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Significance of matrix parameters

Another way to interpret the parameters α, β, and γ, which 
represent the unimodular matrix M (these parameters are 
sometimes called the Twiss parameters or Twiss representation 
for the matrix) is as the “coordinates” of that specific set of 
ellipses that are mapped onto each other, or are invariant, under 
the linear action of the matrix. This result is demonstrated in

Thm: For the unimodular linear transformation
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with |Tr (M)| < 2, the ellipses
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cyxyx =++ 22 2 βαγ
are invariant under the linear action of M, where c is any 
constant. Furthermore, these are the only invariant ellipses. Note 
that the theorem does not apply to ±I, because |Tr (±I)| =  2.

Pf: The inverse to M is clearly
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By the ellipse transformation formulas, for example
( ) ( )( ) ( )

( )
( ) ββµµ

µβαµβµβααµβ

βµαµαµαµµβγµββ

=+=

++−+=

+++−+=

22

2222222

222

cossin    
sincossin21sin    

sincossincossin2sin'



Operated by the Southeastern Universities Research Association for the U. S. Department of EnergyThomas Jefferson National Accelerator Facility

17 March 2005USPAS Recirculated and Energy Recovered Linacs

Similar calculations demonstrate that α' = α and γ' = γ. As det (M) = 
1, c' = c, and therefore the ellipse is invariant. Conversely, suppose 
that an ellipse is invariant. By the ellipse transformation formula, 
the specific ellipse 

is invariant under the transformation by M only if
εβαγ =++ 22 2 yxyx iii
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i.e., if the vector     is ANY eigenvector of TM with eigenvalue 1.
All possible solutions may be obtained by investigating the 
eigenvalues and eigenvectors of TM. Now

v

( ) 0Det hen solution w a has    =−= ITvvT MM λλ λλ

( )( )2 22 4cos 1 1 0λ µ λ λ⎡ ⎤+ − + − =⎣ ⎦
Therefore, M generates a transformation matrix TM with at least 
one eigenvalue equal to 1. For there to be more than one solution 
with λ = 1,

2 21 2 4cos 1 0,    cos 1,    or  

i.e.,

M Iµ µ⎡ ⎤+ − + = = = ±⎣ ⎦
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cvv i /,11 ε=

and we note that all ellipses are invariant when M = ±I. But, these 
two cases are excluded by hypothesis. Therefore, M generates a 
transformation matrix TM which always possesses a single 
nondegenerate eigenvalue 1; the set of eigenvectors corresponding 
to the eigenvalue 1, all proportional to each other, are the only 
vectors whose components (γi, αi, βi) yield equations for the 
invariant ellipses. For concreteness, compute that eigenvector with 
eigenvalue 1 normalized so βiγi – αi

2 = 1

All other eigenvectors with eigenvalue 1 have                     , for 
some value c.
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Because Det (M) =1, the eigenvector clearly yields the 
invariant ellipse

.2 22 εβαγ =++ yxyx
Likewise, the proportional eigenvector      generates the similar 
ellipse

1v

iv ,1

( ) εβαγε

Because we have enumerated all possible eigenvectors with 
eigenvalue 1, all ellipses invariant under the action of M, are of the 
form

=++ 22 2 yxyx
c

cyxyx =++ 22 2 βαγ
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To summarize, this theorem gives a way to tie the mathematical 
representation of a unimodular matrix in terms of its α, β, and γ, 
and its phase advance, to the equations of the ellipses invariant 
under the matrix transformation. The equations of the invariant 
ellipses when properly normalized have precisely the same α, β, 
and γ as in the Twiss representation of the matrix, but varying c.

Finally note that throughout this calculation c acts merely as a 
scale parameter for the ellipse. All ellipses similar to the starting 
ellipse, i.e., ellipses whose equations have the same α, β, and γ, 
but with different c, are also invariant under the action of M. 
Later, it will be shown that more generally

is an invariant of the equations of transverse motion.
( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=
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Applications to transverse beam optics
When the motion of particles in transverse phase space is considered, 
linear optics provides a good first approximation of the transverse 
particle motion. Beams of particles are represented by ellipses in 
phase space (i.e. in the (x, x') space). To the extent that the transverse 
forces are linear in the deviation of the particles from some pre-
defined central orbit, the motion may analyzed by applying ellipse 
transformation techniques.

Transverse Optics Conventions: positions are measured in terms of 
length and angles are measured by radian measure. The area in phase 
space divided by π, ε, measured in m-rad, is called the emittance. In 
such applications, α has no units, β has units m/radian. Codes that 
calculate β, by widely accepted convention, drop the per radian when 
reporting results, it is implicit that the units for x' are radians. 
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Definition of the Linear Transport Matrix
Within a linear optics description of transverse particle motion, 
the particle transverse coordinates at a location s along the beam 
line are described by a vector 
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If the differential equation giving the evolution of x is linear, one 
may define a linear transport matrix Ms',s relating the coordinates 
at s' to those at s by
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From the definitions, the concatenation rule Ms'',s = Ms'',s' Ms',s must 
apply for all s' such that s < s'< s'' where the multiplication is the 
usual matrix multiplication.

Pf: The equations of motion, linear in x and dx/ds, generate a 
motion with
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for all initial conditions (x(s), dx/ds(s)), thus Ms'',s = Ms'',s' Ms',s.

Clearly Ms,s = I. As is shown next, the matrix Ms',s is in general a 
member of the unimodular subgroup of the general linear group.
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Ellipse Transformations Generated by Hill’s Equation

The equation governing the linear transverse dynamics in a 
particle accelerator, without acceleration, is Hill’s equation*
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infinitesimal distance ds is

( )
( ) ( )

( )
( )

( )
( )⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
≡⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
+ s

ds
dx

sx
Ms

ds
dx

sx

dssK

ds

dss
ds
dx

dssx
sdss ,

1rad 
rad

1

* Strictly speaking, Hill studied Eqn. (2) with periodic K. It was first applied to circular accelerators which had a 
periodicity given by the circumference of the machine. It is a now standard in the field of beam optics, to still 
refer to Eqn. 2 as Hill’s equation, even in cases, as in linear accelerators, where there is no periodicity.
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Suppose we are given the phase space ellipse

at location s, and we wish to calculate the ellipse parameters, after 
the motion generated by Hill’s equation, at the location s + ds

( ) ( ) ( ) εβαγ =++ 22 ''2 xsxxsxs

( ) ( ) ( ) '''2 22 εβαγ =+++++ xdssxxdssxdss

Because, to order linear in ds, Det Ms+ds,s = 1, at all locations s, ε' = 
ε, and thus the phase space area of the ellipse after an infinitesimal 
displacement must equal the phase space area before the 
displacement. Because the transformation through a finite interval 
in s can be written as a series of infinitesimal displacement 
transformations, all of which preserve the phase space area of the 
transformed ellipse, we come to two important conclusions:
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1. The phase space area is preserved after a finite integration of 
Hill’s equation to obtain Ms',s, the transport matrix which can 
be used to take an ellipse at s to an ellipse at s'. This 
conclusion holds generally for all s' and s.

2. Therefore Det Ms',s = 1 for all s' and s, independent of the 
details of the functional form K(s). (If desired, these two 
conclusions may be verified more analytically by showing 
that 

( ) ( ) ( ) ( ) ssss
ds
d

∀=−→=−    ,1       0 22 αγβαβγ

may be derived directly from Hill’s equation.)
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Evolution equations for the α, β functions

The ellipse transformation formulas give, to order linear in ds
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Note that these two formulas are independent of the scale of the
starting ellipse ε, and in theory may be integrated directly for 
β(s) and α(s) given the focusing function K(s). A somewhat 
easier approach to obtain β(s) is to recall that the maximum 
extent of an ellipse, xmax, is (εβ)1/2(s), and to solve the differential 
equation describing its evolution. The above equations may be 
combined to give the following non-linear equation for xmax(s) = 
w(s) = (εβ)1/2(s)

( ) ( )22

2 3

/ rad
.d w K s w

ds w
ε

+ =

Such a differential equation describing the evolution of the 
maximum extent of an ellipse being transformed is known as an 
envelope equation.
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It should be noted, for consistency, that the same β(s) = w2(s)/ε
is obtained if one starts integrating the ellipse evolution 
equation from a different, but similar, starting ellipse. That this 
is so is an exercise.

The envelope equation may be solved with the correct 
boundary conditions, to obtain the β-function. α may then be 
obtained from the derivative of β, and γ by the usual 
normalization formula. Types of boundary conditions: Class 
I—periodic boundary conditions suitable for circular machines 
or periodic focusing lattices, Class II—initial condition 
boundary conditions suitable for linacs or recirculating
machines.
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Solution to Hill’s Equation in
Amplitude-Phase form

To get a more general expression for the phase advance, consider
in more detail the single particle solutions to Hill’s equation

( ) 02

2

=+ xsK
ds

xd

From the theory of linear ODEs, the general solution of Hill’s 
equation can be written as the sum of the two linearly independent 
pseudo-harmonic functions
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are two particular solutions to Hill’s equation, provided that
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Therefore, the unimodular transfer matrix taking the solution at 
s = s1 to its coordinates at s = s2 is
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Case I: K(s) periodic in s

Such boundary conditions, which may be used to describe 
circular or ring-like accelerators, or periodic focusing lattices, 
have K(s + L) = K(s). L is either the machine circumference or 
period length of the focusing lattice.

It is natural to assume that there exists a unique periodic 
solution w(s) to Eqn. (3a) when K(s) is periodic. Here, we will 
assume this to be the case. Later, it will be shown how to 
construct the function explicitly. Clearly for w periodic

( ) ( ) ( )ds
sw
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Ls

s
LL ∫

+

=−= 2            with µµµφ

is also periodic by Eqn. (3b), and µL is independent of s.
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The transfer matrix for a single period reduces to
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By Thm. (2), these are the ellipse parameters of the periodically 
repeating, i.e., matched ellipses.
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General formula for phase advance

In terms of the β-function, the phase advance for the period is

( )∫=
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and more generally the phase advance between any two 
longitudinal locations s and s' is
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Transfer Matrix in terms of α and β
Also, the unimodular transfer matrix taking the solution from s 
to s' is
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Note that this final transfer matrix and the final expression for 
the phase advance do not depend on the constant c. This 
conclusion might have been anticipated because different 
particular solutions to Hill’s equation exist for all values of c, but 
from the theory of linear ordinary differential equations, the final 
motion is unique once x and dx/ds are specified somewhere.
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One method to compute the β-function

Our previous work has indicated a method to compute the β-
function (and thus w) directly, i.e., without solving the 
differential equation Eqn. (3). At a given location s, determine the 
one-period transfer map Ms+L,s (s).  From this find µL (which is 
independent of the location chosen!) from cos µL = (M11+M22) / 2, 
and by choosing the sign of µL so that β(s) = M12(s) / sin µL is 
positive. Likewise, α(s) = (M11-M22) / 2 sin µL. Repeat this 
exercise at every location the β-function is desired.

By construction, the beta-function and the alpha-function, and 
hence w, are periodic because the single-period transfer map is 
periodic. It is straightforward to show w=(cβ(s))1/2 satisfies the 
envelope equation.
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Courant-Snyder Invariant

( )( ) βαββαγε /'''2 2222 xxxxxxx ++=++=

Consider now a single particular solution of the equations of 
motion generated by Hill’s equation. We’ve seen that once a 
particle is on an invariant ellipse for a period, it must stay on that 
ellipse throughout its motion. Because the phase space area of the 
single period invariant ellipse is preserved by the motion, the 
quantity that gives the phase space area of the invariant ellipse in 
terms of the single particle orbit must also be an invariant. This 
phase space area/π,

is called the Courant-Snyder invariant. It may be verified to be 
a constant by showing its derivative with respect to s is zero by 
Hill’s equation, or by explicit substitution of the transfer matrix 
solution which begins at some initial value s = 0.
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Pseudoharmonic Solution
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gives

Using the x(s) equation above and the definition of ε, the 
solution may be written in the standard “pseudoharmonic” form
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The the origin of the terminology “phase advance” is now obvious.
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Case II: K(s) not periodic
In a linac or a recirculating linac there is no closed orbit or natural 
machine periodicity. Designing the transverse optics consists of
arranging a focusing lattice that assures the beam particles coming 
into the front end of the accelerator are accelerated (and sometimes 
decelerated!) with as small beam loss as is possible. Therefore, it is 
imperative to know the initial beam phase space injected into the 
accelerator, in addition to the transfer matrices of all the elements 
making up the focusing lattice of the machine. An initial ellipse, or 
a set of initial conditions that somehow bound the phase space of 
the injected beam, are tracked through the acceleration system 
element by element to determine the transmission of the beam 
through the accelerator. The designs are usually made up of well-
understood “modules” that yield known and understood transverse 
beam optical properties.



Operated by the Southeastern Universities Research Association for the U. S. Department of EnergyThomas Jefferson National Accelerator Facility

17 March 2005USPAS Recirculated and Energy Recovered Linacs

Definition of β function

Now the pseudoharmonic solution applies even when K(s) is 
not periodic. Suppose there is an ellipse, the design injected 
ellipse, which tightly includes the phase space of the beam at 
injection to the accelerator. Let the ellipse parameters for this 
ellipse be α0, β0, and γ0. A function β(s) is simply defined by the 
ellipse transformation rule
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One might think to evaluate the phase advance by integrating 
the beta-function. Generally, it is far easier to evaluate the phase 
advance using the general formula,
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where β(s) and α(s) are the ellipse functions at the entrance of 
the region described by transport matrix Ms',s. Applied to the 
situation at hand yields
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Dispersion Calculation

Begin with the inhomogeneous Hill’s equation for the 
dispersion.

Write the general solution to the inhomogeneous equation for 
the dispersion as before.
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Here Dp can be any particular solution. Suppose that the 
dispersion and it’s derivative are known at the location s1, and 
we wish to determine their values at s2. x1 and x2, because they 
are solutions to the homogeneous equations, must be 
transported by the transfer matrix solution Ms2,s1 already found.
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To build up the general solution, choose that particular solution 
of the inhomogeneous equation with boundary conditions
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Evaluate A and B by the requirement that the dispersion and it’s 
derivative have the proper value at s1 (x1 and x2 need to be 
linearly independent!)
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3 by 3 Matrices for Dispersion Tracking
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Longitudinal Stability in Detail

For the microtron
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Same result for racetrack microtron if no optics or identity 
optics in the return straights
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General Polytron
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Beam Matching

Fundamentally, in circular accelerators beam matching is 
applied in order to guarantee that the beam envelope of the real
accelerator beam does not depend on time. This requirement is 
one part of the definition of having a stable beam. With periodic 
boundary conditions, this means making beam density contours 
in phase space align with the invariant ellipses (in particular at 
the injection location!) given by the ellipse functions. Once the 
particles are on the invariant ellipses they stay there (in the 
linear approximation!), and the density is preserved because the
single particle motion is around the invariant ellipses. In linacs
and recirculating linacs, usually different purposes are to be 
achieved. If there are regions with periodic focusing lattices 
within the linacs, matching as above ensures that the beam
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envelope does not grow going down the lattice. Sometimes it is 
advantageous to have specific values of the ellipse functions at
specific longitudinal locations. Other times, re/matching is done to 
preserve the beam envelopes of a good beam solution as changes 
in the lattice are made to achieve other purposes, e.g. changing the 
dispersion function or changing the chromaticity of regions where 
there are bends (see the next chapter for definitions). At a 
minimum, there is usually a matching done in the first parts of the 
injector, to take the phase space that is generated by the particle 
source, and change this phase space in a way towards agreement 
with the nominal transverse focusing design of the rest of the 
accelerator. The ellipse transformation formulas, solved by 
computer, are essential for performing this process.


