1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

Alessandro G. Ruggiero

Jefferson Lab Presentation. September 20, 2004

Considerations of FFAG

FFAG accelerators are an old technology proposed and demonstrated about a half a century ago. They have often been proposed especially in connection of Spallation Neutron Sources. But, despite a considerable amount of design and feasibility studies, they were never successfully endorsed by the scientific community, because they were perceived with a too complex orbit dynamics, a too large momentum aperture required for acceleration, and consequently too expensive magnets. RF acceleration was also considered problematic over such a large momentum aperture. Moreover, the **FFAG** accelerator was always coupled to the need of a relatively large injection energy (of few hundred MeV) at one end, and the need of stacking/accumulating device at the other end of the accelerating cycle.

F

D

F

Recently, there is a renewed interest in **FFAG** accelerators, first of all because of the practical demonstration of a 150-MeV proton accelerator at KEK, Japan, and secondly because of a more modern approach to beam dynamics and magnet lattice design, and of some important innovative ideas concerning momentum compaction and magnet dimensions. Because of these more recent development, **FFAG** accelerators are presently a very appealing and competitive technology that can allow a beam performance at the same level of the other accelerator architectures.

FFAG Accelerators have also been extensively studied as possible storage and accelerators of intense beams of Muons in the several GeV energy range

Main Features of FFAG

The main feature of the **FFAG** accelerators is that they are essentially based on conventional room-temperature magnet technology with constant field. As the beam is accelerated by RF cavities, its trajectory spirals from an inner orbit where injection occurs toward an outer orbit from which the beam is extracted. The radial extension of trajectories is entirely confined within the magnet aperture, and the field does not need to be ramped neither for bending nor for focusing.

F

D

F

In principle, this mode of operation requires a large momentum excursion that, for instance from 200 MeV to 1.0 GeV or from 400 MeV to 1.5 GeV is about ±40% around the central momentum value. To avoid that the momentum range gets exceedingly too large, FFAG accelerators require a relative large injection energy, of few hundred MeV. The injector could be a Linac or a smaller scale FFAG with a cycle matching that of the main accelerator.

Another feature of the **FFAG** accelerator is the use of magnets with combined function for simultaneous bending and focusing. The field profile is not constant but varies across the magnet width and may vary from magnet to magnet. Moreover, the bending and the focusing alternate providing strong focusing and a more compact momentum aperture when compared to Cyclotrons. Nevertheless the reverse bending subtracts from the total bending increasing the circumference of the ring.

Different types of magnet lattice configuration have been studied: FODO, Doublets, and Triplets. **Triplets** have been found to be the most advantageous, especially in the **FDF** configuration.

Rule # 1: Tune the lattice at the low energy end (Injection) for Phase Advance 90-100⁰

 $\delta = 0$

Alessandro G. Ruggiero -- Jefferson Lab Presentation

Second Rule (Johnston, Trbojevic)

Employ the **FDF** arrangement of the triplets since this, as it was well known from the lattice studies of electron storage rings for the production of synchrotron radiation, yields a considerable lower dispersion when compared to the DFD arrangement, and thus a more compact momentum spread and smaller magnet width. At the same time most of the bending ought to be done by the central **D** magnet, while the two **F** magnets at the ends of the triplet provide reverse bending, that is have the polarity inverted with respect to that of the **D** magnet.

F

D

F

The major concern of any type of **FFAG** accelerator is the variation of the betatron tunes and functions that can be exceedingly too large for the required momentum aperture. There are two methods to reduce and to control such large tune variation.

Scaling FFAG Lattice:

Large Dispersion.

 Magnets with Large Aperture and High Field.

 Constant Tune.
 Prefers DFD Triplet.

 Non-Scaling FFAG Lattice:
 Small Dispersion.

Magnet with smaller Aperture and Lower Field. Large Chromaticity. Prefers FDF Triplet.

Monday, Sept. 20, 2004

Alessandro G. Ruggiero - Jefferson Lab Presentation

Scaling Lattice

Conceive an arrangement of trajectories so that the momentum dependence is absorbed by the curvature h

 $x'' = q B_y (1 + hx) / pc$

The Lorentz condition imposes that at any location

$$A B_v / pc = 1 / r$$

With an arbitrary origin corresponding to $h = 1 / r_0$, assume that B_v is a function of r, and by expansion

$$B_y = B [1 + (r - r_0) dB / B dr]$$

By insertion

 $x'' = h^2 (1 + K) x$ with $x = r - r_0$

The focusing parameter is then

K = (r dB / B dr)

If one requires that K is independent of location and of the particle momentum, then the field index

n = -r dB / B dr

must be constant across the momentum (radial) aperture. The corresponding field profile

$$B = B_0 (r / r_0)^{-n}$$

F

D

F

Trajectories are parallel to each other.Trajectories are Arcs of Circle.Entrance and Exit Angles = 0

Non-Scaling Lattice

This is one by which only for the reference trajectory corresponding to the curvature h and momentum p_0 the *Lorentz condition* is exactly satisfied uniformly along the length of a sector magnet. On the reference trajectory there is a uniform constant curvature h and bending field B_y . Moreover, this reference trajectory makes zero angle at the entrance and exit of the magnets. But this is not true for any other particle with a different momentum value $p = p_0 (1 + \delta)$. For this particle the trajectory is not an arc of circle with constant curvature, but crosses regions with varying bending and focusing field.

In the special case of a constant field gradient G = dB / dr it is then not possible to preserve constant tunes and lattice functions across the momentum aperture.

It is nevertheless possible to find an *Adjusted Field Profile* within each of the magnets that cancels the chromatic behavior of the lattice functions over the desired momentum range. The *Adjusted Field Profile* causes the gradient to vary in a specific manner so that the resulting field index at a particular longitudinal location s is now a function of the radial displacement x; that is n = n(x, s) that cancels the momentum dependence at the denominator of the focusing parameter K).

The field so derived satisfy the Maxwell equations correctly. Because now the field configuration varies with the path length s, there is also a solenoid field component B_s that can nevertheless be ignored.

D

F

F

Very important are the magnet edge effects, because for a Non-Linear Scaling Lattice the trajectories make non vanishing entrance and exit angles with the magnets, unless $\delta = 0$. 3rd Rule: Adjusted Field Profile (Ruggiero, Teng)_

BNL - C-A/AP/148

Linearized Equations of Motion

• Introduce the *field index* $n(x) = G(x) / h B_0$

• Consider the general case where the field index is a nonlinear function of both x and s, namely n = n(x, s). At any location s, for each momentum value δ there is one unique solution $x = x(\delta, s)$, and by *inversion* δ is a function of x and s, namely $\delta = \delta(x, s)$. We pose the following problem: Determine the field distribution, namely n = n(x, s), that compensates the momentum dependence of $(1 + \delta)$ at the denominator:

$$n(x, s) = n_0 [1 + \delta(x, s)]$$
 --> $G(x, s) = G_0 [1 + \delta(x, s)]$ <-

where n_0 is related to the gradient $G_0 = n_0 h B_0$ on the reference trajectory.

• Then the equations of motion reduce to

$$\begin{aligned} x'' + h^2 x / (1 + \delta) + h^2 n_0 x &= h \delta / (1 + \delta) & \dashrightarrow x = x(\delta, s) & \dashrightarrow \delta = \delta(x, s) \\ y'' - h^2 n_0 y &= 0 \end{aligned}$$

Monday, Sept. 20, 2004

D

F

1.5-GeV FFAG Lattice Design

Energy Range

400 MeV - 1.5 GeV

 $p = p_0 (1 + \delta)$

Reference Momentum, **p** Momentum Range, δ Circumference No. of Periods Period Length Drifts: Long (S) Short (g) F-sector: Length Field Gradient D-sector: Length Field Gradient Phase Advance / Period Betatron Tunes, v_{H} / v_{V} Transition Energy, γ_{T}

954.263 MeV/c 0 - 1.36 807.091 m 136 5.9345 m 2.5345 m 0.3 m 0.70 m - 0.7841 kG 26.58 kG/m 1.40 m 1.8345 kG - 23.30 kG/m 105.23° / 99.93° 39.755 / 37.755 105.482 i

Non-Scaling FFAG Lattice

D

F

D

F

g

F

S

Monday, Sept. 20, 2004

S

F

g

Magnet Field Profiles -- β -Tunes p-Bundle

Magnet Design

Parameter	Unit	F- Magnet	D- Magnet
Туре		Quadrupole	Comb. Function
Number of Magnets		2 x 136	136
Core Length	m	0.65	1.35
Magnetic Length	m	0.70	1.40
Pole Tip Radius	cm	8.0	
Gap Height	cm		15
Pole Width	cm	10.5	21
No. Pancakes / Magnet		4	4
No. Turns per Pancake		5	4
Pole Tip Gradient	kG/ m	30	-
Max. Field B	kG	2.4	3.0
Transfer Function B / I	G / I	1.5	2.2
Coil Current I	A	1,600	1,350
Conductor Dimension	mm	30 x 30	25 (H) x 50 (V)
Current Density	A/cm ²	180	108
Resistance / Magnet	mW	1.26	0.88
Resistance / Total	mW	343	120
Inductance / Magnet	mH	0.50	1.87
Inductance/ Total	mH	136	254
Total Voltage, IR	V	550	162
Dissipated Power	kW	880	225
Stored Energy	kJ	174	232

Monday, Sept. 20, 2004

RF Cavity System

Parameters of Acceleration

Circumference	807.091 m
Harmonic Number, h	24
Energy Gain	0.5 MeV / turn
Transition Energy, γ_T	105.5 i
Number of full Buckets	22 out of 24
Bunch Area (full)	0.4 eV-sec
Total Number of Protons	$1.0 \ge 10^{14}$
Protons / Bunch	$4.6 \ge 10^{12}$
Injection Period	1.0 ms
No. of Revolutions	2,200
Acceleration Period	7.0 ms
Total Cycle Period	8.0 ms

F

D

F

Peak RF Voltage	1.2 MVolt		
No. of RF Cavities	30		
No. of Gaps per Cavity	1		
Cavity Length	1.6m		
Internal Diameter	10 cm		
Peak Voltage / Cavity	40 kVolt		
Power Amplifier / Cavity	250 kW		
Energy Range, MeV	400	1,500	
Energy Range, MeV β	400 0.7131	1,500 0.9230	
Energy Range, MeV β Revol. Frequency, MHz	400 0.7131 0.265	1,500 0.9230 0.343	
Energy Range, MeV β Revol. Frequency, MHz Revolution Period, μs	400 0.7131 0.265 3.78	1,500 0.9230 0.343 2.92	
Energy Range, MeV β Revol. Frequency, MHz Revolution Period, μs RF Frequency, MHz	400 0.7131 0.265 3.78 6.357	1,500 0.9230 0.343 2.92 8.228	
Energy Range, MeV β Revol. Frequency, MHz Revolution Period, μs RF Frequency, MHz Peak Beam Current, Amp	400 0.7131 0.265 3.78 6.357 4.24	1,500 0.9230 0.343 2.92 8.228 5.49	

• One can add more Cavities later to shorten acceleration period

• Or start with fewer Cavities and longer acceleration period

Multi-Turn Injection (H⁻)

Linac Peak Current33Revolution Period3.No. of Protons / FFAG pulse1.Chopping Ratio0.Chopping Frequency6.Single Pulse Length0.No. of Turns Injected / pulse23Linac/FFAG Rep. Rate2.Linac Duty Cycle0.Linac Beam Emittance, rms norm.1Final Beam Emittance, full norm.10Bunching Factor3Space-Charge Tune-Shift0.

35 mA 3.78 μ s 1.0 x 10¹⁴ 0.50 6.357 MHz 0.96 ms 255 2.5 Hz 0.24 % 1 π mm-mrad 100 π mm-mrad 3 0.50

F

D

F

10 cm x 20 cm Vacuum Chamber

Single-Turn Extraction

Revolution Period $2.92 \ \mu s$ Beam Gap $300 \ ns$ Kicker Magnet, Length $1.5 \ m$ Field $1 \ kG$ Rise-Time $< 300 \ ns$ Septum Magnet, Length $1.5 \ m$ Field $1.5 \ m$ Field $10 \ kG$ Repetition Rate $2.5 \ Hz$

F

D

F

The Kicker field remains constant for the duration of the beam pulse (about 2.6 μ s), and it is finally reset to zero-value in about 300 ms, to be fired again the next cycle.

Space (Charge	at	Injection

FFAG AGS

Kinetic Energy	400 MeV	1.5 GeV	
Total no. of Protons	1 x 10 ¹⁴ (equiv	1 x 10 ¹⁴ (equiv. to 1.12 MW)	
Normalized Emittance	100 π mm-rad	(5 x rms, full)	
Actual Emittance	98 π mm-rad	42 π mm-rad	
Bunching Factor	3	4	
Tune-Shift	0.5	0.16	
β_{V} - max	12 m	22 m	
$a_V = (\epsilon \beta_V)^{1/2}$	34 mm	30 mm	

FFAG final Energy can be increased (e.g. to 2.0 GeV) to ease Injection into the AGS

Final Energy Tunability (2 of 2)

2.0 GeV

D

F

F

– Central Tune

Space-Charge Tune-Shift

F

D

F

Because of the very large periodicity (136) there are no systematic resonances in the chosen tune region up to and including 16th order. The lowest order resonance to cross the tune range is of 17th order.

We have opted for a tune difference of 2 units to avoid the coupling resonance.

The main concern is the design and manufacturing of the Magnets, and the control of the *Adjusted Field Profile*. Numerical Tracking required to determine tolerances on the magnet imperfection errors.

Monday, Sept. 20, 2004

Conclusions

The **1.5-GeV FFAG** is an attractive alternative to the **1.2-GeV SCL** as the new injector for the **AGS Upgrade** program. The merits are:

- More familiar and conventional technology
- Less expensive (~ **50 M\$**)
- Possibility of acceleration of Heavy Ions

More work has clearly to be done before it is considered as a substitute to the SCL.

By extrapolation, it is also a continuous high power **Proton Driver** for a variety of applications:

Average Beam Power	3.0 MWatt
Protons / Pulse	$1.0 \ge 10^{14}$
Repetition Rate	125 Hz
Final Energy	1.5 GeV

Monday, Sept. 20, 2004

F

D

F