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Momentum Conservation

Momentum is a vector quantity. To describe momentum densities 
need (what could be more natural) vector valued forms. Mechanical 

t d li d t l d b l t ti fi ld imomentum delivered to a load by an electromagnetic field is

mechdp E J B dxdydxρ⎡ ⎤= + ×⎣ ⎦∫
r r r r

Define the vector 3-form force density to be

V

E J B dxdydx
dt

ρ⎡ ⎤= + ×⎣ ⎦∫

Define the vector 3 form force density to be

E J B dx dy dzρ⎡ ⎤+ × ∧ ∧⎣ ⎦
r r r

Momentum Flux density must have nine components

[ ]1 2 3ˆ ˆk l
i ij jkl i i i ie T dx dx e T dy dz T dz dx T dx dyε ⊗ = ∧ + ∧ + ∧
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In free space
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Momentum change equation

( ) ( ) ( ) ( )2 2

fieldmech dpdp
dt dt

E E c B B E E c B B dx dy dzε

+ =

⎡ ⎤∇ + ∇ × ∇ × × ∇ × ∧ ∧⎣ ⎦∫
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( ) ( ) ( ) ( )0
V

E E c B B E E c B B dx dy dzε ⎡ ⎤∇ ⋅ + ∇ ⋅ − × ∇ × − × ∇ × ∧ ∧⎣ ⎦∫



Maxwell Stress Tensor

Momentum in field
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= ×∫
r rr

Stress Tensor
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Harmonic Poynting Theorem

Represent the (real) electromagnetic field as
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then define the complex Poynting vector

( ) ( ) ( ) ( )
 

     , , Re
2time average

J x t E x t J x E x⎡ ⎤⋅ = ⋅⎣ ⎦

p y g
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S E H= ×
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and the complex electric and magnetic densities

( ) ( ) ( ) ( )* *1 1,           
4 4el maw E x D x w B x H x= ⋅ = ⋅
r r r rr r r r

Real part of following equation gives energy conservation

( ) ( )* 3 31 2 0
2 el maJ E d x i w w d x S ndaω⋅ + − + ⋅ =∫ ∫ ∫

rr
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Transformation of E-M Fields

One of the limitations of conventional vector analysis is that scalars 
and pseudoscalars, vectors and axial vectors, etc., are not 
di ti i h d Thi di ti ti i li it i th f l ddistinguished. This distinction is explicit in the form language, and 
makes it straightforward to determine the transformation properties 
of different field quantities.

Ordinary vector:

( ) ( )1 1

     , ,

, ,E E

x x y y z z

E x t E x tω ω′

′ ′ ′= − = − = −

′ ′= → − = −
r rr r

A i l t

     , ,x x y y z z′ ′ ′= − = − = −
r r

Axial vector:
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( ) ( )2 2 , ,B B B x t B x tω ω′′ ′= → − =
r rr r



Plane Electromagnetic Waves

If there are no sources in the Maxwell equations we must solve
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D

∂
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∂
∂

r
r r r r
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F h i ti d d , i tB E e ω−∝For a harmonic time dependence
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Get

2 2 0 ik x i tω⎡ ⎤
r rr r r
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Divergence equations imply 

0 0 0k E k B⋅ = ⋅ =

ˆk E E k
r rr r

Faraday’s Law implies 

0 0
0 ˆ               k E nn E kB n

c kω
× ×

= = =
r

r

where n is the index of refraction
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where n is the index of refraction 



Energy and Energy Flux

Poynting vector for the solution is

2 2*
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Energy Density 
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u E E B B Eε

µ
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Consistency 
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N t th t th it t
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Note that the units are correct 



Stress Tensor for Plane Wave

Assume free-space conditions and align z-axis with k
r
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Does this answer make sense?

Radiation Pressure in free space (force directed in the z-direction!)
20 Eε r
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Polarization Variables

Formula 

0 00 0,     ik E k e Eθ θ⋅ = → ⋅ = ∀
r rr r

Allows for potential phase shift between transverse “vector” 
components of the wave. As there are two distinct directions 

0 0

p
normal to      and two potential phases, a complete description of 
the radiation (including the overall wave phase) involves 4 
quantities the Stokes parameters They can be thought of as the

k
r

quantities, the Stokes parameters.  They can be thought of as the 
amplitudes and phases in the two directions. They depend on the 
polarization basis chosen

k e e×
r r r

Let the two (real) unit vectors normal to        be      and     , such 
that 

k
r

1er 2er
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Linear Polarization Basis

No phase difference between two components 

( ) [ ] ( )
1 1 2 2, i k x tE x t e E e E e ω⋅ −

= +
r rr r r r

If  E1 and E2 purely real
r

( ) [ ]1 1 2 2,

2 2
1 2E E E= +

r

E-field direction of a snapshot is constant in space. Polarization 
di ti l idirection angle is 

1 2tan E
E

−

with respect to the coordinates specified by the basis vectors. 
1E
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Circular Polarization Basis

Phase difference of ±π/2 = ±i between two components 

( ) [ ] ( ) ( )1i k x tE x t e E e E e e e ieω⋅ −
= + ≡ ±

r rr r r r r r r

If  E+ and E- purely real
r

( ) [ ] ( )1 2, ,      
2

E x t e E e E e e e ie+ + − − ±= + ≡ ±

2 2E E E+ −= +
r

but E-field direction of a snapshot rotates in space. Polarization is 
lli ti l d fi ld t t ith h d d d di h thelliptical and field rotates with a handedness depending on whether 

1 2 1 2     or      E E E E< >

with respect to the coordinates specified by the basis vectors. 
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General Wave Field

( ) ( )1 2
1 1 2 2, i k x ti iE x t e a e e a e e ωδ δ ⋅ −⎡ ⎤= +⎣ ⎦
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⎣ ⎦

The Stokes parameters are
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In Circular Basis
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Generally

2 2 2 2
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Reflection/Refraction

At the boundary between two media of  index of refraction n and n'
must have continuity of field:

Incident:
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( ),B x t
k

µ ε=
′
r



( ) ( )
0, i k x tE x t E e ω⋅ −′′ ′′=

r rr rr
Reflected:
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Must have:
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0 0 0
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r r rr r r
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( ) ( ) ( )
0 0 0z z z= = =



Snell’s Law

sin sin sink i k r k r′ ′′ ′= =

And so
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