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— Summary and Scope gm %M/ ~

Purpose of this lecture is to present a brief review of beam transport matrix formalism
and concepts, paying attention to special cases of particular importance to linear
accelerators.

Effects of spontaneous synchrotron radiation on beam phase-space density will be
briefly reviewed.

This is not meant to be a compete tutorial of beam optics formalism. For thorough
treatment refer to

1) K.L. Brown, R.V. Servranckx, “1st- and 2"-order charged particle optics”,
SLAC-PUB-3381, July 1984

2) R.H. Helm, R. Miller, “Particle Dynamics”, in Linear Accelerators, ed. P.M.
Lapostolle and A.L. Septier, 1970

3) M. Sands, SLAC-121, November 1970
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— First-Order Optics gm gmt ~

The deviation of an arbitrary trajectory from the central trajectory is given by 6-D vector:

X' (s) =[x(s), x'(5), ¥(5), ¥'(5),1(5),5(5)]

This, along with knowing the central trajectory and its momentum £ (s), fully describes
the system.

Vector X(@) at position a is transformed to X(b) at position b by

X,5)=Y R X @)+ YT X, @X, @+ YU X (@)X, (@)X, (@) +...

j:1 j,k=1 j’kJ:l

The above is essentially Taylor expansion. First-order optics formalism is derived by
neglecting higher-order terms in equation of motion and retaining only the first term in
the expansion. Higher-order matrix elements are obtained by including other significant
terms, and can be represented as a combination of cosine, sine and off-momentum
(dispersion) trajectories of the first-order Taylor expansion, their derivatives and
multipole strengths of external magnetic fields
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— Transfer Matrix for Decoupled Motion (gm %m’, ~

If all magnets have mid-plane symmetry about y = 0, then the first-order transfer matrix
simplifies to

R, R, O 0 0 Rg| [c(s) s.9) 0 0 0 dJs)

Ry R, O 0 0 Ry c.(s) s.(s) 0 0 0 di(s)
R - 0O 0 R; R, 0 O _ 0 0 ¢ (s) s,(s) 0 O
0O O R, R, 0 O 0 0 ¢ (s) s,(s) 0 O
Ry R, 0 0 1 Ry Ry, Ry 0 0 1 R

0 0 0 0 0 1| [0 0 0 0O O 1]

Beam can be represented by 2-matrix, which is 6x6 matrix in most general case, but
for decoupled motion it could be represented by three 2x2 matrices, €.g.:

. . . -1
o {0'11 0'21} , beam ellipse equation at location a: x' 6 x_ =1
Oy Opn

with the corresponding area: A4, = 7,/|c,
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— Changing Energy Case gm %M/ ~

Transformation rule for o-matrix:
_ t
6,=Ro R

Liouville’s theorem requires that the phase space area be conserved

4, =/l6,| =7./|Ro, R’| = const = ne

= R =1, ie. [R|=1

For changing energy case, one has to redefine transformation in terms of conjugate
pairs of variables {x, p x"} and {y, p.y'}

Xp R;, R,/p, X % | PR, PR, | — X,
' = ' or Po| , |7 Pa|
Xp Py R, p, Ryp,/p, | *.P, Xp PRy PRy, X4
P =Dy P,

Now invariant of motion 1s normalized phase space area

A = 7219\/‘; , normalized emittance defined as ¢ = fy-¢

J
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— Courant-Snyder Notation gm %M/ ~

Initially introduced for a periodic case of a synchrotron or storage ring. E.g. consider
stability condition for periodic lattice:

|:xn+1 :| |:xn :|
' = M '
xn+1 xn

Transfer matrix, M, is the same for all orbits and |M| = 1, thus,

x,., —Tr(M)x, +x ,=0

General solution 1s of the form:

_ n n
x, =a A +a,A;

here a, , are constants and 4, , are the roots of characteristic equation
A =Tr(M)A+1=0

Motion is stable when eigenvalues are of the form 4,, =¢

ti

7] . .
<, which is the case when

‘Tr(M)‘ <2, wisknown as orbital betatron phase advance :cos y. =1 Tr(M)
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— Courant-Snyder Notation (contd.) — gm gw ~

The most general form for matrix M is given by

COS U +asin L. psin p,
— v sin COS U, — & SIn
ysm . He He

where «, fand yare Courant-Snyder parameters (also called Twiss parameters along
with dispersion function), I is a unit matrix, and

}:IcosijLJsin,uC

la p , B ) B )
J = , with Tr(J)=0, J°=-1 or fy=1+«

Alternatively, one can arrive at Courant-Snyder notation by considering solution to the
(Hill’s) equations of motion in phase-amplitude form:

x(s) = A f(s) cos(u(s) +¢)

X(s) = J% [ar(s) cos(u(s) + ) + sin(u(s) + §)] .
[-function satisfies 2,3,3”—,3,2 +4,32K =0, ' =1/p a=-p'12 7= +ﬁa
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— Courant-Snyder Representation of G-matrix —

Require that phase space ellipse 1s unchanged for a
successive orbit

MoM' =o¢

then o-matrix has a form
p -«
6=¢

One can write transformation rule for vector [£, &, |’

_,B_ p R121 o 2R11R12 R122 _ﬁ_
a| = Fb o R11R21 R11R22 + R12R21 o R12R22 a
7, ’ i R221 —2R, R, R222 L7 1,
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SJetfrcon L4 TN

At high enough energies, transverse momentum is conserved in the RF

— Transfer Matrix for RF structure

(By)x' = const

Integrating the above one finds

xajl/a lnyb
Y Va

Xp =Xg

Corresponding transfer matrix

{1 ”ﬁln“}

R= Ve Va

0o Z
b

as expected ‘R‘ =7./7, . This is a good approximation at higher energies, while at
lower energies, azimuthal magnetic and radial electric fields of RF cause focusing:

R cos A—~/2sin 4 \/g%sin/l . /
jr— , , _ n
_jgyy sin A %(CosA—ﬁsinA) ( Yin(y, /7,)
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— First-Order Path Length and Dispersion —{@W %Mt ~

To utilize small emittance beams, insertion devices have to be placed in places where
dispersion and its derivative is zero. Thus, one ought to use achromatic transport
systems. Furthermore, to utilize short bunches, one needs to control path length to be
independent of particles’ momentum, or linearly changing with momentum for bunch
compression

Path length is given by L = I\/(l +x/p) +x7+y"ds

| = j x()h(z)dz + higher order terms

0
S

0
First-order dispersion
A

N

d. =R, =5, .Cx (0)h(r)dr —c, .Sx (0)h(7)dr = R,R;, — R\ R,
0 0

d. =Ry =5, .Cx (0)h(r)dr -, .Sx (0)h(7)dT = R, Rs, — R, | R;,
0 0

Isochronous transport line has to be an achromat as well: R, =R, = R,, =0

=l,+ %, [ (DD +x) [ 5 (D(D)d7 + 5[ d (D)h(T)dT = Ryyx, + Ry +1, + Ry
0 0

J
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— Second-Order Path Length 5‘“”4\%@ %m’, ~

Generally, higher-order optics effects are harmful as they tend to distort phase space,
making effective emittance larger. Second-order path length, however, can be used to
correct longitudinal phase space after the linac.

Second-order “momentum compaction”, similar to first-order matrix element Rs is
defined as:

2 d 2 ’”
Tse6 = l8—12 or T :_[ 2+ d + d ds
200 o 20 2

10°)
2 05°

Usually, the most dominant term is the one with 27-order dispersion, d,, =

Differential equation for second-order dispersion can be found to be

d”

o T K(s)d, =—h+kd —Lk,d® + (W’ +2kh)d? +Lhd"? + h'd'd + 2h*d

(2)
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Electron beam emits synchrotron radiation as it is being bent in dipole magnets.
Probability distribution of the number of photons emitted by a single electron is

by Gaussian distribution.

from the average is simply:

2 2

GZ%] = IEithh (Eph)dEph

\_ CORNELL

tum Excitation: E S d — s
— Quantum Excitation: Energy Sprea gm% ~

described by Poisson distribution, and in the approximation of large number of photons

E.g. N, photons are emitted with energy £ ,. Random walk growth of energy spread

If photons are emitted with spectral distribution of M£ ), then one has to integrate

J
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A. Energy spread growth in bends

2 S ul dS
3’)\/_'?1. C hc(rm ) y' p— ‘ (7)
Sand’s radiation constant for e : C*r = i =8.86-10"° il x
S(m(' ) GeV:

For constant bending radius p and total angle ® (® =27 for a ring)

energy spread becomes:

Cr' e 109 p5(cays) L ©
£-=26-107°F (Gev )pﬁ(mf)zx' 8)




B. Energy spread growth in undulators

0.’ =|e’N, (ke = N,e,” ©)
E 2 1 2
with N, =-"=0.763 K (l+ LS )Lu (m), where
€, lp(cm)
dhe 2y E*(GeV?)
E, = 0 € eV)=950 > (10)
A (l-l—;K“) [(eV) l(cle+;K‘1)
et 1, E*(GeV? )K?
E = I -v'K°L . E(eV)=725 m). (L1)
T3 /'l.p‘y b (V) /'LP (cm?) £y (m)
2 i) L)
O 1 E—(GeVL)K
=7-10 L
E’ lp3(01113X1+ 1EKJ) .(m) (12)
Note: The radiation regime in ERL undulators should be far from SASE

to keep energy spread from IDs as estimated above.



II. Transverse Emittance Growth

Consider transverse motion:

u=u, + AL u =u, + AE
'3 n Ea 5 n Ee

where u (3 ) = amiw(ﬂ-

Emission of a photon leads to:

61120:6££ﬁ+??%, 5!1‘3:—7]%,
ou’ =0=ou, +‘q'%, oy :_n’%,

with respective change of the phase ellipse a’ = ]d-fz + 20w’ + ﬁu'z ;

Sla?)=y5 (ztﬁ‘2 )+ 200 (uﬁu; )+ B (u;;‘z )

2

<5c:2> :%H(S),

(14)

(L5)

(16)

(17)



Emission of a photon leads to:

5L£:0:6££ﬁ+n%, 51152—77%,
ou’ =0=ou, +n'%, ou; :—n'%,

4

-

with respective change of the phase ellipse a’ = jd-fz + 20w’ + Pu’:

5la?)=yo (.aurﬁ2 )+ 200 (uﬁu;, )+ B (u’;f).

, g’
<5a°>wr = 5 H(s).

here H(s)= Bn” + 2ann’+ym*.

Emittance growth due to quantum excitation becomes:

€a¢=&=iA<EJ2>= l jdsj-ezNPll(S)FI(s)cle-

B, 2 2cE’

It

L.V. Bazarov. Basic ERL X-ray source lattice design.
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A. Emittance growth in bends

; 20
327+/3 p =0

For ISOIIIEIgI'lEth ring.

X

55C helme®) . (H)
= @\ 21
3013 p’ =

where <H > and p are the average value of H - function in a dipole and

dipole bend radius respectfully.



B. Emittance growth in undulators

_’

e,
2 E°

€ = (H)N (22)

ph *

l Lu . , ,
<H)=L—J(ﬁn“+2ann +an”)ds. (23)
0

u

For sinusoidal undulator field B(S) = B, cos kps differential equation for 7} :

1 2
= —COS kps, here kp =—. (24)

_1
p P, A,

”»

n

L.V. Bazarov. Basic ERL X-ray source lattice design. 6



n-function
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Fig. 2. Dispersion function in one period of a undulator magnet.

. zlp (l—cos kps)+ N, n'(s)= . lp sink s. (25)

P u pru

n(s)=

For an undulator located with the beam waist at its center (ﬁ*) we have:

. [ 2 2, 2 2
L 2n. k
(Hy=—b [ 1e"o g T Po S0y, 1L
2k,'p, (12 B B" 2Bk,
% 4 ) 2, 2 2
- k
= ﬁ_r | I+ S *2_'_2770 Ezpu ' (26)




