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Fields of a relativistic charge

Infinite Smooth PipeFree Space
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In free space, the force between ultra-relativistic particles vanishes

2
212/12

2
21

2
21

2
2

2
21

1
2

12

1)1()2/(

1)1()0(

R
qq

R
qqF

R
qq

R
qqF

BV
c
qEqF

y

x

γ
βπθ

γ
βθ

=−==

=−==

×+=
rrrr

c
EVB

R
RqE

1
1

2/322

2

3
1

1 )sin1(
)1(

rr
r

r
r

×
=

−
−

=
θβ

β



04/19/06 E. Pozdeyev, JLAB Slide 3

Fields of a relativistic charge
Inhomogeneities

Fields induced by ultra-relativistic particles in inhomogeneities
can produce longitudinal and transverse forces affecting particles of 
the test bunch and following bunches. These forces depend on the
charge of bunches, displacement of bunches, and geometry of 
inhomogeneities. 
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Modes of a pillbox cavity (Jackson)
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Fields in a cavity are described by the wave
equation and satisfy boundary conditions
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General solution of the wave equation for TM modes can be written as 
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Dipole mode (lowest frequency)
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Power dissipation in a dipole mode
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Let’s define dipole mode voltage at some r=a as

Let’s assume that the cavity “resistance” is R. The expression

RVP a /2=

has right units but depends on a. The expression
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does not depend on a but has wrong units. The expression
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is just right. But what is R?
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Power dissipation in a dipole mode

A quality factor of a mode is defined as:

cP
U

LossPower
EnergyStoredQ ωω ==

t
QeUU
ω

−

= 0U
Qdt

dUP ω
=−=Without sources: =>

QQRR )/(=Definition of R: , (R/Q) is a geometrical factor

U
V

a
c

Q
R a

ωω

2

22

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

(R/Q) is calculated by simulation codes according to the last formula
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Interaction of particles with a dipole mode
In an empty cavity, a bunch induces voltage δVa
proportional to the bunch charge q and bunch 
displacement x. 
If there was induced voltage Va, the stored 
energy in the cavity is proportional to
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agreement with our
initial guess
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Deflection of particles by a dipole mode
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Let’s put everything together
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Instability threshold
The threshold corresponds to equilibrium between deposited 
and dissipated power. At the equilibrium, the stored HOM 
energy does not change (dU/dt=0)
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The formula yields two regions: m12sin(ωTr)<0 – low-
threshold region, m12sin(ωTr)>0 – “pseudo”-stable.

This is first order approximation approach: the beam 
can be unstable even if m12sin(ωTr)>0.
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Mode voltage evolution above and below Ith
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Experimental observation of the multi-pass, 
multi-bunch instability

frequently called multi-pass Beam Breakup 
(BBU) 
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JLab FEL Upgrade

Energy(MeV) 80-200

Charge per bunch (pC) 135

Bunch rep.rate (MHz) 4-75

Average current (mA) 10

Laser power (kW) 10

UV wiggler

Cavities of Zone 3 have higher 
accel. gradient than Zone 2,4. 
The Q of dipole HOMs is also 
higher. HOMs of Zone 3 impose 
BBU limit.
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Direct observation of the BBU threshold

Schottky diodes where used to measure HOM power from the HOM ports.

HOM port
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Direct observation of the Instability

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-5.00E-08 -2.50E-08 0.00E+00 2.50E-08 5.00E-08

Cav 7, Fhom=2106 MHz,     Ith=2.7 mA




04/19/06 E. Pozdeyev, JLAB Slide 17

HOM voltage growth rate measurements
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Transfer function measurements
Measurement of the threshold current below 

the threshold
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Transfer Function (TF) measurements

Transfer function technique is a measurement of system’s response 
to a harmonic excitation as a function of the signal frequency. This 
method can be used to predict system’s response to external 
excitation and determine stability limits.

NWA
(S21)

Cavity modes show typical resonant 
response to harmonic excitation
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TF measurements at the FEL
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TF measurements for m12sin(ωTr)>0
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For m12sin(ωTr)>0, instability still can happen at very high currents (~10A).
(J. Bisognano, G. Krafft, S. Laubach (1987), B. Yunn, 1991 

Hoffstaetter, Bazarov (2004))



Suppression of multi-pass instability
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Design of cavities with low-Q HOMs

• Design of multi-cell cavities with low-Q, low-R/Q HOMs
seems to be the most reliable way to increase the BBU 
threshold in large-scale ERLs.The work is under way at 
BNL, JLAB, Cornell U…

• To provide adequate damping, HOM power must be 
effectively evacuated from a cavity and damped outside

Brookhaven National Lab JLAB
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BBU suppression at the FEL: 
Point-to-Point focusing (Phase Trombone)

(D. Douglas)

Quadrupoles of the blue region 
were adjusted to maximize Ith
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factor in the FEL is limited to 2 – 3.



BBU suppression at the FEL: Reflector

to wiggler

Skew-quad reflector
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Threshold was increased 
by a factor of 5
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BBU suppression at the FEL: Cavity Feedback

 Amplifier ON (Q = 1.3e06)
 Amplifier OFF (Q = 6.2e06)

BPFV e iπ

V

HOM resonance curve  
with and without 

feedback (no beam)

Suppression factors up to 20 were achieved for a short period of time.
Suppression factors of 5 to 10 were achieved reliably.  
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Other collective effects

• Coulomb force (“Space Charge”) at lower energies
• Short range fields arising due to irregularities and 

beam pipe resistance
• Coherent synchrotron radiation
• Intra-beam particle scattering
…
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