Ultrafast demagnetization of ferromagnetic films

D. J. Hilton¹, R. D. Averitt¹, C. A. Meserole², G. L. Fisher³, D. J. Funk², J. D. Thompson¹, and A. J. Taylor¹

¹MST-10 , ²DX-2, ³NMT-16 Los Alamos National Laboratory, Los Alamos, NM 87545

Supported by AFRL/DELE, Kirtland AFB, Albuquerque, NM and Los Alamos, LDRD/DR

Outline

- Applications of Ultrafast THz
- THz emission mechanisms
 - Current Surge
 - Optical rectification
 - THz emission from Metals Ultrafast Demagnetization
 - Towards higher electric field sources
- Ultrafast Demagnetization in Iron
 - History of ultrafast magnetization changes
 - Terahertz Emission Spectroscopy

Unclassified

THz Time Domain Spectroscopy

- Terahertz frequencies and THz -TDS (1 THz \rightarrow 4 meV \rightarrow 33 cm⁻¹ \rightarrow 300 μ m)
- Material characterization and bistatic ranging

Feasibility studies (RCS characterization) for spaced-based broadband radar (FEM at 300 GHz with >30 GHz bandwidth) Increased range resolution, detection of embedded materials

• NDE of energetic materials

Imaging of voids in plastic bonded explosives, THz spectroscopy of single crystal HMX

• Sensor Negation

THz frequencies are only 1 to 2 orders of magnitude faster that the frequencies of electronics.

Unclassified

Terahertz time domain spectroscopy (THz-TDS)

Ultrafast optical approach for generating pulses in an underutilized region of the EM spectrum ("THz Gap")

- THz radiation (T-rays) consists of short pulse (< 1 ps), singlecycle, freely propagating FIR pulses generated via ultrafast optoelectronic techniques
- Directional, focusable, broadband (0.1 to 3 THz)
- The electric field (i.e. amplitude and phase) is directly obtained.
- Time-gated technique enables very high SNR.
- Easy access to the time and frequency response both are useful in characterizing the THz response of materials.

Unclassified

Metalized Plastics

THz Radiation Through Balloon Wall

Unclassified

N₂O absorption Spectra

To simulate an inflated metalized plastic balloon, we inserted sheets of balloon material in the beam path on either side of the gas cell.

Unclassified

The World's Greatest Science Protecting America

Alamos

NATIONAL LABORATORY

THz Spectroscopy of Explosives

Are there spectroscopic signatures of these molecules at THz frequencies?

Done in collaboration with Dave Funk, Dan Hooks, and Jeff Barber, DX-2

THz Spectroscopy of Explosives

Unclassified

Electrical Interactions

Mode Locked Ti:Sapphire

- ~100,000 frequencies locked into phase coherently result in a fs pulse.
- Outputs 50 fs pulses at 80 MHz with a center wavelength of 800 nm (375 THz).
- Can be amplified using Ti:S based amplifier to produce 30 mJ/pulse.
- Higher pulse energies are possible.

Unclassified

THz emission via fs excitation

Mechanisms:

- Current Surge FIR dipole radiation from acceleration of photoinjected carriers in a surface depletion field
- Pondermotive acceleration of electrons in a laser plasma
- Optical Rectification Difference Frequency Mixing
 - Bulk electric-dipole: $\chi^{(2)}$
 - Bulk electric-quadrupole/magnetic dipole: $\chi^{(Q)}$
 - Field Induced (Surface) electric-dipole: $\chi^{(3)}$, E_d
 - Surface or bulk magnetization: $\chi^{(2)}(\mathbf{M})$
- Ultrafast demagnetization—FIR dipole radiation from rapid demagnetization following the creation of a nonthermal electron distribution with a fs optical pulse.

Unclassified

THz Generation Mechanism

Optical Rectification $E_{THz} \sim \chi^{(2)} |E_{pump}|^2$

$$E_{THz} \propto \frac{d^2}{dt^2} \Big[\chi^{(2)} E_{pump}^* E_{pump} \Big]$$

Photoconductive Switch Pondermotive Acceleration

Ultrafast Demagnetization

Unclassified

Auston switches

- Photoconductive Emitters: Electrodes with a several kV/cm bias across a gap.
- A fast surface current transient is initiated by photo-injecting carriers with an ultrashort laser pulse. Ensuing THz radiation temporally tracks the time derivative of the total surface current.
- Peak output fields of ~ kV/cm
- Emitters: GaAs, LT-GaAs, InP
- Radiated THz field saturates with fluence, F: $E_{THz} \sim E_B F/F_o/(1 + F/F_o)$

Unclassified

THz detection

- Photoconductive receivers:
 - Based on the same principle of emitters.
 - THz E-field is used to bias a photo-gated detector, typically radiation damaged silicon-on-sapphire (SOS) or LT-GaAs.
 - Detector response time of SOS, τ_r < 0.5 ps.
- Electro-optic sampling
 - Based on detection of polarization rotation Pockels effect in a $\chi^{(3)}$ material (ZnTe).
 - E-field from THz beam is used to rotate the polarization of an optical gate beam via electrooptic effect.
 - Detection bandwidth is limited by the group velocity mismatch between THz beam and optical beam.

Unclassified

THz emission via fs excitation

Mechanisms:

- Current Surge FIR dipole radiation from acceleration of photoinjected carriers in a surface depletion field
- Pondermotive acceleration of electrons in a laser plasma
- Optical Rectification Difference Frequency Mixing
 - Bulk electric-dipole: $\chi^{(2)}$
 - Bulk electric-quadrupole/magnetic dipole: $\chi^{(Q)}$
 - Field Induced (Surface) electric-dipole: $\chi^{(3)}$, E_d
 - Surface or bulk magnetization: $\chi^{(2)}(\mathbf{M})$
- Ultrafast demagnetization—FIR dipole radiation from rapid demagnetization following the creation of a nonthermal electron distribution with a fs optical pulse.

Unclassified

Ponderomotive Acceleration of electrons

• PULSE code self-consistently propagates a pulse through ionizable media:

THz emission via fs excitation

Mechanisms:

- Current Surge FIR dipole radiation from acceleration of photoinjected carriers in a surface depletion field
- Pondermotive acceleration of electrons in a laser plasma
- Optical Rectification Difference Frequency Mixing
 - Bulk electric-dipole: $\chi^{(2)}$
 - Bulk electric-quadrupole/magnetic dipole: $\chi^{(Q)}$
 - Field Induced (Surface) electric-dipole: $\chi^{(3)}$, E_d
 - Surface or bulk magnetization: $\chi^{(2)}(\mathbf{M})$
- Ultrafast demagnetization—FIR dipole radiation from rapid demagnetization following the creation of a nonthermal electron distribution with a fs optical pulse.

Unclassified

Difference Frequency Generation

• Uses a special class of materials with strong nonlinearities, $\chi^{(2)}$, which result in transfer of energy from one frequency to another by generating a far IR dipole in material.

 Common materials: ZnTe, LiNbO₃, BBO, KTP, KDP, AgGaSe, AgGaS, GaSe, etc.

Unclassified

Optical Rectification

Special case of DFG using the bandwidth of the Ti:S pulse to generate the THz pulse. THz bandwidth is limited by Ti:S pulse bandwidth.

THz generation via optical rectification

$$E_i^{rad}(\Omega) \propto \frac{\partial^2 P}{\partial t^2} = \frac{\partial^2}{\partial t^2} \chi_{ijk}^{(2)} E_j(\omega_1) E_k^*(\omega_2)$$

Azimuth Incidence

Bulk: electric dipole $E^{\text{THz}} \sim \cos 2(\phi - \phi_{o})$ electric quadrupole/magnetic dipole $\chi^{(2)}$: All of these are $E^{\text{THz}} \sim \cos 4(\phi - \phi_{\alpha}) \sin \theta$ "instantaneous" **Surface**: electric dipole nonlinearity: processes and do not $E^{\text{THz}}(p,p)$ and $E^{\text{THz}}(s,p) \sim \sin \theta$ limit the emission $E^{\text{THz}}(p,s)$ and $E^{\text{THz}}(s,s) \sim 0$ bandwidth. •Magnetic nonlinearity, $\chi^{(2)}(M)$: $E^{\text{THz}} \sim \cos(\phi - \phi_0) + A\cos(\phi - \phi_1)$ $|\omega^2 \chi^{(2)}(\mathbf{M})| \sim 10^{-12} \text{ esu}$ ref: *Phys. Rev.* B 48, 8607 (1993). Unclassified AL LABORATORY

THz generation mechanism: Optical rectification

•Optical Rectification: Characterized by nonlinear optical difference frequency mixing :

$$E_i^{rad}(\Omega) \propto \frac{\partial^2 P}{\partial t^2} = \frac{\partial^2}{\partial t^2} \chi_{ijk}^{(2)} E_j(\omega_1) E_k^*(\omega_2)$$

Peak field outputs of 10 - 100 V/cm
Emitters: GaAs, InP, DAST, ZnTe, LiNbO₃, LiTaO₃, GaSe

Unclassified

Higher field emission from ZnTe

- Other nonlinear processes compete for the same pump photons.
- Instead of scaling the pump power, scale the area.
- Higher field source from ZnTe: too expensive! 1 cm x 1 cm x 1 mm ZnTe is about \$3K.
- Either need new materials for higher fluences, or rely on photoconductive emitters.

Unclassified

THz emission via fs excitation

Mechanisms:

- Current Surge FIR dipole radiation from acceleration of photoinjected carriers in a surface depletion field
- Pondermotive acceleration of electrons in a laser plasma
- Optical Rectification Difference Frequency Mixing
 - Bulk electric-dipole: $\chi^{(2)}$
 - Bulk electric-quadrupole/magnetic dipole: $\chi^{(Q)}$
 - Field Induced (Surface) electric-dipole: $\chi^{(3)}$, E_d
 - Surface or bulk magnetization: $\chi^{(2)}(\mathbf{M})$
- Ultrafast demagnetization—FIR dipole radiation from rapid demagnetization following the creation of a nonthermal electron distribution with a fs optical pulse.

Unclassified

Ultrafast Demagentization

VOLUME 76, NUMBER 22 PHYSICAL REVIEW LETTERS

27 May 1996

Ultrafast Spin Dynamics in Ferromagnetic Nickel

E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot Institut de Physique et Chimie des Matériaux de Strasbourg, Unité Mixte 380046 CNRS-ULP-EHICS, 23, rue du Loess, 67037 Strasbourg Cedex, France (Received 17 October 1995)

The relaxation processes of electrons and spins systems following the absorption of femtosecond optical pulses in ferromagnetic nickel have been studied using optical and magneto-optical pump-probe techniques. The magnetization of the film drops rapidly during the first picosecond, but different electron and spin dynamics are observed for delays in the range 0-5 ps. The experimental results are adequately described by a model including three interacting reservoirs (electron, spin, and lattice). [S0031-9007(96)00167-6]

PACS numbers: 75.40.Gb, 75.70.-i, 78.20.Ls, 78.47.+p

First to report ultrafast changes to spins in a "basic" metal ferromagnet (~2 ps). Before this, the fastest changes to *M* were thought to be hundreds of picoseconds to nanoseconds

Ref: E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot. Phys. Rev. Lett. 76, 4250 (1996).

Unclassified

Ultrafast Demagnetization

VOLUME 85, NUMBER 4 PHYSICAL REVIEW LETTERS

24 July 2000

Ultrafast Magneto-Optics in Nickel: Magnetism or Optics?

B. Koopmans,* M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge Eindhoven University of Technology, Department of Applied Physics, COBRA Research Institute, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands (Received 22 February 2000)

Several magnetic and optical processes contribute to the magneto-optical response of nickel thin films after excitation by a femtosecond laser pulse. We achieved a first complete identification by explicitly measuring the time-resolved Kerr *ellipticity* and *rotation*, as well as its temperature and magnetic field dependence in epitaxially grown (111) and (001) oriented Cu/Ni/Cu wedges. The first hundreds of femtoseconds the response is dominated by state filling effects. The true demagnetization takes approximately 0.5-1 ps. At the longer (sub-ns) time scales the spins are found to precess in their anisotropy field. Simple and transparent models are introduced to substantiate our interpretation.

PACS numbers: 75.40.Gb, 75.70.-i, 76.50.+g, 78.47.+p

At least part of "ultrafast demagnetization" signal is due to state filling, not magnetization changes.

How fast are the magnetization changes in the sample?

Ref: B. Koopmans, M. van Kampen, J. T. Kohlhepp, W. J. M de Jonge, Phys. Rev. Lett. **85**, 844 (2000).

Unclassified

Terahertz Emission Spectroscopy

• Induce a time changing magnetic field (or current surge), which results in emission of a electromagnetic field (THz pulse).

$$E_{THz} \propto rac{dJ}{dt}$$
 or $E_{THz} \propto rac{d^2 M}{dt^2}$

- Dynamics of magnetization changes (or current surge) limit the bandwidth of the THz pulse.
- No Kerr/Faraday rotation needed.
- Is this instead limited by induced changes to the material conductivity/transmission at the frequencies of emission?

Unclassified

THz emission from Fe/MgO

Sample heating

Temperature Dependent Magnetization

Stoner Model of Ferromagnetism

- Ferromagnetism in "simple" metals (Ni, Fe, Co, Gd) is characterized by a spin split *d-like* subband, resulting in more d electrons of the majority spin than the minority spin
- An increase in electron temperature results in an increase in the spin dependent scattering rate (spin-flip scattering).
- The spin population in the *s-like* subband rapidly looses it's spin polarization due to the (lack of) spin orbit coupling.
- Spin is *consumed* by this process, leading to an overall reduction in the number of spin polarized delectrons. Total spin is not conserved

 $N = n_{d\uparrow} - n_{d\downarrow}$

Spin Flip Scattering

Unclassified

THz emission from Fe/MgO

- •Measured THz generated after transmission through iron film
- EO detection to measure field directly
- Can determine the amplitude and phase of THz emission

Calculate spectrum from field

Hilton et al., Opt. Lett. 29, 1805 (2004)

Unclassified

The World's Greatest Science Protecting America

NATIONAL LABORATORY

MBE growth of Fe on MgO

Adapted from A. di Bona, et al. Surf. Sci. 498 (2002) 193-201.

- Lattice constant MgO is $\sim \sqrt{2} x$ lattice constant Fe
- Fe is rotated by 45°
- ~4% mismatch
 - d_{O-O} = 2.98Å
- Epitaxial Relationship:
 - Fe(001) || MgO(001)
 - Fe<100> || MgO<110>
 - Fe<110> || MgO<010>

MgO(001) \rightarrow Fe(001) with a bcc crystal structure ~12 nm thick

Unclassified

Magnetization of Fe film

Unclassified

Azimuthal Dependence

Optical Rectification $[\chi^{(2)}]$, ultrafast demagnetization, and Auston switches have known dependences on the angle between the pump field and the crystal/magnetization axes (ϕ).

Azimuthal dependence (cont.)

Unclassified

Azimuthal dependence (cont.)

The THz emission remains at normal incidence but the constant offset disappears, consistent with this offset resulting from a surface nonlinearity.

IONAL LABORATORY

Surface Nonlinearity

- Azimuthally independent term.
- Also reported in amorphous gold and silver films. (Kadlec *et al.*, to be published in Optics Letters)

Unclassified

Fluence dependence of THz bandwidth

The bandwidth of the emission is constant at each fluence, ruling out any induced absorption mechanism to explain narrow bandwidth

Unclassified

THz field scaling- DFG

Advantages

- cost
- remote THz generation

Disadvantages

- lower conversion efficiency
- larger area
- limited bandwidth?

Los Alamos
 NATIONAL LABORATORY
 EST.1943

Unclassified

Fluence dependence of THz amplitude

Unclassified

THz emission at $\theta = 20^{\circ}$

Drude Conductivity

Electrons are "free" to move in metal with an effective mass, m^* .

$$\sigma(\omega) = \frac{\sigma_0}{1 - i\omega\tau} = \frac{\sigma_0}{1 - \omega^2\tau^2} (1 + i\omega\tau)$$

 τ = transport scattering time

 σ_0 = dc conductivity = ne^2/m^*

~ carrier density, n

Unclassified

Optical Conductivity of Fe

Absorption in iron does *not* significantly narrow the bandwidth of the emission, but does result in a shift in phase of the emitted pulse.

$$\tau = 70$$
 fs, $\sigma_{o} = 20,000~(\Omega \text{-cm})^{\text{-1}}$

Unclassified

Ultrafast Demagnetization

- Ultrashort pulse excites the Fe sample, first creating a nonthermal electron distribution, and then a thermal electron distribution, but at an elevated temperature.
- An increased T_e-dependent spin scattering rate results in fast (~2 ps) reduction in the magnetization.
- The rapid demagnetization results in emission of a THz pulse, with a 1/(~2 ps) ~ 500 GHz bandwidth.

$$E_{THz} \sim \frac{\partial^2 M}{\partial t^2}$$

- Emission is a direct measure of the changing magnetization (versus pump-probe measurements which probe electronic processes)
- Polarization dependence of emission consistent with this picture

Beaupaire et al., Appl. Phys. Lett. 85, 3025 (2004).

Unclassified

Three Temperature Model

Model the metal as interacting electron, lattice, and spin subsystems that are described by three coupled temperatures.

The World's Greatest Science Protecting America

Ultrafast Demagnetization

Coupled electron, lattice and spin systems result in 3-temperature model for their temperatures:

$$C_{E}(T_{E})\frac{dT_{E}}{dt} = -G_{EL}(T_{E} - T_{L}) - G_{ES}(T_{E} - T_{S}) + P(t) \quad C_{i} = \text{Specific Heat}$$

$$C_{L}(T_{L})\frac{dT_{L}}{dt} = +G_{EL}(T_{E} - T_{L}) - G_{SL}(T_{S} - T_{S}) \quad G_{ij} = \text{Coupling Constant}$$

$$P(t) = \text{Pump Fluence}$$

$$C_{S}(T_{S})\frac{dT_{S}}{dt} = +G_{ES}(T_{E} - T_{S}) - G_{SL}(T_{S} - T_{S}) \quad Heating the sample results in an increase in the spin dependent scattering rate}$$

$$E_{THz} \sim \frac{\partial^{2}M}{\partial t^{2}}$$
Unclassified

The World's Greatest Science Protecting America

EST 1943

Three Temperature Model

Fast Electron Temperature relaxation time of a few ps.

Emission bandwidth limit ~500 GHz.

Unclassified

High Fluence Emission

Unclassified

Optical Pump, THz probe

If the magnetization changes are caused by a change to the scattering rate ($\tau_0 \rightarrow \tau_0 + \Delta \tau$), then a THz pulse transmitted through an optically excited sample should see a time-dependent phase shift.

$$\sigma(\omega) + \Delta \sigma(\omega) \approx \frac{\sigma_0}{1 - \omega^2 \tau^2} (1 + i\omega\tau + i\omega\Delta\tau)$$
$$\Delta \sigma(\omega) \approx i \left[\frac{\omega\sigma_0}{1 - \omega^2 \tau^2}\right] \Delta \tau$$

TRTS can see the change to the full scattering time, not just the <u>spin-dependent</u> contribution.

Unclassified

Optical Pump/Terahertz Time-Domain Spectroscopy—Ultrafast Ohm-Meter

Waveform Phase Shift

A phase shift results in a change in the position of the zero.

Unclassified

Estimate the Emission Bandwidth

Using the electronic parameters, simulate M(T(t)) and find E(t) using Three Temperature Model.

 $\tau_{\rm E}$ = 5.76 ps and τ_{cc} = 560 fs


```
The World's Greatest Science Protecting America
```

Ferromagnetic Semiconductors

Carrier mediated ferromagnetism (magnetic polarons)

Demagnetization appears to proceed on a ~100 ps timescale (10 GHz).

More to come...

Unclassified

THz emission via fs excitation

Mechanisms:

- Current Surge FIR dipole radiation from acceleration of photoinjected carriers in a surface depletion field
- Coherent Phonon Generation
- Pondermotive acceleration of electrons in a laser plasma
- Optical Rectification Difference Frequency Mixing
 - Bulk electric-dipole: $\chi^{(2)}$
 - Bulk electric-quadrupole/magnetic dipole: $\chi^{(Q)}$
 - Field Induced (Surface) electric-dipole: $\chi^{(3)}$, E_d
 - Surface or bulk magnetization: $\chi^{(2)}(M)$
- Ultrafast demagnetization—FIR dipole radiation from rapid demagnetization following the creation of a nonthermal electron distribution with a fs optical pulse.

Unclassified

Summary

Conclusions:

- THz emission following ultrashort pulse excitation of an Fe film was observed after transmission through the film.
- THz field amplitude scales linearly with optical excitation fluence up to 4 mJ/cm² of incident fluence.
- $E(\phi, \theta)$ dependence of THz radiation reveals that the generation mechanism is dominated by a magnetic mechanism with a contribution from a surface electric dipole nonlinearity.
- Mechanism of ultrafast demagnetization results in narrowed THz bandwidth.
- Preliminary optical pump, THz probe data show an increase in scattering rate immediately after fs pulse excitation... is this spin dependent scattering?

Future Directions:

- Measurement of the THz emission in reflection geometry.
- Measure emission at fluence's that result in complete demagnetization.
- Measurement of THz emission from non-magnetic metals.
 - Recent work has demonstrated emission from amorphous gold and silver films (Kadlec, *et al.* scheduled for publication in Optics Letters).

Unclassified

