

Single or 
Multi-Moded 
Delay Lines

Circulator

Short Circuit

b) Binary pulse compression can have several improvements including the use of a circulator and several modes to 
reduce the delay line length.



Delay Lines

Accelerator Structures
Bank of nk of klystrons

A set of hybrids that switches the 
combined rf to different outputs

Not all the output need to be used. The unused outputs 
are terminated by an rf load

a) A Unit of a Single-Moded DLDS

Multi-Moded Delay Lines. The total number of these lines is np

A mode launcher which takes nm inputs and produces nm modes into a single waveguide delay line

b) A Unit of a Multi-Moded DLDS

Single-Moded Delay 
Lines

Accelerator Structures

A combiner
A High Power Microwave Switch

c) A Unit of an Active DLDS



The challenges facing most of these pulse compression system 
are

1- Compactness, how to produce a storage system which is 
relatively compact

2- Efficiency, for the resonant delay lines, efficiency could be 
boosted by an rf switch.

3- Most of these systems could have a more compact topology if 
one have, a nonreciprocal RF device (circulator), or a switch.  



Compactness

•A waveguide near cutoff, hence, a low group velocity.  One 
can use a higher order mode to reduce the losses. A bad idea, 
dispersion will destroy the pulse shape at a group velocity 
less than 4.

•Loaded waveguide (slow wave structure). A bad idea 
because of dispersion and losses. 

•Multimoded Waveguide, the only good idea with no draw 
backs. We are using highly overmoded waveguide systems no 
mater what, using an extra mode, or two, or four, .. Is  a 
bonus. 
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Pulsed Heating
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Dualmode Resonant Delay lines ~30m

RF Input to the 4 
50 MW klystrons

Single mode waveguide input to 
the pulse compression system; 
100 MW/Line for 1.6 µs

Dual mode waveguide 
carrying 200 MW

Compressed output > 600 
MW 400 ns. 

Output Load Tree

NLC experimental rf
pulse compression 

system



Dualmode Combiner
Two fundamental 

mode inputs 

TE10/TE20

TE01/TE11

Dualmode directional coupler

Pumpout

Super Hybrid

TE01 to delay Lines

TE01/TE11 to loads

The Head of the pulse compression system 



Dual-Mode Combiner

@ 600 MW   |Es
max| = ~45.7 MV/m 

|Hs
max| = ~218 kA/m

@ 600 MW   |Es
max| = ~31.5 MV/m 

|Hs
max| = ~73.9 kA/m

TE10

TE20



Dual-Mode 
Combiner/Splitter

@ 600 MW   |Es
max| = ~45.7 MV/m 

|Hs
max| = ~218 kA/m

@ 600 MW   |Es
max| = ~31.5 MV/m 

|Hs
max| = ~73.9 kA/m



139.8 mm

40.64 mm

36.45 mm

30.58 mm

WC160

Section#1

Section#2

Section#3

Width taper to match our 
standard overmoded 
waveguide

36.63 mm



TE01

TE20

TE10

TE11



TE01

TE20

TE10

TE11

Simulated electric fields 
(HFSS)of the multi-moded 
circular to rectangular taper 

139.8 mm

Taper Geometry (Operating 
Frequency=11.424 GHz)

40.64 mm

36.45 mm 36.63 mm

Dual-Moded Rectangular      Circular 
Converter/Tapers



TE01

TE20

TE10

TE11

Dualmode
Rectangular-to-Circular 

Taper



Instrumental components for cold testing of multimode 
components:

1. TE11 Mode launcher
2. TE01 Mode launcher
3. Width taper
4. Height taper
5. Small waveguide sections with different lengths at all 

waveguide cross sections

We followed a strict  methodology of designing these 
instruments. They had to be simulated with at least three 
different codes and have a performance that is much better 
than any component that we have. Of course we can only do 
that because there is no restrictions on field levels.  



Cold Test Components/Calibration Standards

Width Taper, Height Tapers and Jog 
Mode Converter

TE01 Mode Converter, TE11 Mode 
Converter, and Size Taper

Multimoded Matched Load
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Measured S12 between the Rectangular TE02 mode and the circular TE01
mode. These measurements include the response of mode transducers 

necessary to launch the modes at both ends of the taper. 
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To instrumental width taper-
To instrumental height taper-
To Network analyzer

To instrumental width taper-
To instrumental height taper-
To Network analyzer

TE01 Mode 
launcher

From Network 
Analyzer

Cold Test Setup for the Splitter and 
Circular-to-Rectangular Taper

TE20 Mode
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Jog Converter and Mode Mixer

1.442”TE10 TE10

orthogonal 
50/50 mixesTE20

TE20



Magic H Hybrid

0.900”

2.3821”

1.4788”

@ 600 MW, 1.435” height:  |Es
max| = ~45.6 MV/m 

|Hs
max| = ~168 kA/m

C. Nantista ‘02



TE10

straight through

TE02

To the pulse compressor

@ 516 MW, 

|Es
max| = ~45.8 MV/m

|Hs
max| = ~156 kA/m To/From Pulse 

Compressors

Jog-Converter
Combiner/Splitter

Planer 3-dB Hybrid



Jog mode mixer

Combiner/Splitter

Planer 3-dB Hybrid

Planer Super-Hybrid

Port 1

Port 4

Port 3

Port 2

Circular to Rectangular Tapers

Jog-mode converter

Mitered Bends
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1.442”

@ 600 MW   |Es
max| = ~37.8 MV/m 

|Hs
max| = ~83.8 kA/m

Bend Converter Design



Dual-Mode Splitter

TE01 or TE11

TE10

TE01

TE20bend 
converter

Dualmode Splitter: For either incident mode the power is evenly 
divided between the two output ports, which launch the TE01.



Load Tree: The input power, carried by the TE01 mode, is split 4 
ways to be absorbed at the loads 



WC160

|S11| < -57 dB @ 
11.424 GHz

Four Way Splitter Design
WR90
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High Power Load Design 



Rectangular waveguide for coupling the TE01 mode

Ridge waveguide for coupling the TE11 mode

Circular 
Waveguide 

•The waveguide sizes are chosen to match wavelengths between the circular 
waveguide modes and side waveguide fundamental mode

•The coupling hole pattern represents a Hamming window 

Dual-moded Directional Coupler



End taper for TE11 coupler



End taper for the TE01 coupler



Directional Coupler Cold Test
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Measured directivity for the TE01 Arm 



Pumpout design: the set of holes are designed to cancel any coupling or
self-coupling for the TE01 and the TE11



Vacuum Pumpout Cold Test
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TE01

TE02

TE02

TE01

Dual Moded Delay line 
occupy only half the length of 
a single moded delay line 



Dual-Moded Delay Line
Dual-moding the delay lines cuts their required length 
approximately in half.
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End mode converter 
simulations 

TE01                  TE02 End taper and mode converter
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Input taper design
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Multimoded Taper Cold Test
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Measured Response of the dual-mode SLED-II Pulse 
compression system at a compression ratio of 4. Delay 
line length is ~35 feet. Output pulse width is 150 ns.
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Delay Line Cold Tests



Delay Line Cold Tests
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Measurements show a phase cycle over ~ 16 mm, indicating mode contamination 
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Slight amplitude oscillations reveal a very small fixed mismatch in wrap-around mode 
launcher.

Non-periodic amplitude change can be attributed to longer range beating between a 
small cup error contamination and that from the lines/tapers (60.3 mm).



Problem Fixed by:

•Permutations of tapers

•Adjusting iris distance

•Choosing good resonant position for tuning plunger 
(3 within range of motion). 
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System test (1)

Input

output
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High Power Experiments
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After pulse breakdown
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Upper Delay Line end pump



Upper Delay Line Input Pump



0

5 107

1 108

1.5 108

2 108

2.5 108

3 108

3.5 108

4 108

0 5 10-7 1 10-6 1.5 10-6 2 10-6

400MWpoint100ns

Channel 1
Channel 2

C
ha

nn
el

 1

Time



0

5 107

1 108

1.5 108

2 108

2.5 108

3 108

3.5 108

4 108

0 5 10-7 1 10-6 1.5 10-6 2 10-6

383MW216ns

B
C

B

A



Zero Power



421 MW 360 ns



Dualmode Resonant Delay lines ~30m

RF Input to the 4 
50 MW klystrons

Single mode waveguide input to 
the pulse compression system; 
100 MW/Line for 1.6 µs

Dual mode waveguide 
carrying 200 MW

Compressed output > 600 
MW 400 ns. 

Output Load Tree

NLC experimental rf
pulse compression 

system



System Modifications

• Replaced a pumpout
• Replaced the whole line of WR90
• Cooled down the WR90 with fans
• Hard wired the klystrons driver together



Dualmode Resonant Delay lines ~30m

RF Input to the 4 
50 MW klystrons

Single mode waveguide input to 
the pulse compression system; 
100 MW/Line for 1.6 µs

Dual mode waveguide 
carrying 200 MW

Compressed output > 600 
MW 400 ns. 

Output Load Tree

NLC experimental rf
pulse compression 

system









436 MW 360 ns



0

100

200

300

400

500

600

0 0.5 1 1.5 2

Input
Output

Po
w

er
 (M

W
)

Time(µs)

Dualmoded SLED-II Performance 
December 4, 2003 11 am
TE

01
-Input TE

01
-Output



0

100

200

300

400

500

600

0 0.5 1 1.5 2

Input
Output

Po
w

er
 (M

W
)

Dualmoded SLED-II Performance 
December 6, 2003 1:00 am

TE
01

-Input TE
01

-Output

Time(µs)



0

100

200

300

400

500

600

0 0.5 1 1.5 2

Input

Output
Po

w
er

 (M
W

)

Dualmoded SLED-II Processing
TE

01
-Input TE

01
-Output

Time(µs)



0

100

200

300

400

500

600

0 0.5 1 1.5 2

Po
w

er
 (M

W
)

T im e (µs)

Input

O utput



0

2

4

6

8

10

250 300 350 400 450 500 550

Error=100 x (Detector M easurem ent-
Calorim etric M easurem ent)/ Detector M easurem ent 

Er
ro

r (
%

)

Power (M W )---Detector



Klystron 1

Klystron 4

Klystron 3

Klystron 2

φ

φ

φ

TWT1

TWT2

119 MHzPLL to 
11.424 GHz

Timing 
Switch

Voltage-controlled 
Switch

Bi-phase Modulator

IQ-Modulator

AFG 1

AFG 1

Computer Data Acquisition
From High Power rf measurements

Low-Level RF Architecture









Multimoded SLED-II output with feedback
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60 Hz

Full Run One Minute Power Data

~455.7 hrs. on total w/ ~272 trips*
~98.75 hrs. @ 60 Hz w/ ~ 116 trips

~357 hrs. @ 30 Hz w/ ~ 156 trips

30 Hz

Two 26 hrs. gaps w/ no trips.

trip diode 
signals 
recorded

*“trips” here includes accidental and deliberate human induced interruption of operation.



SLED Breakdown Event



Unclear event



Klystron Breakdown event



Dualmode Resonant Delay lines ~30m

RF Input to the 4 
50 MW klystrons

Single mode waveguide input to 
the pulse compression system; 
100 MW/Line for 1.6 µs

Dual mode waveguide 
carrying 200 MW

Compressed output > 600 
MW 400 ns. 

Output Load Tree

NLC experimental rf
pulse compression 

system



SLED-II
0.03 / hr at 30 Hz

(< 0.08 / hr required) 
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Diode Trip Analysis (Since 2/11)
Out of 211 trips in 365.65 hrs (30Hz equivalent)

• 29 -SLED or Combiner 
• 1 - Klystron 5
• 15 - Klystrons 5&6
• 18 - Klystron 6
• 72 - Klystron 7
• 28 - Klystrons 7&8
• 38 - Klystron 8
• 1 – Loads
• 7 - ?

+ dig. Vac. faults



8-Pack Phase 2a       8-Pack Phase 2b



Power Distribution
6 dB 
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4.8 dB 
directional 
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structures
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Mode Stripper Cold Test
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The cell is not matched enough. We can match two cell or structure of several cells by 
placing the cells at right distance from each to other.  But to get more smooth passband
is better to match each cell by iris.
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Total length of SLED-II can be not more then 5m
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Conclusion:
• We have introduce a fully dual mode rf system

• We have shown design and experimental data for 
over moded components that propagates two 
modes at the same time. These component 
perform all possible function found in single 
moded rf systems 

• At the operating frequency of 11.424 GHz, the 
peak electric field is ~49 MV/m (400 ns) and the 
peak Magnetic field is ~0.17 MA/m (400 ns). This 
was demonstrated to be low enough for a reliable 
high power operation of the system.



Conclusion:
• We have introduce a fully dual mode rf system

• We have shown design and experimental data for 
over moded components that propagates two 
modes at the same time. These component 
perform all possible function found in single 
moded rf systems 

• At the operating frequency of 11.424 GHz, the 
peak electric field is ~49 MV/m (400 ns) and the 
peak Magnetic field is ~0.17 MA/m (400 ns). This 
should be low enough for a reliable high power 
operation of the system (remain to be seen)

• We have invented several new measurement 
techniques and instrumental components needed 
for characterizing dual moded rf systems. 
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