
Homework Problems II 
 
 

1. Write down the Hamilton-Jacobi equation for the harmonic 
oscillator. Assuming an action function of the form 
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solve the Hamilton-Jacobi equation for the motion of the 
harmonic oscillator 
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Note the constant β  follows directly from 
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2. To illustrate the use of the Hamilton-Jacobi method to 

eliminate cyclic variables, use the Hamilton-Jacobi equation 
for gravitational motion in the plane with Hamiltonian 
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 to show the orbit is 
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 One should assume that 
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Hint: in this problem 0/ θpS ∂∂  is a constant of the motion. 

 
3. Solve the Hamilton-Jacobi Equation with the lab-frame 

boundary conditions 
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Verify the Lorentz Transformation Formulas hold between 
this solution and the beam-frame solution used in the 
lectures. With this solution, verify Eqns. 3.9 by a lab-frame 
computation with the standard formula from Jackson 
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4. Utilizing the fact that the delta-function in the retarded Green 

function of the wave equation picks out 
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the Lorentz transformation formula for the coordinates, and 
the beam-frame and lab-frame solutions to the Hamilton-
Jacobi equation, demonstrate that 
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To Lorentz transform the field, this formula is needed 
 



 


