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Two-stream instabllity

Beam interaction with elements of accelerator and
secondary plasma can be the reason for instabilities,
causing limited beam performance.

Improving of vacuum chamber design and reducing of
Impedance by orders of magnitude relative with earlier
accelerators increases threshold intensity for impedance
Instability.

Two-stream effects (beam interaction with a secondary
plasma) become a new limitation on the beam intensity
and brightness. Electron and Antiproton beams are
perturbed by accumulated positive ions. Proton and
positron beams may be affected by electrons or negative
lons generated by the beam. These secondary particles
can induce very fast and strong instabilities. These
Instabilities become more severe in accelerators and
storage rings operating with high current and small
bunch spacing



Scope of the 13t ICFA Beam Dynamics Workshop
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Invited Talks (eclouds’03)

F. Ruggiero - LHC Concerns

J. Wei - SNS Concerns

W. Fischer - RHIC Concerns

A. Molvik - HIF (Heavy lon Fusion) Concerns
O. Boine-Frankenheim - GSI Upgrade

M. Chanel - LHC Heavy lon Injectors

J.M. Jimenez - SPS Issues

R. Macek - PSR Issues

S.Y. Zhang - AGS Booster Issues

A. Kraemer - SIS Experiments

E. Mahner - LINAC3 Measurement Results
P. Chiggiato - NEG Coating

U. Wienands - PEP-Il Vacuum Experience
Y. Suetsugu - KEKB Observations

E. Mustafin - Vacuum Instability



Scope of ECLOUD’04

* The existence of electron cloud effects (ECES),
which include vacuum pressure rise, emittance
growth, instabilities, heat load on cryogenic walls
and interference with certain beam diagnostics,
have been firmly established at several storage
rings, including the PF, BEPC, KEK-B, PEP-II,
SPS, PSR, APS and RHIC, and is a primary
concern for future machines that use intense
beams such as linear collider damping rings, B
factory upgrades, heavy-ion fusion drivers,
spallation neutron sources and the LHC.
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First project of proton/antiproton collider
VAPP, in the Novosibirsk INP (BINP), 1960

Development of charge-exchange injection (and
negative ion sources) for high brightness proton beam
production. First observation of e-p instability.

Development of Proton/ Antiproton convertor.

Development of electron cooling for high brightness
antiproton beam production.

Production of space charge neutralized proton beam
with intensity above space charge limit. Inductance
Linac, Inertial Fusion, Neutron Generators.
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Two-stream instability, historical remarks

Beam instability due to electrons were first
observed with coasting proton beam or long
proton bunches at the Novosibirsk INP(1965),
the CERN ISR(1971), and the Los Alamos
PSR(1986). SNS performance can be affected
Oy e-p instability.

Recently two-stream instability was observed in
almost all storage rings with high beam intensity.

Observation of two-stream instability in different
conditions will be reviewed. Beam performance
limitation, diagnostics and damping of two-
stream instability will be discussed




Historical remark

Electron cloud effects (ECEs) were first observed 38 yrs ago in small,
medium-energy proton storage rings. These were described as: Vacuum
pressure bump instability, beam-induced multipacting, and/or e-p instability:

BINP Proton Storage Ring [G. Budker, G. Dimov, and V. Dudnikov (1966); see
also review by V. Dudnikov (2001)] v.dudnikov.ph.D.thesis,1966

CERN Intersecting Storage Ring (ISR) [O. Grobner (1977)]

First observation in a positron ring around 1995: Transverse coupled-bunch
instability in e+ ring only and not in e- ring:

KEK Photon Factory (PF) [M. Izawa, Y. Sato, T. Toyomasu (1995) and K. Ohmi,
(1995)]

IHEP Beijing e+/e- collider (BEPC): experiments repeated and KEK PF
results verified [Z.Y. Guo et al. (1997)]



Models of two-stream instability

. The beam- induces electron cloud buildup and development of two-stream e-p
instability is one of major concern for all projects with high beam intensity and
brightness [1,2].

. In the discussing models of e-p instability, transverse beam oscillations is excited

by relative coherent oscillation of beam particles (protons, ions, electrons) and
compensating particles (electrons,ions) [3,4,5].

. For instability a bounce frequency of electron’s oscillation in potential of proton’s
beam should be close to any mode of betatron frequency of beam in the
laboratory frame.

1. http://wwwslap.cern.ch/collective/electron-cloud/.

2. http://conference.kek.|p/two-stream/.

3. G.I.Budker, Sov.Atomic Energy, 5,9,(1956).

4

5

. B.V. Chirikov, Sov.Atomic.Energy,19(3),239,(1965).
. M.Giovannozzi, E.Metral, G.Metral, G.Rumolo,and F. Zimmerman , Phys.Rev. ST-Accel.
Beams,6,010101,(2003).
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Development of Charge Exchange Injection and Production of
Circulating Beam with Intensity Greater than Space Charge Limit
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General view of INP PSR with charge exchange injection
1965




PSR for bunched beam accumulation by charge exchange injection

Small Radius- High beam density

1- Fist stripper; 2-main
stripper Pulsed supersonic
jet; 3-gas pumping;
4-pickup integral,;

5- accelerating drift tube;
6-gas luminescent profile
Monitor; 7-Residual gas
current monitor;8-residual
gas IPM; 9-BPM;
10-transformer Current
monitor; 11-FC;

12- deflector for
Suppression transverse
instability by negative
Feedback.



PSR for Circulating p-Beam Production
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1-striping gas target;
2-gas pulser;3-FC;
4-Q screen;
5,6-moving targets;
7-ion collectors;
8-current monitor;
9-BPM;10-Q pick
ups; 11-magnetic
BPM; 12-beam loss
monitor;13-detector
of secondary
particles density;
14-inductor core;
15-gas pulsers;
16-gas leaks.

Proton Energy -1 MeV; injection-up to 8 mA; bending radius-42 cm; magnetic
field-3.5 kG;index-n=0.2-0.7; St. sections-106 cm;aperture-4x6 cm; revolution-
1.86 MHz; circulating current up to 300mA is up to 9 time greater than a space

charge limit.



Residual gas ionization beam current & profile
monitor ans secondary particles detector
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Residual gas IPM.V. Dudnikov, 1963.
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Proton beam accumulation for different injection
current (0.1-0.5 mA)

Injected beam

Circulating beam,

Low injection current

Strong saturation




Beam profiles evolution during accumulation

27 z,un 7 A7 20 42, mn
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Transverse instablility in the INP PSR,
bunched beam (1965)
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Transverse instablility of bunched beam in

INP PSR (1965)

Transverse e-p instability in INP Proton storage ring (PSR,
1965. Punched Beam

Irijecricor rime is Ims

f—prick wup electrode signal; Z-bearm loss monitor;
I-Hearn intensitv, ¥F-Rad BPMN; 5-radial pick wps;

S—prick wupr sigrial Ur =1 9V, 7-pick wup signal Urf=2.8;
S—prich vy sigrial Urf= 2E¥F;

D- bearn intensity below threshold for instab;

I O0-bearm intensity above threshold for instability, no _fied
bBack stabilizatiorn,; II- bearmn inrensitv above threshold
Jor rransverse instabilitv, ffed back stabilizartion

N



Transverse instability of bunched beam with a high
RF voltage

1-ring pickup, peak bunch
intensity ;

2-radial loss monitor.
Beam was deflected after
Instability loss.

Two peaks structure of
beam after instability loss.
Only central part of the
beam was lost

1 ms




Transverse instability in Los Alamos PSR,
bunched beam (1986)

beam
current

0.5 ms/div



e-p instability in LA PSR, bunched beam

Well Established ep Instability Characteristics at PSR

Instability Signals

BPM AV signal

CM42 (4.2 uC)

(Circulating Beam  Control by rf buncher voltage
Current)
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Pickup signals and electron current in LA
PSR

Beam Si gnals at End of Storage for Unstabl e Beam
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PSR for beam accumulation with inductance acceleration

current
source

1-first stripper;
2-magnet pole n=0.6;
3-hollow copper torus
with inductance current;
4-main stripper;
5-accelerating gap;
6-ring pickup; 7-BPMs;
8-Res.gas IPM;
9-vacuum chamber.
FC; quartz screens;
Retarding electron and
lon collectors/
spectrometers .



1-beam current, N>7e9p

e-p instability with a low threshold in INP PSR

beam current
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e-p instability of coasting beam in the INP PSR
(1967)
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e-p instability of coasting beam in LA PSR,1986
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INP PSR for beam above space charge limit




Small Scale Proton Storage Ring for Accumulation of
Proton Beam with Intensity Greater than Space Charge

Limit




Beam accumulation with clearing voltage

‘h\ J current monitor

- VBMP. detected
h| cleaning voltage
- = | 10KV

Ims

Secondary plasma
accumulation
suppressed by strong
transverse electric
field. Vertical
instability with zero
mode oscillation
was observed
(Herward instability).



Threshold intensity N (left) and growth rate J (right) of
Instability as function of gas density n

], 1/rev
0.20}+

0.15¢
0.10F

0.05F

0. 12 lllll T

a-hydrogen; b-helium; c-air.



Spectrums of coasting beam instability in BINP PSR
(magnetic BPM)

h
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Spectrum of signals from vertical beam position monitor.
a) N=1.710" p;b)N=1.510" p.




Spectrums transverse beam instability in LA PSR

Frequency spectra of unstable motion agrees with model
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Beam accumulation with space charge
neutralization

\I / beam accumulation above space charge limit

beam current monitor

vertical BPM, dipole

detected

R e T R

: 1 ms
cleaning E field ON T cleaning E field OFF
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Proton beam accumulation with intensity above space charge limit

beam
intensity

ton density

dipole BPM

quadrupole

oscillation
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Proton beam accumulation with intensity grater than space
charge limit. Dependence of injection current.
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Beam accumulation with a plasma generator

off
on m4al T T 07
1 —— NE—— -
L ! - 80 7
100 - 4
- - 60 .
80 F .
- - w H -2
60 - : beam 2 _:
40 - o intensity 1
j 7 D
20 1 7
4 . R
| L i i L 1 04 + -
D 4 dipole 1
S B 02 + 1
V]M | oscillation ' )
s L 1 1] 1 1
48 } LR 1 BPM 0
— L L | T+
3f 4 gquadrupole 6
o 1 St
2 b | oscillation A+ .
- - QOM 3 r b
i+ - r g -
s 1F r
A 1 1 l ] 1 1

i " 1
100 200 300 ¢ mes 100 200 300 f mces



Fast lon-beam instability of H- beam in FNAL Linac

BPM

Signals
After

Preinjector
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Transverse instability in FNAL Booster, DC B,
Coasting beam

Instabality of coastimg beam m boster
during accumulation in DC field

___3A: Snapshol Pl

Wertical BPM, high impedance

=8 MHz vertical oscillations

10 m%W, R=1 MOhm, eleciron current to
WEBPN with reflection voltage

p=3 10-8B Torm. L=15 cm



Secondary electron generation in the FERMOLAB
booster, normal acceleration
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Fig. 1.Secondary electron formation in proton beam of booste:
For different proton beam intensity Qb. Calibration 2E12p/V.
1 Channel: Proton beam intensity;

2 Channel: signal from reflecting plate of Ionization profile
monitor (IPM). R=1 Mohm.



Observation of anomaly in secondary electron generation
In the FERMILAB Booster

Observation of secondary particles in the booster proton beam are presented in the
Booster E-Log at 04/06/01 .

Reflecting plate of the Vertical lonization Profile Monitor (VIPM) was connected to the
1 MOhm input of oscilloscope (Channel 2).

To channel 1 is connected a signal of proton beam Charge monitor Qb, with
calibration of 2 E12 p/V.

Oscilloscope tracks of the proton beam intensity Qb (uper track) and current of
secondary particles (electrons) Qe (bottom track) are shown in Fig. 1 in time scale 5
ms/div (left) and 0.25 ms/ div (right).

The voltage on MCP plate is Vmcp=-200 V.

It was observed strong RF signal induced by proton beam with a gap ( one long
bunch). For intensity of proton beam Qb< 4E12 p electron current to the VIPM plate
is low ( Qe< 0.1 V~ 1E-7 A) as corresponded to electron production by residual gas
ionization by proton beam.

For higher proton beam intensity (Qb> 4E12p) the electron current to the VIPM plate
increase significantly up to Qe=15 V~ 15 E-6 A as shown in the bottom
oscillogramms. This current is much greater of electron current produced by simple
residual gas ionization. This observation present an evidence of formation of high
density of secondary particles in high intense proton beam in the booster, as in Los
Alamos PSR and other high intense rings.

Intense formation of secondary particles is important for the beam behavior and
should be taken into account in the computer simulation.



Instabllity in the Tevatron
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Instability in Tevatron
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Instability in RHIC, from PACO3

Pressure Rise at Injection, |
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e For gold beam 55-bunch injection with bunch intensity of 0.9¢9 (design 1¢9), the
pressure rise at IR12 reached 1e-5 Torr, valve closed, and beam dumped.

e Pressure rise is very sensitive to bunch spacing, for 110-bunch fill, bunch spacing
reduced from 216 ns to 108 ns, the pressure rise at single beam straight sections
was much higher than 35-bunch mode.



Instrumentation for observation and damping of
e-pinstability

1. Observation of plasma (electrons) generation and correlation with an instability
development. Any insulated clearing electrodes could be used for detection of
sufficient increase of the electron density. More sophisticated diagnostics (from ANL)
is used for this application in the LANL PSR. These electrodes in different location
could be used for observation of distribution of the electron generation.

2. For determination an importance compensating particles it is possible to use a
controlled triggering a surface breakdown by high voltage pulse on the beam pipe
wall or initiation unipolar arc. Any high voltage feedthrough could be used for
triggering of controlled discharge. Could this break down initiate an instability?

3. For suppression of plasma production could be used an improving of surface
properties around the proton beam. Cleaning of the surface from a dust and
Insulating films for decrease a probability of the arc discharge triggering. Deposition
of the films with a low secondary emission as TiN. Transparent mesh near the wall
could be used for decrease an efficient secondary electron emission and suppression
of the multipactor discharge. Biased electrodes could be used for suppressing of the
multipactor discharge, as in a high voltage RF cavity.

4. Diagnostics of the circulating beam oscillation by fast (magnetic) beam position
monitors (BPM).

5. Beam loss monitor with fast time resolution. Fast scintillator, pin diodes.

6. Transverse beam instability is sensitive to the RF voltage. Increase of the RF
voltage is increase a delay time for instability development and smaller part of the
beam is involved in the unstable oscillation development.

7. Instability sensitive to sextuple and octupole component of magnetic field,
chromaticity (Landau Damping), ...



Electron generation and suppression

Gas ionization by beam and by secondary electrons.
Photoemission excited by SR.

Secondary emission, RF multipactor.
Unipolar arc discharge (explosion emission).
Suppression:

1-clearind electrodes; Ultra high vacuum.
Gaps between bunches.

Low SEY coating: TiIN,NEG.

Magnetic field.

Arc resistant material
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