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To address the questions:

What Is coherent synchrotron radiation (CSR)?

Why Is It a concern in particle accelerators?

How we Investigate the problem?

What Is the present status of CSR research?
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1. Synchrotron Radiation
by a Single Electron



Electromagnetic Field of a Moving Charge

Coulomb Field for a Point Charge at Rest
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Radiation by an Accelerated Point Charge

FIG. 6: The electrie field lines of a brieflv accelerated charse.

Black field line connecting Coulomb fields: radiation fields due to acceleration



Synchrotron Radiation

from the Radiation 2D

Synchrotron radiafion at v

0.9¢. Snapshot

*Electromagnetic radiation
emitted by charged particles
moving with centripetal
acceleration

e First discovered by GE
in 1947 in a type of accelerator
known as synchrotron,
as an unwanted by-product
of storage ring accelerator.



Single Particle Lienard-Wiechert Field
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Features of Synchrotron Radiation
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e Electrons circulating Field
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eemitted in very short Synchrotron Radiation
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Spectrum of Synchrotron Radiation
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2. Coherent Synchrotron Radiation
(CSR)
by an Electron Bunch



Coherence of Radiation by Many Electrons

*Typically in accelerators, 10%9electrons travel in a
tight bunch at v~c.

*The single particle radiation power is P, = |E,[

*\What Is the radiation power spectrum for N electrons?



For radiation wavelength << bunch length,
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Radiation Power Spectrum for N electrons
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Recent Observation of CSR
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FIG. 4 (color online). Example of source optimized for the
CSEK production using the criteria described in this Letter. The
photon flux 15 compared with the cases of a conventional SR
source {ALS) and of BESSY Il CSR mode with 400 bunches,
19.2 pwA/bunch, e/ = 1.8 ps, and 60 mrad horizontal ac-
ceptance.



3. Collective CSR Interaction
for High Brightness Beams



Where does the extra radiation power come from?

— Kinetic energy loss of the electrons due to bunch self-interaction on curved orbit

E(r,t) =jEo(r,t;r',t')n(r',t')dr'

Power loss by one electron:

P =eE -V o Ne

Power loss by the bunch:

Poc(t) = [ P (F,0,1) F(F,7,t)drdv o N22

Radiation emitted from a tail particle at retarded time 't _r=r]

overtakes the bunch to interact with a head particle C



CSR Collective Force on the Bunch

Overtaking Length
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CSR “wake”, stronger at smaller scale



Shielding by VVacuum Chamber

*Electron beams in accelerators are surrounded by vacuum chamber

«Simple model: parallel plate shielding




Bunch Self-Interaction in Vacuum Chamber
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Transient Interaction at Entrance of a Bend

As the bunch enters into the bend, in addition to the radiation fields,
the bunch also sees Coulomb field emitted from the bunch’s
pseudo-position as If the particles continue to travel with their
Velocity at retarded time.




4. CSR Effect In Particle
Accelerators



Accelerator Facilities with
High Brightness Electron Beams

A. Light Sources

«Storage Ring Light Souces

eLinac Based Free Electron Laser

B. Colliders

«Storage Ring Colliders
Linear Colliders



Example of Free Electron Laser:
Eenergy Recovery Linac based FEL (Jefferson Lab)

135 MeV
Superconducting rf linac
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Example of Linear Collider:
The International Linear Collider (ILC)
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Viagnetic Buncn Comprassion
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Requirement of Accelerator Design

o Colliders: eventrate ocC luminosity

High luminosity <  Large particle number in
small beam phase space area

o, high brightness electron beam

o Light Sources: high brilliance of photon flux

!

high brightness electron beam




Pros and Cons of the CSR Effect

* Pros (for storage ring light source)
Can enhance radiation power by a factor of N
for radiation wavelength ~ bunch length

e Cons (for FEL, circular and linear colliders)
Collective CSR Interaction on Curved Orbit

Energy Spread of Particles in the Bunch

l

Particle with different energy being bent differently by

the same external magnetic field

l

Degradation of Electron Beam Brightness



5. Investigation of the CSR Effect

e Theory
e Numerical Simulation

e Experiment



Theoretical Approach

e A bunch of electrons

guided by an external EM s: pathlength along the orbit

field to follow the design

orbit /\/\
* Due to external and dx

collective interaction, the & X'

phase space point (x,x’) of < S,

a particle varies along the ax’ _ [f(s.)]

design orbit

Phase space trajectory : x(s), x'(s;)



Theoretical Approach (con’d)

« Phase space distribution at s: X

f(x,Xx",s) .

o # of particles within infinitesimal

phase space volume:
dN = f(x, x',s)dxdx’

*Flow of infinitesimal phase space volume
along the design orbit




Theoretical Approach (con’d)

e Conservation of Particle Number

dN = f(x, x',s)dxdx'= f (x, X', s +As)dx,dx;’

—— VIlasov Equation /

of +a]c x'+i F.,[f]1=0
oS OX oX'

Hamiltonian system:  dxdx'= dx,dx,’

Collective CSR Force

e Perturbation f=f+f, (£, <<]|fo))

Given F

col

using perturbative approximation.

[f], f(x,x',s)issolvedfrom the Vlasov Eg.




Numerical Simulation

Should be

* Faithful representation of phase space
distribution, including fine details

-+ Accurate calculation of collective forces,
including retardation

+ Self-consistent

* Not slow



A. Macroparticle Model

*Transverse and Longitudinal bunch dynamics

*Bunch is simulated by a set of macroparticles

—  Macros: 2D round Gaussian disc

— Single macro density distribution:

n, (F -, (0) = Exp{- (X0 + (/Yo )

2
\ 27Z'O'm 2Gm
Macro centroid vector Macro size

Bunch charge distribution:  p(F,t) =@, > n, (r =1 (t))



—

- CSR Force Computation  F =e(E +V x B)

d’r

E(F) =Y EVFY,  EVFD=0q,[ —FIF-57 )5 ()]
J

|F—T

for retardedtime t'=t—|rF-r'|/c

- Interpretation B

jih macro

If we devide jth macro into grid, each grid emits photon
(which reaches r at t) at different r’,t’.




Pros and Cons of Macroparticle Model:

o straight-forward calculation of CSR force including retardation
o self-consistent

but

e slow
* NoIisy



B. Semi-Lagrangian Simulation
(low noise, can reveal fine details of phase space)

Dynamical Equation Difference Equation
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Experimental Observation
Magnetic bunch compression
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Microbunching Instability

Small Initial energy perturbation

l bend geometry
density modulation

J CSR in bend

Stronger energy modulation

l bend geometry
Stronger density modulation

Remark: intrinsic energy spread provide natural stabalizing mechanism
” Threshold of instability



Experimental Observation (con’d)

CSR can drive a microbunching
instability in the electron bunch,
resulting in a periodic bursts of
terahertz synchrotron radiation,
resulting in a noisy source.

4 -2 0 2 4

Simulated instability showing
bunch shape

10 mA

BolomeTer' signal (V)

00000

Tlme (msec)

Bursts of far-IR CSR observed on
a bolometer. Threshold depends
on beam energy, bunch length,
energy spread, and wavelength.




Simulated Results

Small perturbations to the bunch density can be amplified by the
interaction with the radiation. Instability occurs if growth rate is
faster than decoherence from bunch energy spread.
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Experiment Compared with Theory

Earzing e shold {ma)

Enamgy (Ge)

Bursting threshold as a function of electron Beam energy al
3.2 and 2 mm wavelength.

Very good agreement with theory for threshold of the instability.



Conclusion

« Coherent synchrotron radiation is recognized as an important
factor to impact beam dynamics for high brightness beams
transporting in magnetic bends.

« The retardation and sensitivity of this effect pose serious
challenge to theory, simulation and experiments.

e Big progress has been made on each aspects. However,
more detailed and precise understanding and simulation

of CSR are needed in order to have predictive power for
machine design.



