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Quantum excitation
‘Quantum excitation’ in accelerator physics refers to diffusion of 
phase space (momentum) of e– due to recoil from emitted photons.

Because radiated power scales as ∝ γ4 and critical photon energy 
(divides synchrotron radiation spectral power into two equal halves) 
as ∝ γ3 , the effect becomes important at high energies (typically ≥ 3 
GeV).

Here we consider spontaneous synchrotron radiation (λ << σz, so 
that the radiation power scales linearly with the number of 
electrons). When radiation wavelength becomes comparable with 
the bunch length (or density modulation size), radiated power 
becomes quadratic with peak current. This coherent synchrotron 
radiation (CSR) effects can be important at all energies when bunch 
length becomes is sufficiently short.
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Recoil due to photon emission

hν

ecB
Eβρ =

ecB
hνβρ −

Photon emission takes place in forward direction within a very 
small cone (~ 1/γ opening angle). Therefore, to 1st order, photon 
removes momentum in the direction of propagation of electron, 
leaving position and divergence of the electron intact at the point of 
emission. 
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Energy spread
Synchrotron radiation is a stochastic process. Probability 
distribution of the number of photons emitted by a single electron is 
described by Poisson distribution, and by Gaussian distribution in 
the approximation of large number of photons.
If emitting (on average) Nph photons
with energy Eph, random walk growth
of energy spread from its mean is 

If photons are emitted with spectral
distribution Nph(Eph), then one has to
integrate:

22
phphE EN=σ

random walk

∫= phphphE dEENE )(22σ
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Spectrum of synchrotron radiation from bends
Photon emission (primarily) takes place in deflecting magnetic field 
(dipole bend magnets, undulators and wigglers). Spectrum of 
synchrotron radiation from bends is well known (per unit deflecting 
angle):
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Energy spread from bends
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Sands’ radiation constant for e–:

For constant bending radius ρ and total bend angle Θ (Θ = 2π for a 
ring) energy spread becomes:

Radiated energy loss:
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Energy spread from planar undulator
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Energy spread from planar undulator (contd.)

In reality, undulator spectrum is 
more complicated with harmonic 
content for K ≥ 1 and Doppler red 
shift for off-axis emission.

More rigorous treatment gives
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Emittance growth
Consider motion:

where

As discussed earlier, emission of a photon leads to: 

changing  the phase space ellipse
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Emittance growth in bend
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H-function
As we have seen, lattice function H in dipoles (1/ρ ≠ 0) matters 
for low emittance.

In the simplest achromatic cell (two identical dipole magnets with 
lens in between), dispersion is defined in the bends. One can show 
that an optimum Twiss parameters (α, β) exist that minimize

Such optimized double bend achromat is known as a Chasman
Green lattice, and H is given by

3
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Example of triple bend achromat

mm 6.3=H

mm 1.9=H

mm 66.0≈
−GC

H

4×3°-bends
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Emittance and energy spread in ¼ CESR
energy = 5 GeV

large dispersion 
section for bunch 

compression
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Emittance growth in undulator
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For sinusoidal undulator field

Differential equation for dispersion
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Emittance growth in undulator (contd.)
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Unless undulator is placed in high dispersion region, 
contribution to emittance remains small.
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