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Optics Overview
1. First-Order Optics

1. Matrix Formalism for Changing Energy
2. Higher-Order Terms

2. Quantum Excitation in Transport Lines
1. Transverse Emittance
2. Energy Spread
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Summary and Scope

Purpose of this lecture is to present a brief review of beam transport matrix formalism 
and concepts, paying attention to special cases of particular importance to linear 
accelerators.

Effects of spontaneous synchrotron radiation on beam phase-space density will be 
briefly reviewed.

This is not meant to be a compete tutorial of beam optics formalism. For thorough 
treatment refer to

1) K.L. Brown, R.V. Servranckx, “1st- and 2nd-order charged particle optics”, 
SLAC-PUB-3381, July 1984

2) R.H. Helm, R. Miller, “Particle Dynamics”, in Linear Accelerators, ed. P.M. 
Lapostolle and A.L. Septier, 1970

3) M. Sands, SLAC-121, November 1970
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First-Order Optics
The deviation of an arbitrary trajectory from the central trajectory is given by 6-D vector:

This, along with knowing the central trajectory and its momentum , fully describes 
the system.

Vector           at position a is transformed to          at position b by

The above is essentially Taylor expansion. First-order optics formalism is derived by 
neglecting higher-order terms in equation of motion and retaining only the first term in 
the expansion. Higher-order matrix elements are obtained by including other significant 
terms, and can be represented as a combination of cosine, sine and off-momentum 
(dispersion) trajectories of the first-order Taylor expansion, their derivatives and 
multipole strengths of external magnetic fields
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Transfer Matrix for Decoupled Motion
If all magnets have mid-plane symmetry about y = 0, then the first-order transfer matrix 
simplifies to 

Beam can be represented by  Σ-matrix, which is 6×6 matrix in most general case, but 
for decoupled motion it could be represented by three 2×2 matrices, e.g.:

, beam ellipse equation at location a:

with the corresponding area:
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Changing Energy Case
Transformation rule for σ-matrix:

Liouville’s theorem requires that the phase space area be conserved

For changing energy case, one has to redefine transformation in terms of conjugate 
pairs of variables {x, pzx'} and {y, pzy'}

or

Now invariant of motion is normalized phase space area
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Courant-Snyder Notation
Initially introduced for a periodic case of a synchrotron or storage ring. E.g. consider 
stability condition for periodic lattice:

Transfer matrix, M, is the same for all orbits and |M| = 1, thus,

General solution is of the form:

here a1,2 are constants and λ1,2 are the roots of characteristic equation

Motion is stable when eigenvalues are of the form , which is the case when
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Courant-Snyder Notation (contd.)
The most general form for matrix M is given by

where α, β and γ are Courant-Snyder parameters (also called Twiss parameters along 
with dispersion function),  I is a unit matrix, and

Alternatively, one can arrive at Courant-Snyder notation by considering solution to the 
(Hill’s) equations of motion in phase-amplitude form:

 β-function satisfies ; , ,

CC
CCC

CCC µµ
µαµµγ

µβµαµ
sincos

sincossin
sinsincos

JIM +=







−−

+
=

22 1or      ,0)Tr(  with , αβγ
αγ

βα
+=−==








−−

= IJJJ

)])(sin())(cos()([
)(

)(

))(cos()()(

φµφµα
β

φµβ

+++−=′

+=

sss
s
Asx

ssAsx

042 22 =+′−′′ Kββββ 2/βα ′−≡
β
αγ

21+
≡βµ /1=′



USPAS 4th Generation Light Sources II Krafft/Bazarov 15 August 2002CHESS / LEPPCHESS / LEPP

Courant-Snyder Representation of σ-matrix
Require that phase space ellipse is unchanged for a 
successive orbit

then  σ-matrix has a form

One can write transformation rule for vector [β, α, γ]t
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Transfer Matrix for RF structure

At high enough energies, transverse momentum is conserved in the RF

Integrating the above one finds

Corresponding transfer matrix

as expected . This is a good approximation at higher energies, while at 
lower energies, azimuthal magnetic and radial electric fields of RF cause focusing:
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First-Order Path Length and Dispersion
To utilize small emittance beams, insertion devices have to be placed in places where 
dispersion and its derivative is zero. Thus, one ought to use achromatic transport 
systems. Furthermore, to utilize short bunches, one needs to control path length to be 
independent of particles’ momentum, or linearly changing with momentum for bunch 
compression

Path length is given by

First-order dispersion

Isochronous transport line has to be an achromat as well: 
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Second-Order Path Length
Generally, higher-order optics effects are harmful as they tend to distort phase space, 
making effective emittance larger. Second-order path length, however, can be used to 
correct longitudinal phase space after the linac.

Second-order “momentum compaction”, similar to first-order matrix element is 
defined as:

Usually, the most dominant term is the one with 2nd-order dispersion, 

Differential equation for second-order dispersion can be found to be
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Quantum Excitation: Energy Spread
Electron beam emits synchrotron radiation as it is being bent in dipole magnets. 
Probability distribution of the number of photons emitted by a single electron is 
described by Poisson distribution, and in the approximation of large number of photons 
by Gaussian distribution.

E.g. Nph photons are emitted with energy Eph. Random walk growth of energy spread 
from the average is simply: 

If photons are emitted with spectral distribution of N(Eph), then one has to integrate

22
phphE EN ⋅=σ

∫= phphphphE dEENE )(22σ
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