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TOPICS – Part I

1. Introduction and motivation for theory

2. Dynamical scheme – Vlasov-Fokker-Planck (VFP)

equation, and its numerical solution

3. VFP and sawtooth mode in SLC damping rings

4. Instability from CSR in a compact storage ring

5. Results for bursts of CSR in NSLS-VUV
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TOPICS – Part II

1. Single-pass CSR, in bunch compressors, etc.

2. Motivation for Fourier analysis of fields

3. Solution of wave equations

4. Treatment of fast oscillations in inverse FT

5. Preliminary numerical tests
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“It is best to confuse only one issue at a time”

(Kernighan and Ritchie).

“There is no use in telling more than you know, no, not

even if you do not know it” (Gertrude Stein).
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Incoherent and Coherent Synchrotron Radiation

N particles moving on circle of radius R with angular

velocity ω0 = βc/R. Line density of discrete particles:

Λ(θ, t) =
1

N

N∑
i=1

δP (θ − ω0t− θi)

The radiated power is (P = RI2)

P = (eNω0)
2
∑

n

ReZ(n)|Λn|2 , Λn =
1

2π

∫
e−inθΛ(θ, 0)dθ ,

hence

P =
(eω0

2π

)2
∑

n

ReZ(n)
∑
i,j

ein(θi−θj)
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Incoherent and Coherent Synchrotron Radiation – cont’d

Assume that the offsets θi are independent, identically

distributed random variables with probability density

λ(θ). Then

< P >= (eω0)
2
∑

n

ReZ(n)

[
N

(2π)2
+ N(N − 1)|λn|2

]
,

with variance ∆P =< P > O(N−1/2).

Incoherent radiation (from i = j) is O(N).

Coherent radiation (from i 6= j) is O(N2).



R. Warnock, SLAC/UNM 7

Shielded Coherent Synchrotron Radiation

For a Gaussian of r.m.s. width σ,

|λn|2 =
1

(2π)2
exp

[
−

(
nσ

R

)2]

Coherent radiation of wave length 2πR/n can be excited

only if R/n > σ; (one sometimes hears “only if the wave

length is bigger than the bunch size” – wrong by 2π).

However, shielding due to the vacuum chamber

exponentially suppresses ReZ(n) for

R

n
>

h√
2

(
h

R

)1/2

, h = chamber height

(estimate for parallel plate model)
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Figure 1: Impedance for parallel plate model, h =

1 cm , R = 25 cm , E0 = 25 MeV
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Microbunching can overcome shielding

CSR of wavelength 2πR/n is excited and unshielded if

and only if

σ <
R

n
<

h√
2

(
h

R

)1/2

If σ is the nominal bunch length, this is usually

impossible for all n in normal storage rings.

However, if σ is interpreted as the size of a

microstructure on the bunch, formed through an

instability, then we may satisfy both inequalities.
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Microbunching can overcome shielding – cont’d

More exactly, if

n >
√

2

[
R

h

]3/2

= shielding cutoff

and |λn|2 is sufficiently large (through ripples or sharp

edges in the bunch form), we can have substantial CSR.

We try to show that recent observations of CSR in

storage rings arise in this way, the ripples coming from an

instability induced by the CSR force itself and/or

geometric impedances.



R. Warnock, SLAC/UNM 11

Experimental Observation of CSR

1. 1989 – Nakazato et al. – linac and bending magnet.

Apparently overcame shielding through high Fourier

components in bunch.

2. 2000 – 2002 – Semi-periodic bursts of IR radiation at

light source storage rings ( NSLS-VUV, NIST,

BESSY, MAX-LAB, ALS). N2 enhancement,

polarization characteristic of CSR. Wave length

¿ σ(nominal) . Time between bursts is fraction of

damping time.

3. 2002 –Steady CSR at BESSY in setup with low

momentum compaction.
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Figure 2: Far infrared detector output at NSLS VUV

(Courtesy of G. Carr) Damping time τε = 7 ms
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Equations of Longitudinal Motion

dq

dτ
= p ,

dp

dτ
= −q + IcF (q, f, τ) ,

where (q, p) are normalized phase space coordinates:

q =
z

σz

, p = −E − E0

σE

, τ = ωst
(ωsσz

c
=

ασE

E0

)

The Collective Force , IcF (q, f, τ), is a functional of

f(q, p, τ) = phase space distribution function

Ic = current parameter
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Collective Force from Wake Potential or Impedance

Charge density = ρ(q, τ) = eN

∫
f(q, p, τ)dp

= (eNσz/R)λ(θ, t) .
(
θ = qσz/R . t = τ/ωs

)

F (q, f, τ) =

∫
W (q − q′)ρ(q′, τ)dq′ = ω0

∑
n

Z(n)einθλn(t)

This representation of the collective force F is an

approximation. No retardation!
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Vlasov-Fokker-Planck Equation

∂f

∂τ
+ p

∂f

∂q
− ∂f

∂p
[q + IcF (q, f, τ)]

=
2

ωstd

∂

∂p

(
pf +

∂f

∂p

)
. (1)

∂f

∂τ
+ V f = FPf

V = Vlasov operator ↔
nonlinear self − consistent Hamiltonian dynamics

FP = Fokker− Planck operator ↔
damping and diffusion from incoherent radiation
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Numerical Solution of the VFP Equation

Operator Splitting: V → FP → V → FP → · · ·
(1) Propagate over time step ∆τ by (nonlinear)

Vlasov operator alone

(2) Propagate over time step ∆τ by (linear)

Fokker-Planck operator alone.

Vlasov integration by Method of Local Characteristics

Fokker-Planck integration by finite-difference

approximation of p-derivatives and simple Euler step

in time.
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Method of Local Characteristics

Set of Characteristics given by map

M(z) = M(τ + ∆τ, τ, f)(z)

which propagates any phase space point z = (q, p) over a

time step ∆τ :

M(z(τ)) = z(τ + ∆τ)

In principle, M depends on the distribution f at all times

previous to τ + ∆τ , but for small ∆τ we ignore changes

in M due to changes in f during (τ, τ + ∆τ). We then

speak of Local Characteristics, determined by history up

to time τ , valid over a small time step ∆τ .
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Method of Local Characteristics – cont’d

Conservation of probability (for volume preserving map):

f(M(z), τ + ∆τ) = f(z, τ)

hence

f(z, τ + ∆τ) = f(M−1(z), τ)

Numerically we realize this equation by defining f

through its values on a Cartesian grid, with polynomial

interpolation for off-grid points. The “unknowns” to be

propagated are f(zi, τ) for N grid points zi.

The map is symplectic, a composition of a wake field kick

and a rotation.
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Application to SLC damping ring

See R. W. and J. Ellison, in Physics of High Brightness

Beams (World Scientific, 2000)

• Apply Karl Bane’s wake potential, for now without

CSR.

• Starting with Häıssinski equilibrium, integrate VFP

for several damping times.

• At small current the equilibrium is stable, invariant

under the numerical time evolution.

• At a current threshold the equilibrium goes unstable,

with constant-amplitude quadrupole-like oscillations

in bunch length or energy spread.
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Figure 3: Bane’s wake potential for SLC damping ring
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Application to SLC damping ring–cont’d

• At a still higher current, there is a sawtooth

modulation of the amplitude of quadrupole

oscillations, with a period equal to a fraction of the

damping time.

• Good agreement with experiment for thresholds of

instability and sawtooth behavior, frequency of

quadrupole oscillations (e.g., ω = 1.84ωs), and period

of sawtooth. Transition to constant-amplitude

sextupole oscillations, seen in experiments, does not

appear.
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CSR in a compact storage ring

• Small 25 MeV storage ring to produce X-rays by

Compton scattering on laser pulse stored in optical

cavity (R. Lowen, R. Ruth.)

• Small circumference (6.3 m) to maximize collision

frequency.

• Because of small bending radius, effect of CSR on

beam stability is an issue.

• Because of low energy, damping time À storage time.
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CSR in a compact storage ring – cont’d

Typical relevant parameters:

Bending radius = R = 25 cm

Energy = E0 = 25 MeV

Energy spread = σE/E0 = 3× 10−3

Bunch length = σz = 1 cm

Bunch population = N = 6.25× 109 = 1 nC

Synchrotron tune = νs = 0.018

Damping time = τd = ∞
Vacuum chamber height = h = 1 cm
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CSR in a compact storage ring – cont’d

• Compute collective force from parallel-plate

impedance and current value of FT of charge

distribution. Use of wake potential (or integral of

wake potential) proved to be impractical. Besides, it

is informative to follow the bunch spectrum in time.

• Start run with Häıssinski equilibrium, even though

injected beam is far from equilibrium. “Best case”

regarding stability.

• Compare threshold of instability with coasting beam

theory.
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1.2, 3.2, 9.6. Unit of q is 1 cm
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Stability by linearized Vlasov equation

Linearize Vlasov equation about the equilibrium

distribution (Gaussian in p)

If wavelength of an unstable mode is small compared to

the bunch length, the Coasting Beam Approximation

is valid (ignore r.f. focusing)

Then FT of Vlasov equation is a soluble integral

equation, by which we find the first mode to become

unstable (Im ω > 0) as the current is increased from

zero.
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Bursts of CSR in the NSLS-VUV Ring

M. Venturini and R.W., Phys. Rev. Lett. 89, 224802

(2002); G. Carr et al., Nucl. Instr. Meth. Phys. Res. A

463, 387 (2001).

Typical relevant parameters:

Bending radius = R = 1.9 m

Energy = E0 = 737 MeV

Energy spread = σE/E0 = 5× 10−4

Bunch length = σz = 5 cm

Synchrotron tune = νs = 0.0020

Damping time = τd = 10 ms

Vacuum chamber height = h = 4.2 cm
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Bursts of CSR: course of computation

• Again, the collective force is from the parallel-plate

radiation impedance alone (but it is suspected that a

certain bellows impedance is also important).

• Include Fokker-Planck terms to account for damping

and diffusion due to incoherent synchrotron

radiation.

• Integrate VFP for several damping times, starting

with equilibrium (now essentially Gaussian), with a

small sinusoidal perturbation with wavelength of the

“most unstable mode” of linearized coasting beam

theory.
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Figure 6: Parallel-plate radiation impedance for VUV

parameters: R = 1.9 m, h = 4.2 cm, E0 = 737 MeV.
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Bursts of CSR: the qualitative picture

(1) Rapidly growing instability with mode spectrum

peaked near the most unstable mode of linear

coasting beam theory. Attendant ripples in phase

space density, and a burst of radiation.

(2) Quick phase mixing, which smooths and broadens

phase space distribution in less than one synchrotron

period. Removes conditions for instability, and

accounts for short duration of the burst.
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Bursts of CSR: the qualitative picture – cont’d

(3) Slow damping and diffusion due to incoherent

radiation restore conditions for instability, causing

another burst after a fraction of the longitudinal

damping time.

(4) At high current the conditions for instability are less

stringent, so it takes less damping to restore them.

In agreement with experiment, the burst spacing

decreases with increasing current.

(5) Notches in the sawtooth pattern are correlated with

bursts.
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Considerations for improved calculations

Effect of non-circular orbits : bend–to–straight

transitions.

Effect of “geometric wake fields” from usual vacuum

chamber corrugations.

Effect of non-zero transverse emittance.

Corrections to the collective force, even in our model

with parallel plates and zero transverse emittance.

Simulation of steady-state CSR in ring with low

momentum compaction (BESSY).
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Corrections to collective force

With a deforming bunch the complete impedance defined

by V̂ (n, ω) = Z(n, ω)Î(n, ω) is in principle required:

V (θ, t) = eNω0

∑
n

einθ

∫

Imω=v

dωe−iωtZ(n, ω)

1

2π

∫ ∞

0

dt′ei(ω−nω0)t′)λn(t′) , v > 0 . (2)

From causality, expressed by Z(n, ω) being analytic in

upper half ω-plane), we expect no contribution for t′ > t.
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Corrections to collective force – cont’d

A careful analysis shows that the t′-integral, rather than

merely being truncated at t′ = t, is to be replaced by

iλn(t)
ei(ω−nω0t)

ω − nω0

+

∫ t

0

dt′ei(ω−nω0)t′)λn(t′) .

A surprising extra term with a pole singularity, which in

retrospect is not surprising: we have δ(n− nω0) for a

rigid bunch.

Can we approximate the resulting complicated expression

for the force?
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Collective force with leading effects of retardation

The t′-integral is concentrated near the synchronous point

ω = nω0 (phase velocity = particle velocity). Expand

Z(n, ω) in ω about that point, except near wave-guide

cutoffs where Z has poles. Then some analysis gives

V (z, t) =

Qω0

∑
n

einz/R

[
Z̃(n, nω0)λn(t) + i

∂Z̃

∂ω
(n, nω0)λ

′
n(t) + · · ·

+
Z0πR

2βh

∑
p

Λp

∫ 0

−t

λn(t + u)du

(
(nω0 − αpc)e

−i(nω0−αpc)

+(p → −p)

)]
, αp = πp/h .
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Conclusions and Outlook

• Bursts of CSR explained by micro-bunching

overcoming shielding, the microbunching induced by

CSR itself (or CSR plus geometric wake). Duration

of bursts is time for phase space mixing. Spacing is

determined by interplay of incoherent radiation

damping and the instability to microbunching.

• Time domain integration of Vlasov-Fokker-Planck

equation has proved to be a successful and exciting

development. We anticipate many more applications,

especially for coherent radiation in bunch

compressors, undulators, etc.
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Conclusions and Outlook - cont’d

• Modeling of steady state CSR in BESSY is already

underway. Seems to be caused by extreme potential

well distortion from CSR, under small momentum

compaction.

• Much interesting hard work to refine the modeling

lies ahead. Recall Nietzsche :

“Aus der Kriegsschule des Lebens. -Was mich nicht

umbringt, macht mich stärker”

(“ From the Military School of Life: what doesn’t kill me,

makes me stronger”).


