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Reflection/Refraction

At the boundary between two media of  index of refraction n and n'
must have continuity of field:
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Snell’s Law
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Dynamic Conditions

at z = 0, boundary conditions imply
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Perpendicular Polarization
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Parallel Polarization
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Normal Incidence
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Brewster’s Angle

If                  reflected parallel polarization amplitude vanishes 
when incident at the Brewster angle
µ µ ′=
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Reflected wave completely plane-polarized (polarization 
perpendicular to plane of incidence) if mixed-polarization beam 
incident at Brewster angle.                      
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Total Internal Reflection

Examine Snell’s Law in case n > n'
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For  angles of incidence greater, there is no transmitted wave 
solution to attach to only an exponentially damped solution Thissolution to attach to, only an exponentially damped solution. This 
implies total reflection, also called total internal reflection. Optical 
communication systems are based on this phenomenon!
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Group Velocity

Until now, we have assumed that the relative permitivity and 
permeability are independent of frequency.  This may be far from p y p q y y
the case. Relaxing the requirement of constant phase velocity as a 
function of frequency leads to more general wave phenomena. 
Allow the frequency to depend on wavelength in 1 dimension:Allow the frequency to depend on wavelength in 1 dimension:
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The function ω(k) is known as the “dispersion function” A strictlyThe function ω(k) is known as the dispersion function . A strictly 
linear dispersion function, as we’ve had up to now, does not lead to 
pulse spreading, or dispersion.
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The pulse shape travels at the group velocity
dω
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