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Galilean Invariance
Usual formulation (pre relativity): Laws of physics (e.g. the 
force vector) must be invariant to Galilean transformations
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Transformation of magnetic field
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where the unprimed magnetic field function describes the 
magnetic field in the laboratory frame.g y f
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Comparing to the Lorentz force law, k must be 1!



Generalized “Faraday Law”
In the lab frame, the following expression for the electromotive 
force applies. It is a Galilean invariant, or if you prefer, invariant 
for Galilean transformations in the limit of velocities smallfor Galilean transformations in the limit of velocities small 
compared to light. The expression encompasses both “motional 
emf” and “regular emf”.       gives the instantaneous velocity of vr
the loop integration element. Strictly speaking, we have only 
verified when      is a constant velocity, but I believe it applies 
when the velocity is time dependent (Extra credit, give me a 
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Differential Form of Faraday’s Law

( ) 2∂
r

For any loop and surface fixed in the frame the fields are 
defined in has
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This equation is true for all possible choices of L and S, 
which means the integrand must be 0 In form language and

L S S t∂∫ ∫ ∫
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which means the integrand must be 0. In form language and 
conventional vector language
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E-M Equations up to Now
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Field “Forms”
Electric Field Form

1
E x y zE dx E dy E dzω ≡ + +

Magnetic Field Form
1 H d H d H d+ +

E x y z

1
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Electric Flux Density Form
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Magnetic Flux Density (Magnetic Induction) Form
2         i j k
B ijk B dx dxω ε= ⊗

y

Physics 804 Electromagnetic Theory II

x y zB dy dz B dz dx B dx dy= ∧ + ∧ + ∧



Ampere’s Law
In conventional vector notation  is

H dl I⋅ =∫
rr

where I is the total current enclosed by the current loop. In 
terms of the Magnetic Field Form

L
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Integrating over a surface bounded by L

Physics 804 Electromagnetic Theory II

( )H J H J H J
S S S
∫ ∫ ∫



E-M Equations in Forms

2 0dω =

Homogeneous Equations
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Inhomogeneous (Source) Equations
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where ρ(x,y,z) is the charge density function 
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Set Inconsistent with Charge Conservation
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Charge conservation
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But, taking the exterior derivative of Ampere’s Law
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Maxwell noted that to make LHS zero must modify RHS of 
A ’ L b dditi f th di l t t (d it )Ampere’e Law by addition of the displacement current (density) 

1 2 2 1 0,H J D Hd dd
t

ω ω ω ω∂
= + → =

∂

Physics 804 Electromagnetic Theory II

t∂
consistent with charge conservation.



Maxwell’s Equations

20 0B dω∇ ⋅ = =
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Magnetic induction form is always closed; what happens to flux?



Electromagnetic Potentials

Poincare’s lemma plus first ME imply there is a one-form A
so that

2 1 1         B A A x y zd A dx A dy A dzω ω ω= = + +

Thi d fi th l t t ti l P i ’ l lThis defines the usual vector potential.  Poincare’s lemma plus 
the second ME imply there is a scalar potential (sign chosen 
using traditional definition with E as the negative gradient)
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Individual form components give the usual vector expression  
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Gauge Invariance

Considerable flexibility/latitude in choosing potentials. If 
redefine them by

new oldA A d

φ φ

= + Λ

∂Λ
= −new old t

φ φ= −
∂

for an arbitrary space-time function, then the electric field and 
magnetic flux forms will be identical when computed with the 
new potentials. In other words, the transformation from the old 
to new descriptions will leave the electromagnetic field invariant. p g
One makes various choices on the gauge, for convenience of 
calculation. 
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Equations for the Potentials
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Lorenz Gauge

Lorenz Gauge condition is

2

1 0A
c t

φ∂
∇ ⋅ + =

∂

rr

Applying this condition yields the following, very symmetrical 
version of the potential equations
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D’Alembertian or Wave Operator
2 2 2 2

2 2 2 2 2

1 
x y z c t
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Restricted Lorenz gauge transformation: clearly the time
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Restricted Lorenz gauge transformation: clearly the time 
derivative of any such f may be added directly to     , and it’s 
exterior derivative added to      , without violating the Lorenz 
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gauge condition.


